1
|
Abstract
BACKGROUND SARS-CoV-2, a coronavirus (CoV), is known to cause acute respiratory distress syndrome, and a number of non-respiratory complications, particularly in older male patients with prior health conditions, such as obesity, diabetes and hypertension. These prior health conditions are associated with vascular dysfunction, and the CoV disease 2019 (COVID-19) complications include multiorgan failure and neurological problems. While the main route of entry into the body is inhalation, this virus has been found in many tissues, including the choroid plexus and meningeal vessels, and in neurons and CSF. MAIN BODY We reviewed SARS-CoV-2/COVID-19, ACE2 distribution and beneficial effects, the CNS vascular barriers, possible mechanisms by which the virus enters the brain, outlined prior health conditions (obesity, hypertension and diabetes), neurological COVID-19 manifestation and the aging cerebrovascualture. The overall aim is to provide the general reader with a breadth of information on this type of virus and the wide distribution of its main receptor so as to better understand the significance of neurological complications, uniqueness of the brain, and the pre-existing medical conditions that affect brain. The main issue is that there is no sound evidence for large flux of SARS-CoV-2 into brain, at present, compared to its invasion of the inhalation pathways. CONCLUSIONS While SARS-CoV-2 is detected in brains from severely infected patients, it is unclear on how it gets there. There is no sound evidence of SARS-CoV-2 flux into brain to significantly contribute to the overall outcomes once the respiratory system is invaded by the virus. The consensus, based on the normal route of infection and presence of SARS-CoV-2 in severely infected patients, is that the olfactory mucosa is a possible route into brain. Studies are needed to demonstrate flux of SARS-CoV-2 into brain, and its replication in the parenchyma to demonstrate neuroinvasion. It is possible that the neurological manifestations of COVID-19 are a consequence of mainly cardio-respiratory distress and multiorgan failure. Understanding potential SARS-CoV-2 neuroinvasion pathways could help to better define the non-respiratory neurological manifestation of COVID-19.
Collapse
Affiliation(s)
- Conor McQuaid
- Department of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Molly Brady
- Department of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - Rashid Deane
- Department of Neuroscience, University of Rochester, URMC, 601 Elmwood Avenue, Rochester, NY 14642 USA
| |
Collapse
|
2
|
Cai QL, Peng DJ, Lin-Zhao, Chen JW, Yong-Li, Luo HL, Ou SY, Huang ML, Jiang YM. Impact of Lead Exposure on Thyroid Status and IQ Performance among School-age Children Living Nearby a Lead-Zinc Mine in China. Neurotoxicology 2020; 82:177-185. [PMID: 33115663 DOI: 10.1016/j.neuro.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/31/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Lead exposure is one of the most concerning public health problems worldwide, particularly among children. Yet the impact of chronic lead exposure on the thyroid status and related intelligence quotient performance among school-age children remained elusive. OBJECTIVE The aim of this study was to evaluate the influence of lead exposure on the thyroid hormones, amino acid neurotransmitters balances, and intelligence quotient (IQ) among school-age children living nearby a lead-zinc mining site. Other factors such as rice lead levels, mothers' smoking behavior, and diet intake were also investigated. METHODS A total of 255 children aged 7-12 years old were recruited in this study. Blood lead level (BLL), thyroid hormones including free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH), and amino acid neurotransmitters such as glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) were measured using graphite furnace atomic absorption spectroscopy (GFAAS), chemiluminescence immunoassay, high performance liquid chromatography (HPLC). Raven's standard progressive matrices (SPM) and the questionnaire were used to determine IQ and collect related influence factors. RESULTS The average BLL of children was 84.8 μg/L. The occurrence of lead intoxication (defined as the BLL ≥ 100 μg/L) was 31.8%. Serum TSH levels and IQ of lead-intoxicated children were significantly lower than those without lead toxicity. The GABA level of girls with the lead intoxication was higher than those with no lead-exposed group. Correlation analyses revealed that BLL were inversely associated with the serum TSH levels (R= -0.186, p < 0.05), but positively related with IQ grades (R = 0.147, p < 0.05). Moreover, BLL and Glu were inversely correlated with IQ. In addition, this study revealed four factors that may contribute to the incidence of lead intoxication among children, including the frequency of mother smoking (OR = 3.587, p < 0.05) and drinking un-boiled stagnant tap water (OR = 3.716, p < 0.05); eating fresh fruits and vegetables (OR = 0.323, p < 0.05) and soy products regularly (OR = 0.181, p < 0.05) may protect against lead intoxication. CONCLUSION Lead exposure affects the serum TSH, GABA levels and IQ of school-aged children. Developing good living habits, improving environment, increasing the intake of high-quality protein and fresh vegetable and fruit may improve the condition of lead intoxication.
Collapse
Affiliation(s)
- Qiu-Ling Cai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dong-Jie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Lin-Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jing-Wen Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Public Health Office, Wuhan First Hospital, Hubei 430022, China
| | - Yong-Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Wanzhou District Health Committee, Chongqing 404000, China
| | - Hai-Lan Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Center for Disease Control and Prevention, Nanning 530021, Guangxi, China
| | - Shi-Yan Ou
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ming-Li Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
3
|
Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull 2020; 156:131-140. [PMID: 31891753 DOI: 10.1016/j.brainresbull.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T4 and T3) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T4 in SN and hippocampus, T3 in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T4 levels changed differentially, T3 levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T4 and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T4 levels remained unchanged while the changes in T3 and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T4 and T3 levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T4, T3 and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T4 level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.
Collapse
Affiliation(s)
- Priyobrata Sinha
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India; Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India; Centres with Potential for Excellence in Particular Areas (CPEPA, UGC), Centre for "Electrophysiology & Neuroimaging Studies Including Mathematical Modeling" India.
| | - Nabanita Ghosh
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Soham Mitra
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Shauryabrota Dalui
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
4
|
Chodobski A, Ghersi-Egea JF, Preston-Kennedy J, Redzic Z, Strazielle N, Szmydynger-Chodobska J, Thorne RG. The legacy of Malcolm Beverley Segal (1937-2019) on the science and fields concerned with choroid plexus and cerebrospinal fluid physiology. Fluids Barriers CNS 2019; 16:41. [PMID: 31856859 PMCID: PMC6924054 DOI: 10.1186/s12987-019-0161-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
This article highlights the scientific achievements, professional career, and personal interactions of Malcolm B. Segal who passed away in July this year. Born in 1937 in Goodmayes, Essex, UK, Segal rose to the Chairman position in the Division of Physiology at United Medical and Dental School of Guy’s and St. Thomas’ Hospitals, retiring in 2006 after his long professional career in biomedical science. Being trained in Hugh Davson’s laboratory, Segal became one of the pioneers in research on cerebrospinal fluid physiology and the choroid plexus. During the course of his career, Segal himself trained a number of young scientists and collaborated with many colleagues around the world, making long-lasting friendships along the way. In addition to his professional accomplishments as a researcher and educator, Segal was an avid sailor and wine connoisseur, and enjoyed teaching classes on navigation and wine tasting.
Collapse
Affiliation(s)
- Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, USA.
| | | | | | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Joanna Szmydynger-Chodobska
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Robert G Thorne
- Denali Therapeutics, South San Francisco, CA, USA.,Department of Pharmaceutics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
5
|
Chen R, Chen CP, Preston JE. Effects of transthyretin on thyroxine and β-amyloid removal from cerebrospinal fluid in mice. Clin Exp Pharmacol Physiol 2017; 43:844-50. [PMID: 27220110 DOI: 10.1111/1440-1681.12598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Abstract
Transthyretin (TTR) is a binding protein for the thyroid hormone thyroxine (T4 ), retinol and β-amyloid peptide. TTR aids the transfer of T4 from the blood to the cerebrospinal fluid (CSF), but also prevents T4 loss from the blood-CSF barrier. It is, however, unclear whether TTR affects the clearance of β-amyloid from the CSF. This study aimed to investigate roles of TTR in β-amyloid and T4 efflux from the CSF. Eight-week-old 129sv male mice were anaesthetized and their lateral ventricles were cannulated. Mice were infused with artificial CSF containing (125) I-T4 /(3) H-mannitol, or (125) I-Aβ40/(3) H-inulin, in the presence or absence of TTR. Mice were decapitated at 2, 4, 8, 16, 24 minutes after injection. The whole brain was then removed and divided into different regions. The radioactivities in the brain were determined by liquid scintillation counting. At baseline, the net uptake of (125) I-T4 into the brain was significantly higher than that of (125) I-Aβ40, and the half time for efflux was shorter ((125) I-T4 , 5.16; (3) H-mannitol, 7.44; (125) I-Aβ40, 8.34; (3) H-inulin, 10.78 minutes). The presence of TTR increased the half time for efflux of (125) I-T4 efflux, and caused a noticeable increase in the uptake of (125) I-T4 and (125) I-Aβ40 in the choroid plexus, whilst uptakes of (3) H-mannitol and (3) H-inulin remained similar to control experiments. This study indicates that thyroxine and amyloid peptide effuse from the CSF using different transporters. TTR binds to thyroxine and amyloid peptide to prevent the loss of thyroxine from the brain and redistribute amyloid peptide to the choroid plexus.
Collapse
Affiliation(s)
- Ruoli Chen
- Institute of Pharmaceutical Science, King's College London, London, UK.,Institute of Science and Technology of Medicine, School of Pharmacy, Keele University, Staffordshire, UK
| | - Carl P Chen
- Institute of Pharmaceutical Science, King's College London, London, UK.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan County, Taiwan, China
| | - Jane E Preston
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
6
|
Zibara K, Zein NE, Sabra M, Hneino M, Harati H, Mohamed W, Kobeissy FH, Kassem N. Thyroxine (T 4) Transfer from Blood to Cerebrospinal Fluid in Sheep Isolated Perfused Choroid Plexus: Role of Multidrug Resistance-Associated Proteins and Organic Anion Transporting Polypeptides. Front Neurol 2017; 8:214. [PMID: 28588548 PMCID: PMC5440555 DOI: 10.3389/fneur.2017.00214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/21/2022] Open
Abstract
Thyroxine (T4) enters the brain either directly across the blood–brain barrier (BBB) or indirectly via the choroid plexus (CP), which forms the blood–cerebrospinal fluid barrier (B-CSF-B). In this study, using isolated perfused CP of the sheep by single-circulation paired tracer and steady-state techniques, T4 transport mechanisms from blood into lateral ventricle CP has been characterized as the first step in the transfer across the B-CSF-B. After removal of sheep brain, the CPs were perfused with 125I-T4 and 14C-mannitol. Unlabeled T4 was applied during single tracer technique to assess the mode of maximum uptake (Umax) and the net uptake (Unet) on the blood side of the CP. On the other hand, in order to characterize T4 protein transporters, steady-state extraction of 125I-T4 was measured in presence of different inhibitors such as probenecid, verapamil, BCH, or indomethacin. Increasing the concentration of unlabeled-T4 resulted in a significant reduction in Umax%, which was reflected by a complete inhibition of T4 uptake into CP. In fact, the obtained Unet% decreased as the concentration of unlabeled-T4 increased. The addition of probenecid caused a significant inhibition of T4 transport, in comparison to control, reflecting the presence of a carrier mediated process at the basolateral side of the CP and the involvement of multidrug resistance-associated proteins (MRPs: MRP1 and MRP4) and organic anion transporting polypeptides (Oatp1, Oatp2, and Oatp14). Moreover, verapamil, the P-glycoprotein (P-gp) substrate, resulted in ~34% decrease in the net extraction of T4, indicating that MDR1 contributes to T4 entry into CSF. Finally, inhibition in the net extraction of T4 caused by BCH or indomethacin suggests, respectively, a role for amino acid “L” system and MRP1/Oatp1 in mediating T4 transfer. The presence of a carrier-mediated transport mechanism for cellular uptake on the basolateral membrane of the CP, mainly P-gp and Oatp2, would account for the efficient T4 transport from blood to CSF. The current study highlights a carrier-mediated transport mechanism for T4 movement from blood to brain at the basolateral side of B-CSF-B/CP, as an alternative route to BBB.
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Faculty of Sciences, Biology Department, Lebanese University, Beirut, Lebanon
| | - Nabil El Zein
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Faculty of Sciences, Biology Department, Lebanese University, Beirut, Lebanon
| | - Mirna Sabra
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Neuroscience Research Centre, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mohammad Hneino
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Faculty of Public Health, Medical Laboratory Department, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Centre, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.,Neuroscience Unit, Menoufia Medical School, Cairo, Egypt
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Neuroscience Research Centre, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
7
|
Young RK, Villalobos ARA. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium. Am J Physiol Regul Integr Comp Physiol 2014; 306:R291-303. [PMID: 24401988 DOI: 10.1152/ajpregu.00252.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl₂). At 50-1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [(3)H]choline. However, extended exposure to 250-500 nM cadmium increased [(3)H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase.
Collapse
|
8
|
Abstract
Chemical homeostasis in the extracellular fluid of the central nervous system (CNS) is maintained by two brain barrier systems, i.e., the blood-brain barrier (BBB) that separates the blood circulation from brain interstitial fluid and the blood-cerebrospinal fluid barrier (BCB) that separates the blood from the cerebrospinal fluid (CSF). The choroid plexus, where the BCB is located, is a polarized tissue, with the basolateral side of the choroidal epithelium facing the blood and the apical microvilli in direct contact with the CSF. The tissue plays a wide range of roles in brain development, aging, nutrient transport, endocrine regulation, and pathogenesis of certain neurodegenerative disorders. This chapter describes two in vitro cultures that have been well established to allow for study of the BCB structure and function. The primary choroidal epithelial cell culture can be established from rat choroid plexus tissue, and a similar immortalized murine choroidal epithelial cell culture known as Z310 cells has also been established. Both cultures display a dominant polygonal morphology, and immunochemical studies demonstrate the presence of transthyretin, a thyroxine transport protein known to be exclusively produced by the choroidal epithelia in the CNS. These cultures have been adapted for use on freely permeable Transwell(®) membranes sandwiched between two culture chambers, facilitating transport studies of various compounds across this barrier in vitro. These choroidal epithelia cultures with the Transwell system will perceivably assist blood-CSF barrier research.
Collapse
Affiliation(s)
- Andrew D Monnot
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
9
|
Levothyroxine rescues the lead-induced hypothyroidism and impairment of long-term potentiation in hippocampal CA1 region of the developmental rats. Toxicol Appl Pharmacol 2011; 256:191-7. [PMID: 21871911 DOI: 10.1016/j.taap.2011.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 02/03/2023]
Abstract
Lead (Pb) exposure during development has been associated with impaired long-term potentiation (LTP). Hypothyroidism happening upon subjects with occupational exposure to Pb is suggestive of an adverse effect of Pb on thyroid homeostasis, leading to the hypothesis that Pb exposure may alter thyroid hormone homeostasis. Hippocampus is one of the targets of Pb exposure, and is sensitive to and dependent on thyroid hormones, leading us to explore whether levothyroxine (L-T(4)) administration could alter the thyroid disequilibrium and impairment of LTP in rat hippocampus caused by Pb exposure. Our results show that Pb exposure caused a decrease in triiodothyronine (T(3)) and tetraiodothyronine (T(4)) levels accompanied by a dramatic decrease of TSH and application of L-T(4) restored these changes to about control levels. Hippocampal and blood Pb concentration were significantly reduced following L-T(4) treatment. L-T(4) treatment rescued the impairment of LTP induced by the Pb exposure. These results suggest that Pb exposure may lead to thyroid dysfunction and induce hypothyroidism and provide a direct electrophysiological proof that L-T(4) relieves chronic Pb exposure-induced impairment of synaptic plasticity.
Collapse
|
10
|
Behl M, Zhang Y, Monnot AD, Jiang W, Zheng W. Increased beta-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicol Appl Pharmacol 2009; 240:245-54. [PMID: 19501112 DOI: 10.1016/j.taap.2009.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
The choroid plexus, a barrier between the blood and cerebrospinal fluid (CSF), is known to accumulate lead (Pb) and also possibly function to maintain brain's homeostasis of Abeta, an important peptide in the etiology of Alzheimer's disease. This study was designed to investigate if Pb exposure altered Abeta levels at the blood-CSF barrier in the choroid plexus. Rats received ip injection of 27 mg Pb/kg. Twenty-four hours later, a FAM-labeled Abeta (200 pmol) was infused into the lateral ventricle and the plexus tissues were removed to quantify Abeta accumulation. Results revealed a significant increase in intracellular Abeta accumulation in the Pb-exposed animals compared to controls (p<0.001). When choroidal epithelial Z310 cells were treated with 10 microM Pb for 24 h and 48 h, Abeta (2 microM in culture medium) accumulation was significantly increased by 1.5 fold (p<0.05) and 1.8 fold (p<0.05), respectively. To explore the mechanism, we examined the effect of Pb on low-density lipoprotein receptor protein-1 (LRP1), an intracellular Abeta transport protein. Following acute Pb exposure with the aforementioned dose regimen, levels of LRP1 mRNA and proteins in the choroid plexus were decreased by 35% (p<0.05) and 31.8% (p<0.05), respectively, in comparison to those of controls. In Z310 cells exposed to 10 microM Pb for 24 h and 48 h, a 33.1% and 33.4% decrease in the protein expression of LRP1 was observed (p<0.05), respectively. Knocking down LRP1 resulted in even more substantial increases of cellular accumulation of Abeta, from 31% in cells without knockdown to 72% in cells with LRP1 knockdown (p<0.05). Taken together, these results suggest that the acute exposure to Pb results in an increased accumulation of intracellular Abeta in the choroid plexus; the effect appears to be mediated, at least in part, via suppression of LRP1 production following Pb exposure.
Collapse
Affiliation(s)
- Mamta Behl
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1169, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
11
|
Richardson SJ. Marsupial models for understanding evolution of thyroid hormone distributor proteins. Mol Cell Endocrinol 2008; 293:32-42. [PMID: 18550270 DOI: 10.1016/j.mce.2008.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/11/2008] [Accepted: 04/07/2008] [Indexed: 12/26/2022]
Abstract
Marsupials are a group of mammals that are under-exploited, in particular in developmental and evolutionary studies of biological systems. In this review, the roles that marsupials have played in elucidating the evolution of thyroid hormone distribution systems are summarised. Marsupials are born at very early developmental stages, and most development occurs during lactation rather than in utero. Studying thyroid hormone distribution systems during marsupial development, in addition to comparing the two Orders of marsupials, gave clues as to the selection pressures acting on the hepatic gene expression of transthyretin (TTR), one of the major thyroid hormone distributor proteins in blood. The structure of TTR in marsupials is intermediate between that of avian/reptilian TTRs and eutherian ("placental mammalian") TTRs. Consequently, the function of marsupial TTR is intermediate between those of avian/reptilian TTRs and eutherian TTRs. Thus, in some respects marsupials can be considered as "missing links" in vertebrate evolution.
Collapse
|
12
|
Shi LZ, Li GJ, Wang S, Zheng W. Use of Z310 cells as an in vitro blood-cerebrospinal fluid barrier model: tight junction proteins and transport properties. Toxicol In Vitro 2007; 22:190-9. [PMID: 17825520 PMCID: PMC2677988 DOI: 10.1016/j.tiv.2007.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/26/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Immortalized rat choroidal epithelial Z310 cells have the potential to become an in vitro model for studying transport of materials at blood-cerebrospinal fluid barrier (BCB) (Shi and Zheng, 2005) [Shi, L.Z., Zheng, W., 2005. Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study. Brain Research 1057, 37-48]. This study was designed to demonstrate the presence of tight junction properties in Z310 cells and the functionality of Z310 monolayer in transport of selected model compounds. Western blot analyses revealed the presence of claudin-1, ZO-1, and occludin in Z310 cells. Transmission electron microscopy showed a "tight junction" type of structure in the sub-apical lateral membranes between adjacent Z310 cells. Real-time RT-PCR revealed that Z310 cells expressed representative transporters such as DMT1, MTP1, TfR, p-glycoprotein, ATP7A, ZnT1, ABCC1, Oat3, OCT1 and OB-Ra. Moreover, Z310 cells cultured in a two-chamber Transwell device possessed the ability to transport zidovudine (anionic drug), thyroxine (hormone), thymidine (nucleoside), and leptin (large polypeptide) with kinetic properties similar to those obtained from the in vitro model based on primary culture of choroidal epithelial cells. Taken together, these data indicate that the Z310 BCB model expresses major tight junction proteins and forms a tight barrier in vitro. The model also exhibits the ability to transport substances of various categories across the barrier.
Collapse
Affiliation(s)
| | | | | | - Wei Zheng
- To address correspondence: Wei Zheng, Ph.D., Purdue University School of Health Sciences, 550 Stadium Mall Drive, Room 1163D, West Lafayette, IN 47907-2051, +1 765.496.6447 (office), +1 765.496.3555 (lab), +1 765.496.1377 (fax),
| |
Collapse
|
13
|
Shi LZ, Zheng W. Early lead exposure increases the leakage of the blood-cerebrospinal fluid barrier, in vitro. Hum Exp Toxicol 2007; 26:159-67. [PMID: 17439918 PMCID: PMC3980856 DOI: 10.1177/0960327107070560] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell type constructing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) is entirely different, ie, endothelia in BBB and epithelia in BCB. Nonetheless, both barriers share a common character--the tight junctions (TJ) between adjacent cells. This study investigated the consequence of lead (Pb) exposure on the tightness of BCB. In an in vitro BCB transwell model, using immortalized choroidal epithelial Z310 cells, we found that early exposure to Pb (prior to the formation of tight barrier) at 5 and 10 microM, significantly reduced the tightness of BCB, as evidenced by a 20% reduction in transepithelial electrical resistance (TEER) values (P <0.05), and >20% increase in the paracellular permeability of [(14)C]sucrose (P <0.05). Exposure to Pb after the formation of tight barrier, however, did not cause any detectable barrier dysfunction. RT-PCR and Western blot analyses on typical TJ proteins revealed that Pb exposure decreased both the mRNA and protein levels of claudin-1, with the membrane-bound claudin-1 more profoundly affected than cytosolic claudin-1. Pb exposure, however, had no significant effect on ZO1 and occludin. These data suggest that Pb exposure selectively alters the cellular level of claudin-1, which, in turn, reduces the tightness and augments the permeability of tight blood-CSF barrier. The immature barrier appears to be more vulnerable to Pb toxicity than the mature, well-developed, brain barrier, the fact possibly contributing to Pb-induced neurotoxicity among young children.
Collapse
Affiliation(s)
| | - Wei Zheng
- Correspondence: Wei Zheng, PhD, Professor of Health Sciences, Purdue University School of Health Sciences, 550 Stadium Mall Drive, CIVL-1163D, West Lafayette, IN 47907-2051, USA
| |
Collapse
|
14
|
Richardson SJ. Cell and Molecular Biology of Transthyretin and Thyroid Hormones. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:137-93. [PMID: 17338921 DOI: 10.1016/s0074-7696(07)58003-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Advances in four areas of transthyretin (TTR) research result in this being a timely review. Developmental studies have revealed that TTR is synthesized in all classes of vertebrates during development. This leads to a new hypothesis on selection pressure for hepatic TTR synthesis during development only, changing the previous hypotheses from "onset" of hepatic TTR synthesis in adulthood to "maintaining" hepatic TTR synthesis into adulthood. Evolutionary studies have revealed the existence of TTR-like proteins (TLPs) in nonvertebrate species and elucidated some of their functions. Consequently, TTR is an excellent model for the study of the evolution of protein structure, function, and localization. Studies of human diseases have demonstrated that TTR in the cerebrospinal fluid can form amyloid, but more recently there has been recognition of the roles of TTR in depression and Alzheimer's disease. Furthermore, amyloid mutations in human TTR that are the normal residues in other species result in cardiac deposition of TTR amyloid in humans. Finally, a revised model for TTR-thyroxine entry into the cerebrospinal fluid via the choroid plexus, based on data from studies in TTR null mice, is presented. This review concentrates on TTR and its thyroid hormone binding, in development and during evolution, and summarizes what is currently known about TLPs and the role of TTR in diseases affecting the brain.
Collapse
Affiliation(s)
- Samantha J Richardson
- UMR CNRS 5166, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
15
|
Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced Prospects for Drug Delivery and Brain Targeting by the Choroid Plexus–CSF Route. Pharm Res 2005; 22:1011-37. [PMID: 16028003 DOI: 10.1007/s11095-005-6039-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 04/12/2005] [Indexed: 02/07/2023]
Abstract
The choroid plexus (CP), i.e., the blood-cerebrospinal fluid barrier (BCSFB) interface, is an epithelial boundary exploitable for drug delivery to brain. Agents transported from blood to lateral ventricles are convected by CSF volume transmission (bulk flow) to many periventricular targets. These include the caudate, hippocampus, specialized circumventricular organs, hypothalamus, and the downstream pia-glia and arachnoid membranes. The CSF circulatory system normally provides micronutrients, neurotrophins, hormones, neuropeptides, and growth factors extensively to neuronal networks. Therefore, drugs directed to CSF can modulate a variety of endocrine, immunologic, and behavioral phenomema; and can help to restore brain interstitial and cellular homeostasis disrupted by disease and trauma. This review integrates information from animal models that demonstrates marked physiologic effects of substances introduced into the ventricular system. It also recapitulates how pharmacologic agents administered into the CSF system prevent disease or enhance the brain's ability to recover from chemical and physical insults. In regard to drug distribution in the CNS, the BCSFB interaction with the blood-brain barrier is discussed. With a view toward translational CSF pharmacotherapy, there are several promising innovations in progress: bone marrow cell infusions, CP encapsulation and transplants, neural stem cell augmentation, phage display of peptide ligands for CP epithelium, CSF gene transfer, regulation of leukocyte and cytokine trafficking at the BCSFB, and the purification of neurotoxic CSF in degenerative states. The progressively increasing pharmacological significance of the CP-CSF nexus is analyzed in light of treating AIDS, multiple sclerosis, stroke, hydrocephalus, and Alzheimer's disease.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02912, USA.
| | | | | | | |
Collapse
|
16
|
Tohyama K, Kusuhara H, Sugiyama Y. Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology 2004; 145:4384-91. [PMID: 15166123 DOI: 10.1210/en.2004-0058] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study was aimed at investigating the involvement of mouse organic anion transporting polypeptide 14 (mOatp14) in the uptake of T4 across the blood-brain barrier. Functional expression of mOatp14 in HEK293 cells revealed that T4 and rT3 are high affinity substrates of mOatp14 (Michaelis constant, 0.34 and 0.46 microm, respectively), and the specific uptake of T3 was 4-fold less than that of T4 and rT3. Taurocholate, probenecid, and estrone-3-sulfate were moderate inhibitors for mOatp14, whereas digoxin (substrate of Oatp2), benzylpenicillin (substrate of Oat3), and large neutral amino acids had no effect. mOatp14 is widely expressed throughout the brain, except for the cerebellum. The expression of mOatp14 in the isolated brain capillaries and the choroid plexus was shown by Western blot. The uptake clearance of T4 by the cerebral cortex determined using the in situ brain perfusion technique in mice was 580 microl/min.g tissue, 3-fold greater than that by the cerebellum, and a saturable component (Michaelis constant, 1.0 microm) accounts for the major fraction of the total uptake. Taurocholate inhibited the uptake of T4 by the cerebral cortex completely, but the inhibition by estrone-3-sulfate was partial (50%). These results suggest that transporters play a predominant role in the delivery of T4 to the brain, and mOatp14 accounts for estrone-3-sulfate inhibitable fraction, at least partly. The absence of inhibition by digoxin, benzylpenicillin, leucine, and 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid for the uptake of T4 by the cerebral cortex suggests the presence of other unknown transporter for T4 uptake by the brain. Immunohistochemical staining revealed basolateral localization of mOatp14 in the choroid plexus in which it may also play a role in T4 uptake.
Collapse
Affiliation(s)
- Kimio Tohyama
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
17
|
Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 2003; 192:1-11. [PMID: 14554098 PMCID: PMC3982148 DOI: 10.1016/s0041-008x(03)00251-5] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The concept of brain barriers or a brain barrier system embraces the blood-brain interface, referred to as the blood-brain barrier, and the blood-cerebrospinal fluid (CSF) interface, referred to as the blood-CSF barrier. These brain barriers protect the CNS against chemical insults, by different complementary mechanisms. Toxic metal molecules can either bypass these mechanisms or be sequestered in and therefore potentially deleterious to brain barriers. Supportive evidence suggests that damage to blood-brain interfaces can lead to chemical-induced neurotoxicities. This review article examines the unique structure, specialization, and function of the brain barrier system, with particular emphasis on its toxicological implications. Typical examples of metal transport and toxicity at the barriers, such as lead (Pb), mercury (Hg), iron (Fe), and manganese (Mn), are discussed in detail with a special focus on the relevance to their toxic neurological consequences. Based on these discussions, the emerging research needs, such as construction of the new concept of blood-brain regional barriers, understanding of chemical effect on aged or immature barriers, and elucidation of the susceptibility of tight junctions to toxicants, are identified and addressed in this newly evolving field of neurotoxicology. They represent both clear challenges and fruitful research domains not only in neurotoxicology, but also in neurophysiology and pharmacology.
Collapse
Affiliation(s)
- Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|