1
|
Post CM, Myers JR, Winans B, Lawrence BP. Postnatal administration of S-adenosylmethionine restores developmental AHR activation-induced deficits in CD8+ T cell function during influenza A virus infection. Toxicol Sci 2023; 192:kfad019. [PMID: 36847456 PMCID: PMC10109536 DOI: 10.1093/toxsci/kfad019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Developmental exposures can influence life-long health; yet, counteracting negative consequences is challenging due to poor understanding of cellular mechanisms. The aryl hydrocarbon receptor (AHR) binds many small molecules, including numerous pollutants. Developmental exposure to the signature environmental AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly dampens adaptive immune responses to influenza A virus (IAV) in adult offspring. CD8+ cytotoxic T lymphocytes (CTL) are crucial for successful infection resolution, which depends on the number generated and the complexity of their functionality. Prior studies showed developmental AHR activation significantly reduced the number of virus-specific CD8+ T cells, but impact on their functions is less clear. Other studies showed developmental exposure was associated with differences in DNA methylation in CD8+ T cells. Yet, empirical evidence that differences in DNA methylation are causally related to altered CD8+ T cell function is lacking. The two objectives were to ascertain whether developmental AHR activation affects CTL function, and whether differences in methylation contribute to reduced CD8+ T cell responses to infection. Developmental AHR triggering significantly reduced CTL polyfunctionality, and modified the transcriptional program of CD8+ T cells. S-adenosylmethionine (SAM), which increases DNA methylation, but not Zebularine, which diminishes DNA methylation, restored polyfunctionality and boosted the number of virus-specific CD8+ T cells. These findings suggest that diminished methylation, initiated by developmental exposure to an AHR-binding chemical, contributes to durable changes in antiviral CD8+ CTL functions later in life. Thus, deleterious consequence of development exposure to environmental chemicals are not permanently fixed, opening the door for interventional strategies to improve health.
Collapse
Affiliation(s)
- Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Lowery R, Latchney S, Peer R, Lamantia C, Lordy K, Opanashuk L, McCall M, Majewska A. Gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin primes cortical microglia to tissue injury. Brain Behav Immun 2022; 101:288-303. [PMID: 35065196 PMCID: PMC9007156 DOI: 10.1016/j.bbi.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that the aryl hydrocarbon receptor (AhR) is expressed in the brain's native immune cells, known as microglia. However, while the impact of exposure to AhR ligands is well studied in the peripheral immune system, the impact of such exposure on immune function in the brain is less well defined. Microglia serve dual roles in providing synaptic and immunological support for neighboring neurons and in mediating responses to environmental stimuli, including exposure to environmental chemicals. Because of their dual roles in regulating physiological and pathological processes, cortical microglia are well positioned to translate toxic stimuli into defects in cortical function via aberrant synaptic and immunological functioning, mediated either through direct microglial AhR activation or in response to AhR activation in neighboring cells. Here, we use gene expression studies, histology, and two-photon in vivo imaging to investigate how developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high-affinity and persistent AhR agonist, modulates microglial characteristics and function in the intact brain. Whole cortical RT-qPCR analysis and RNA-sequencing of isolated microglia revealed that gestational and lactational TCDD exposure produced subtle, but durable, changes in microglia transcripts. Histological examination and two-photon in vivo imaging revealed that while microglia density, distribution, morphology, and motility were unaffected by TCDD exposure, exposure resulted in microglia that responded more robustly to focal tissue injury. However, this effect was rectified with depletion and repopulation of microglia. These results suggest that gestational and lactational exposure to AhR ligands can result in long-term priming of microglia to produce heightened responses towards tissue injury which can be restored to normal function through microglial repopulation.
Collapse
Affiliation(s)
- R.L. Lowery
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - S.E. Latchney
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - R.P. Peer
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - C.E. Lamantia
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - K.A. Lordy
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | | | - M. McCall
- Department of Biostatistics and Computational Biology, University of Rochester, NY 14642,Department of Biomedical Genetics, University of Rochester, NY 14642
| | - A.K Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642,Corresponding Author: Ania K. Majewska, University of Rochester, School of Medicine and Dentistry, Department of Neuroscience, Center for Visual Science, 601 Elmwood Avenue, Box 603, Rochester, New York 14642, , Phone: (585) 276-2254
| |
Collapse
|
3
|
Merrill AK, Anderson T, Conrad K, Marvin E, James-Todd T, Cory-Slechta DA, Sobolewski M. Protracted Impairment of Maternal Metabolic Health in Mouse Dams Following Pregnancy Exposure to a Mixture of Low Dose Endocrine-Disrupting Chemicals, a Pilot Study. TOXICS 2021; 9:346. [PMID: 34941779 PMCID: PMC8706199 DOI: 10.3390/toxics9120346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy.
Collapse
Affiliation(s)
- Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Timothy Anderson
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard University, Boston, MA 02115, USA;
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| |
Collapse
|
4
|
O'Dell CT, Boule LA, Robert J, Georas SN, Eliseeva S, Lawrence BP. Exposure to a mixture of 23 chemicals associated with unconventional oil and gas operations alters immune response to challenge in adult mice. J Immunotoxicol 2021; 18:105-117. [PMID: 34455897 DOI: 10.1080/1547691x.2021.1965677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The prevalence of unconventional oil and gas (UOG) operations raises concerns regarding the potential for adverse health outcomes following exposure to water tainted by mixtures of UOG associated chemicals. The potential effects that exposure to complex chemical mixtures has on the immune system have yet to be fully evaluated. In this study, effects on the immune system of adult mice exposed to a mixture of 23 chemicals that have been associated with water near active UOG operations were investigated. Female and male mice were exposed to the mixture via their drinking water for at least 8 weeks. At the end of the exposure, cellularity of primary and secondary immune organs, as well as an immune system function, were assessed using three different models of disease, i.e. house dust mite (HDM)-induced allergic airway disease, influenza A virus infection, and experimental autoimmune encephalomyelitis (EAE). The results indicated exposures resulted in different impacts on T-cell populations in each disease model. Furthermore, the consequences of exposure differed between female and male mice. Notably, exposure to the chemical mixture significantly increased EAE disease severity in females, but not in male, mice. These findings indicated that direct exposure to this mixture leads to multiple alterations in T-cell subsets and that these alterations differ between sexes. This suggested to us that direct exposure to UOG-associated chemicals may alter the adult immune system, leading to dysregulation in immune cellularity and function.
Collapse
Affiliation(s)
- Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jacques Robert
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophia Eliseeva
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
5
|
Post CM, Boule LA, Burke CG, O'Dell CT, Winans B, Lawrence BP. The Ancestral Environment Shapes Antiviral CD8 + T cell Responses across Generations. iScience 2019; 20:168-183. [PMID: 31569050 PMCID: PMC6817732 DOI: 10.1016/j.isci.2019.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Recent studies have linked health fates of children to environmental exposures of their great grandparents. However, few studies have considered whether ancestral exposures influence immune function across generations. Here, we report transgenerational inheritance of altered T cell responses resulting from maternal (F0) exposure to the aryl hydrocarbon receptor ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since F0 exposure to TCDD has been linked to transgenerational transmission of reproductive problems, we asked whether maternal TCDD exposure also caused transgenerational changes in immune function. F0 exposure caused transgenerational effects on the CD8+ T cell response to influenza virus infection in females but not in males. Outcrosses showed changes were passed through both parental lineages. These data demonstrate that F0 exposure to an aryl hydrocarbon receptor (AHR) agonist causes durable changes to immune responses that can affect subsequent generations. This has broad implications for understanding how the environment of prior generations shapes susceptibility to pathogens and antiviral immunity in later generations.
Collapse
Affiliation(s)
- Christina M Post
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Catherine G Burke
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA; Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
6
|
Abron JD, Singh NP, Mishra MK, Price RL, Nagarkatti M, Nagarkatti PS, Singh UP. An endogenous aryl hydrocarbon receptor ligand, ITE, induces regulatory T cells and ameliorates experimental colitis. Am J Physiol Gastrointest Liver Physiol 2018; 315:G220-G230. [PMID: 29672155 PMCID: PMC6139639 DOI: 10.1152/ajpgi.00413.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that affects millions of people with high morbidity and health care costs. The precise etiology of IBD is unknown, but clear evidence suggests that intestinal inflammation is caused by an excessive immune response to mucosal antigens. Recent studies have shown that activation of the aryl hydrocarbon receptor (AhR) induces regulatory T cells (Tregs) and suppresses autoimmune diseases. In the current study, we investigated if a nontoxic ligand of AhR, 2-(1' H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), can attenuate dextran sodium sulfate-induced colitis. Our studies demonstrated that in mice that received ITE treatment in vivo, colitis pathogenesis, including a decrease in body weight, was significantly reversed along with the systemic and intestinal inflammatory cytokines. ITE increased the expression of Tregs in spleen, mesenteric lymph nodes (MLNs), and colon lamina propria lymphocytes (cLPL) of mice with colitis when compared with controls. This induction of Tregs was reversed by AhR antagonist treatment in vitro. ITE treatment also increased dendritic cells (CD11c+) and decreased macrophages (F4/80+) from the spleen, MLNs, and cLPL in mice with colitis. ITE also reversed the systemic and intestinal frequency of CD4+ T cells during colitis and suppressed inflammatory cytokines including IFN-γ, TNF-α, IL-17, IL-6, and IL-1 as well as induced IL-10 levels. These findings suggest that ITE attenuates colitis through induction of Tregs and reduction in inflammatory CD4+ T cells and cytokines. Therefore, our work demonstrates that the nontoxic endogenous AhR ligand ITE may serve as a therapeutic modality to treat IBD. NEW & NOTEWORTHY We report the novel finding that activation of the aryl hydrocarbon receptor with the nontoxic ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) induces regulatory T cells (Tregs) and suppresses inflammatory bowel disease (IBD). Our data suggest that ITE diminishes colitis pathology through induction of Tregs; reduces inflammatory cytokines, inflammation score, and macrophage frequency; and induces DCs resulting in amelioration of colitis. Therefore, nontoxic endogenous ITE promotes the induction of Tregs and may be useful for the treatment of IBD.
Collapse
Affiliation(s)
- Jessica D. Abron
- 1Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Narendra P. Singh
- 1Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Manoj K. Mishra
- 2Department of Biological Sciences, Alabama State University, Montgomery, Alabama
| | - Robert L. Price
- 3Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Mitzi Nagarkatti
- 1Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Prakash S. Nagarkatti
- 1Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Udai P. Singh
- 1Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
7
|
Boulé LA, Chapman TJ, Hillman SE, Kassotis CD, O’Dell C, Robert J, Georas SN, Nagel SC, Lawrence BP. Developmental Exposure to a Mixture of 23 Chemicals Associated With Unconventional Oil and Gas Operations Alters the Immune System of Mice. Toxicol Sci 2018; 163:639-654. [PMID: 29718478 PMCID: PMC5974794 DOI: 10.1093/toxsci/kfy066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chemicals used in unconventional oil and gas (UOG) operations have the potential to cause adverse biological effects, but this has not been thoroughly evaluated. A notable knowledge gap is their impact on development and function of the immune system. Herein, we report an investigation of whether developmental exposure to a mixture of chemicals associated with UOG operations affects the development and function of the immune system. We used a previously characterized mixture of 23 chemicals associated with UOG, and which was demonstrated to affect reproductive and developmental endpoints in mice. C57Bl/6 mice were maintained throughout pregnancy and during lactation on water containing two concentrations of this 23-chemical mixture, and the immune system of male and female adult offspring was assessed. We comprehensively examined the cellularity of primary and secondary immune organs, and used three different disease models to probe potential immune effects: house dust mite-induced allergic airway disease, influenza A virus infection, and experimental autoimmune encephalomyelitis (EAE). In all three disease models, developmental exposure altered frequencies of certain T cell sub-populations in female, but not male, offspring. Additionally, in the EAE model disease onset occurred earlier and was more severe in females. Our findings indicate that developmental exposure to this mixture had persistent immunological effects that differed by sex, and exacerbated responses in an experimental model of autoimmune encephalitis. These observations suggest that developmental exposure to complex mixtures of water contaminants, such as those derived from UOG operations, could contribute to immune dysregulation and disease later in life.
Collapse
Affiliation(s)
| | - Timothy J Chapman
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14842
| | - Sara E Hillman
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14842
| | - Christopher D Kassotis
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14842
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, MO 65212
| | | | - Jacques Robert
- Department of Environmental Medicine
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Steve N Georas
- Department of Environmental Medicine
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14842
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Susan C Nagel
- Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, MO 65212
| | - B Paige Lawrence
- Department of Environmental Medicine
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
8
|
Boule LA, Burke CG, Jin GB, Lawrence BP. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome. Sci Rep 2018; 8:1826. [PMID: 29379138 PMCID: PMC5789012 DOI: 10.1038/s41598-018-20197-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8+ T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound’s source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,CBR International, Boulder, CO, USA
| | - Catherine G Burke
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Guang-Bi Jin
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Preventative Medicine, School of Medicine, Yaniban University, Yanji City, Jilin Provence, China
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
9
|
Burleson SCM, Freebern WJ, Burleson FG, Burleson GR, Johnson VJ, Luebke RW. Host Resistance Assays. Methods Mol Biol 2018; 1803:117-145. [PMID: 29882137 DOI: 10.1007/978-1-4939-8549-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The goal of immunotoxicity testing is to obtain data useful for immunotoxicity safety assessment. Guidance in the performance of immunotoxicity safety evaluations is provided in documents from the US EPA for chemicals and the ICH S8 document for pharmaceuticals. The ICH S8 document outlines a tiered approach that includes (1) standard toxicity studies with associated hematology, immune system organ weights, and histopathology data; (2) functional assays, such as cytotoxic T lymphocyte (CTL) assays, natural killer (NK) cell assays, respiratory burst, phagocytosis, and T-cell-dependent antibody response (TDAR) assays; and (3) host resistance assays. Host resistance assays are considered the gold standard in immunotoxicity testing and provide a critical overview of the extent to which innate, adaptive, and homeostatic regulatory immune functions are integrated to protect the host. Both comprehensive and targeted host resistance assays are available, each with distinct advantages. This chapter serves to provide a general overview of the various assays that may be used, as well as a summary of procedures.
Collapse
Affiliation(s)
| | - Wendy Jo Freebern
- Bristol-Myers Squibb Company, Immunotoxicology, New Brunswick, NJ, USA
| | | | - Gary R Burleson
- Burleson Research Technologies, Inc. (BRT), Morrisville, NC, USA
| | - Victor J Johnson
- Burleson Research Technologies, Inc. (BRT), Morrisville, NC, USA
| | - Robert W Luebke
- United States Environmental Protection Agency, Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Laboratory, Office of Research and Development, Research Triangle Park, NC, USA.,Burleson Research Technologies, Inc., Morrisville, NC, USA
| |
Collapse
|
10
|
Boule LA, Winans B, Lambert K, Vorderstrasse BA, Topham DJ, Pavelka MS, Lawrence BP. Activation of the aryl hydrocarbon receptor during development enhances the pulmonary CD4+ T-cell response to viral infection. Am J Physiol Lung Cell Mol Physiol 2015; 309:L305-13. [PMID: 26071552 DOI: 10.1152/ajplung.00135.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022] Open
Abstract
Respiratory infections are a threat to health and economies worldwide, yet the basis for striking variation in the severity of infection is not completely understood. Environmental exposures during development are associated with increased severity and incidence of respiratory infection later in life. Many of these exposures include ligands of the aryl hydrocarbon receptor (AHR), a transcription factor expressed by immune and nonimmune cells. In adult animals, AHR activation alters CD4(+) T cells and changes immunopathology. Developmental AHR activation impacts CD4(+) T-cell responses in lymphoid tissues, but whether skewed responses are also present in the infected lung is unknown. To determine whether pulmonary CD4(+) T-cell responses are modified by developmental AHR activation, mice were exposed to the prototypical AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin during development and infected with influenza virus as adults. Lungs of exposed offspring had greater bronchopulmonary inflammation compared with controls, and activated, virus-specific CD4(+) T cells contributed to the infiltrating leukocytes. These effects were CD4(+) T cell subset specific, with increases in T helper type 1 and regulatory T cells, but no change in the frequency of T helper type 17 cells in the infected lung. This is in direct contrast to prior reports of suppressed conventional CD4(+) T-cell responses in the lymph node. Using adoptive transfers and manipulating the pathogen properties, we determined that developmental exposure influenced factors intrinsic and extrinsic to CD4(+) T cells and may involve developmentally induced changes in signals from infected lung epithelial cells. Thus developmental exposures lead to context-dependent changes in pulmonary CD4(+) T-cell subsets, which may contribute to differential responses to respiratory infection.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Bethany Winans
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; and
| | - Kris Lambert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Beth A Vorderstrasse
- Department of Public Health and Preventive Medicine, Oregon Health Sciences University, Portland, Oregon
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - B Paige Lawrence
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
11
|
Boule LA, Winans B, Lawrence BP. Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1201-8. [PMID: 25051576 PMCID: PMC4216167 DOI: 10.1289/ehp.1408110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/21/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epidemiological and animal studies indicate that maternal exposure to pollutants that bind the aryl hydrocarbon receptor (AhR) correlates with poorer ability to combat respiratory infection and lower antibody levels in the offspring. These observations point to an impact on CD4+ T cells. Yet, the consequence of developmental exposure to AhR ligands on the activation and differentiation of CD4+ T cells has not been directly examined. OBJECTIVES Our goal was to determine whether maternal exposure to an AhR ligand directly alters CD4+ T cell differentiation and function later in life. METHODS C57BL/6 mice were exposed to a prototypical AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in utero and via suckling. We then measured CD4+ T-cell activation and differentiation into distinct effector populations in adult offspring that were infected with influenza A virus (IAV). Reciprocal adoptive transfers were used to define whether modifications in CD4+ T-cell responses resulted from direct effects of developmental TCDD exposure on CD4+ T cells. RESULTS Developmental exposure skewed CD4+ T-cell responses to IAV infection. We observed fewer virus-specific, activated CD4+ T cells and a reduced frequency of conventional CD4+ effector-cell subsets. However, there was an increase in regulatory CD4+ T cells. Direct effects of AhR activation on CD4+ T cells resulted in impaired differentiation into conventional effector subsets; this defect was transferred to mice that had not been developmentally exposed to TCDD. CONCLUSIONS Maternal exposure to TCDD resulted in durable changes in the responsive capacity and differentiation of CD4+ T cells in adult C57BL/6 mice.
Collapse
Affiliation(s)
- Lisbeth A Boule
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
12
|
Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology 2014; 45:121-30. [PMID: 25454719 DOI: 10.1016/j.neuro.2014.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/12/2023]
Abstract
Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals (EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems raising the potential for cumulative toxicity. As such, understanding the effects of developmental exposure to mixtures of EDCs is critical to public health protection. Consequently, this study compared the effects of a mixture of four EDCs to their effects alone to examine potential for enhanced toxicity, using behavioral domains and paradigms known to be mediated by mesocorticolimbic circuits (fixed interval (FI) schedule controlled behavior, novel object recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed to vehicle or relatively low doses of four EDCs, atrazine (ATR - 10mg/kg), perfluorooctanoic acid (PFOA - 0.1mg/kg), bisphenol-A (BPA - 50 μg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD - 0.25 μg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. EDC-treated males maintained significantly higher horizontal activity levels across three testing sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically significant effects of MIX were seen in males, but not females, in the form of increased FI response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced short term memory in the novel object recognition paradigm. MIX also reversed the typically lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD produced notable increases in FI response rates in females, and PFOA significantly increased ambulatory locomotor activity in males. Collectively, these findings show the potential for enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies to fully investigate mixtures, including chemicals that converge on common physiological substrates to examine potential mechanisms of toxicity with full dose effect curves to assist in interpretations of relevant mechanisms.
Collapse
|
13
|
Heilmann C. Environmental Toxicants and Susceptibility to Infection. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2012. [DOI: 10.1007/978-1-61779-812-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Mustafa A, Holladay SD, Witonsky S, Sponenberg DP, Karpuzoglu E, Gogal RM. A single mid-gestation exposure to TCDD yields a postnatal autoimmune signature, differing by sex, in early geriatric C57BL/6 mice. Toxicology 2011; 290:156-68. [PMID: 21925233 DOI: 10.1016/j.tox.2011.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 01/14/2023]
Abstract
We recently observed an autoimmune profile in 24-week-old C57BL/6 mice that received a 2.5 or 5.0μg/kg mid-gestation dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Mustafa et al., 2008). The clinical signs were consistent with a lupus-like syndrome and included: increased autoantibody levels, renal IgG and C3 immune complex deposition with associated inflammation, and increased peripheral Vβ(+) T cells. No studies currently exist following the progression of such disease into middle or advanced ages, when human autoimmune diseases may manifest. Therefore in the present study, littermates of mice from the previous 24 week prenatal TCDD study were allowed to age to 48 weeks, considered early geriatric in mice. Similarities and differences in the disease profile based on age and sex were observed. Peripheral autoreactive Vβ(+) T cells were increased in both sexes at 48 weeks, in contrast to males only at 24 weeks. Activated T cells from 48-week-old prenatal TCDD females over-produced the pro-inflammatory cytokine IFN-γ while males over-produced IL-10, effects again not seen at 24 weeks. Splenic transitional-2 B cells (CD21(int)CD24(hi)) were increased in males while transitional-1 B cells (CD23(neg) CD1(neg)) were increased in females at 48 weeks. Autoantibodies to cardiolipin and CD138(+) spleen plasma cells were significantly increased in the aged males but not females. Anti-IgG and anti-C3 immune complex renal deposition were also significantly increased in the prenatal TCDD males but not females. These selective changes in the aged male mice may be noteworthy, in that the prevalence of SLE in humans shifts dramatically toward males with aging. The collective findings in aged mice suggest that prenatal TCDD permanently biases the postnatal immune response in C57BL/6 mice toward autoimmunity, and support a significant B cell component to the induced renal autoimmune disease.
Collapse
Affiliation(s)
- A Mustafa
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060-0442, USA
| | | | | | | | | | | |
Collapse
|
15
|
Mustafa A, Holladay S, Witonsky S, Zimmerman K, Manari A, Countermarsh S, Karpuzoglu E, Gogal R. Prenatal TCDD causes persistent modulation of the postnatal immune response, and exacerbates inflammatory disease, in 36-week-old lupus-like autoimmune SNF1 mice. ACTA ACUST UNITED AC 2011; 92:82-94. [PMID: 21312323 DOI: 10.1002/bdrb.20285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prenatal exposure to the persistent environmental pollutant and model Ah receptor agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been shown to permanently suppress postnatal cell-mediated immunity. More recently, skewing of select adult T and B cell responses toward enhanced inflammation has also been described in C57BL/6 mice after prenatal TCDD. This raises questions about adverse postnatal immune consequences of prenatal TCDD in animals genetically predisposed to inappropriate inflammatory responses. METHODS Lupus-prone SNF(1) mice were exposed to 0, 40, or 80 µg/kg TCDD on gestation day (gd) 12 and examined at 36 weeks-of-age for immunomodulatory effects that correlated with worsened lupus pathology. RESULTS Bone marrow pro- and large pre-B cells were decreased by prenatal TCDD, in both adult male and female mice, as were pre- and immature B cells. Splenic CD23(-) CD1(hi) and CD19(+) CD5(+) B cells were increased in males, as were B220(hi) B cells in females, further suggesting persistent disruption of B cell lymphopoiesis by prenatal TCDD. Female mice displayed decreased IL-10 production by ConA-activated splenocytes, while males underproduced IL-4. Autoreactive CD4(+) Vβ17a(+) spleen T cells were increased in both sexes by 80 µg/kg TCDD. Male mice but not females showed increased anti-ds DNA and cardiolipin autoantibody levels. CONCLUSIONS Prenatal TCDD augmented the hallmark indicators of SLE progression in the lupus-prone SNF(1) mice, including renal immune complex deposition, glomerulonephritis, and mesangial proliferation. Prenatal TCDD therefore caused persistent modulation of the postnatal immune response, and exacerbated inflammatory disease, in lupus-like autoimmune SNF(1) mice.
Collapse
Affiliation(s)
- Amjad Mustafa
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Winans B, Humble MC, Lawrence BP. Environmental toxicants and the developing immune system: a missing link in the global battle against infectious disease? Reprod Toxicol 2011; 31:327-36. [PMID: 20851760 PMCID: PMC3033466 DOI: 10.1016/j.reprotox.2010.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/19/2010] [Accepted: 09/03/2010] [Indexed: 11/23/2022]
Abstract
There is now compelling evidence that developmental exposure to chemicals from our environment contributes to disease later in life, with animal models supporting this concept in reproductive, metabolic, and neurodegenerative diseases. In contrast, data regarding how developmental exposures impact the susceptibility of the immune system to functional alterations later in life are surprisingly scant. Given that the immune system forms an integrated network that detects and destroys invading pathogens and cancer cells, it provides the body's first line of defense. Thus, the consequences of early life exposures that reduce immune function are profound. This review summarizes available data for pollutants such as cigarette smoke and dioxin-like compounds, which consistently support the idea that developmental exposures critically impact the immune system. These findings suggest that exposure to common chemicals from our daily environment represent overlooked contributors to the fact that infectious diseases remain among the top five causes of death worldwide.
Collapse
Affiliation(s)
- Bethany Winans
- Department of Environmental Medicine and Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Michael C. Humble
- Cellular, Organs and Systems Pathobiology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27560
| | - B. Paige Lawrence
- Department of Environmental Medicine and Toxicology Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
17
|
Dietert RR, Zelikoff JT. Identifying patterns of immune-related disease: use in disease prevention and management. World J Pediatr 2010; 6:111-8. [PMID: 20490766 DOI: 10.1007/s12519-010-0026-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 08/23/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND Childhood susceptibility to diseases linked with immune dysfunction affects over a quarter of the pediatric population in some countries. While this alone is a significant health issue, the actual impact of immune-related diseases extends over a lifetime and involves additional secondary conditions. Some comorbidities are well known (e.g., allergic rhinitis and asthma). However, no systematic approach has been used to identify life-long patterns of immune-based disease where the primary condition arises in childhood. Such information is useful for both disease prevention and treatment approaches. DATA SOURCES Recent primary research papers as well as review articles were obtained from PubMed, Chem Abstracts, Biosis and from the personal files of the authors. Search words used were: the diseases and conditions shown Figs. 1 and 2 in conjunction with comorbid, comorbidities, pediatric, childhood, adult, immune, immune dysfunction, allergy, autoimmune, inflammatory, infectious, health risks, environment, risk factors. RESULTS Childhood diseases such as asthma, type-1 diabetes, inflammatory bowel disease, respiratory infections /rhinitis, recurrent otitis media, pediatric celiac, juvenile arthritis and Kawasaki disease are examples of significant childhood health problems where immune dysfunction plays a significant role. Each of these pediatric diseases is associated with increased risk of several secondary conditions, many of which appear only later in life. To illustrate, four prototypes of immune-related disease patterns (i.e., allergy, autoimmunity, inflammation and infectious disease) are shown as tools for: 1) enhanced disease prevention; 2) improved management of immune-based pediatric diseases; and 3) better recognition of underlying pediatric immune dysfunction. CONCLUSIONS Identification of immune-related disease patterns beginning in childhood provides the framework for examining the underlying immune dysfunctions that can contribute to additional diseases in later life. Many pediatric diseases associated with dysfunctional immune responses have been linked with an elevated risk of other diseases or conditions as the child ages. Diseases within a pattern may be interlinked based on underlying immune dysfunctions and/or current therapeutic approaches for managing the entryway diseases. It may be beneficial to consider treatment options for the earliest presenting diseases that will concomitantly reduce the risk of immune-linked secondary conditions. Additionally, improved disease prevention is possible with more relevant and age-specific immune safety testing.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA.
| | | |
Collapse
|
18
|
The unexpected role for the aryl hydrocarbon receptor on susceptibility to experimental toxoplasmosis. J Biomed Biotechnol 2010; 2010:505694. [PMID: 20111744 PMCID: PMC2810477 DOI: 10.1155/2010/505694] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/15/2009] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is part of a signaling system that is mainly triggered by xenobiotic agents. Increasing evidence suggests that AhR may regulate immunity to infections. To determine the role of AhR in the outcome of toxoplasmosis, we used AhR−/− and wild-type (WT) mice. Following an intraperitoneal infection with Toxoplasma gondii (T. gondii), AhR−/− mice succumbed significantly faster than WT mice and displayed greater liver damage as well as higher serum levels of tumor necrosis factor (TNF)-α, nitric oxide (NO), and IgE but lower IL-10 secretion. Interestingly, lower numbers of cysts were found in their brains. Increased mortality was associated with reduced expression of GATA-3, IL-10, and 5-LOX mRNA in spleen cells but higher expression of IFN-γ mRNA. Additionally, peritoneal exudate cells from AhR−/− mice produced higher levels of IL-12 and IFN-γ but lower TLR2 expression than WT mice. These findings suggest a role for AhR in limiting the inflammatory response during toxoplasmosis.
Collapse
|
19
|
Abstract
A foremost objective of preclinical immunotoxicity testing is to address whether or not a drug or environmental toxicant causes adverse effects on net immune health, expressly the host's ability to mount an appropriate immune response to clear infectious organisms. Given the complex interactions, diverse molecular signaling events, and redundancies of immunity that has itself been subdivided into interdependent arms, namely innate, adaptive, and humoral, the results of single immune parameter testing may not reflect the final outcome of a drug or toxicant's effect on net immune health. The most comprehensive experimental approach to ascertain this information is utilization of host resistance models. Herein, application of viral host resistance models in rodents and non-human primates is described. Although brief descriptions of numerous viral models are discussed including reovirus, Epstein-Barr virus, cytomegalovirus, and lymphocryptovirus, the most well-characterized viral host resistance model, rodent influenza, is emphasized.
Collapse
|
20
|
Blossom SJ, Doss JC. Trichloroethylene alters central and peripheral immune function in autoimmune-prone MRL(+/+) mice following continuous developmental and early life exposure. J Immunotoxicol 2009; 4:129-41. [PMID: 18958721 DOI: 10.1080/15476910701337035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Trichloroethylene (TCE) is a widespread environmental toxicant known to promote CD4(+) T-lymphocyte activation, IFNgamma production, and autoimmunity in adult MRL(+/+) mice. Because developing tissues may be more sensitive to toxicant exposure, it was hypothesized that continuous TCE exposure beginning at conception might induce even more pronounced CD4(+) T-lymphocyte effects and exacerbate the development of autoimmunity in MRL(+/+) mice. In the current study, MRL(+/+) mice were exposed to occupationally-relevant doses of TCE from conception until adulthood (i.e., 7-8 wk-of-age). The CD4(+) T-lymphocyte effects in the thymus and periphery were evaluated, as well as serum antibody levels. TCE exposure altered the number of thymocyte subsets, and reduced the capacity of the most immature CD4-/CD8- thymocytes to undergo apoptosis in vitro. In the periphery, T-lymphocyte IFN(gamma) production was monitored in the blood prior to sacrifice by intracellular cytokine staining and flow cytometry. TCE induced a dose-dependent increase in T-lymphocyte IFN(gamma) as early as 4-5-week-of-age. However, these effects were transient, and not observed in splenic T-lymphocytes in 7-8-week-old mice. In contrast, the serum levels of anti-histone autoantibodies and total IgG(2a) were significantly elevated in the TCE-exposed offspring. The data illustrated that occupationally-relevant doses of TCE administered throughout development until adulthood affected central and peripheral immune function in association with early signs of autoimmunity. Future studies will address the possibility that early-life exposure to TCE may alter some aspect of self tolerance in the thymus, leading to autoimmune disease later in life.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences College of Medicine, Little Rock, Arkansas 72202, USA.
| | | |
Collapse
|
21
|
Howd RA. Considering changes in exposure and sensitivity in an early life cumulative risk assessment. Int J Toxicol 2009; 29:71-7. [PMID: 19710296 DOI: 10.1177/1091581809344436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A cumulative risk assessment is generally intended to address concurrent exposure by all exposure routes to a group of chemicals that share a common mechanism of toxicity. However, the contribution of different exposure routes will change over time. This is most critical when estimating risks to infants and children because their exposure sources change rapidly during the first few years of life because of dietary and behavioral changes. In addition, there may be changes in sensitivity to toxicants during this time period, associated with various developmental stages. Traditional risk assessments do not address this progression. Examples of how these factors might be incorporated into an early life risk assessment are provided for lead, dioxins and furans, and organophosphate pesticides. The same concepts may apply to other potentially susceptible subpopulations, such as the elderly.
Collapse
Affiliation(s)
- Robert A Howd
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA.
| |
Collapse
|
22
|
Pilones K, Tatum A, Gavalchin J. Gestational exposure to mercury leads to persistent changes in T-cell phenotype and function in adult DBF1mice. J Immunotoxicol 2009; 6:161-70. [DOI: 10.1080/15476910903084021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
23
|
Dietert RR. Developmental immunotoxicology (DIT): windows of vulnerability, immune dysfunction and safety assessment. J Immunotoxicol 2009; 5:401-12. [PMID: 19404874 DOI: 10.1080/15476910802483324] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Developmental immunotoxicity (DIT) is an increasing health concern since DIT outcomes predispose children to those diseases that have been on the rise in recent decades (e.g., childhood asthma, allergic diseases, autoimmune conditions, childhood infections). The enhanced vulnerability of the developing immune system for environmental insult is based on unique immune maturational events that occur during critical windows of vulnerability in early life. The semi-allogeneic pregnancy state, with suppression of graft rejection and associated skewing of the fetal and neonatal immune system, also influences the specific nature of DIT outcomes. In the exposed offspring, targeted immunosuppression can co-exist with an increased risk of allergic and/or autoimmune disease. Because with DIT immune dysfunction rather than profound immunosuppression is the greater concern, testing approaches should emphasize multi-functional assessment. Beyond T-cells, dendritic cells and macrophages are sensitive targets. The last-trimester fetus and the neonate are normally depressed in T(H)1-dependent functions and postnatal acquisition of needed T(H)1 capacity is a major concern with DIT. With this in mind, assessment should include a measure of T(H)1-dependent cell-mediated immunity [cytotoxic T-lymphocyte (CTL) activity or delayed-type hypersensitivity (DTH) response] in conjunction with a multi-isotype T-dependent antibody response (TDAR) and evaluation of innate immunity (e.g., NK activity). Other parameters such as immune histology, immunophenotyping, cytokine responses, and organ weights can be useful when included with immune functional evaluation. A multifunctional DIT protocol using influenza challenge is presented as one example of an approach that permits dysfunction and misregulation to be evaluated.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Dietert RR. Developmental immunotoxicology: focus on health risks. Chem Res Toxicol 2009; 22:17-23. [PMID: 18783253 DOI: 10.1021/tx800198m] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Developmental immunotoxicity (DIT) has gained attention with the recognition that many chronic diseases of increasing incidence feature immune dysfunction as a component of the disease. The maturing immune system represents a vulnerable target for toxicants as it progresses through a series of novel prenatal and perinatal events that are critical for later-life host defense against a wide array of diseases. These critical maturational windows display a particular sensitivity to chemical disruption with the outcome usually taking the form of persistent immune dysfunction and/or misregulation. For this reason, health risks are significantly increased following early life vs adult immunotoxic exposure. Additionally, DIT-associated health risks are not readily predicted when based on adult-exposure safety data or via the evaluation of an unchallenged immune system in developmental toxicity testing. The same toxicant [e.g., heavy metals, 2,3,7,8-tetraclorodibenzo-p-dioxin (TCDD)] may disrupt different immune maturational processes depending upon the specific developmental timing of exposure and the target organ dose at a given stage of development. Therefore, a single toxicant may promote different immune-associated diseases that are dependent upon the specific window of early life exposure, the gender of the exposed offspring, and the genetic background of the offspring. This perspective considers the linkage between early life chemical exposure, DIT, and the postnatal immune dysfunctions associated with a variety of childhood and adult diseases. Because DIT is linked to a majority of the most significant childhood chronic diseases, safety testing for DIT is a pivotal issue in the protection of children's health.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, C5-135 VMC, College of Veterinary Medicine, Cornell UniVersity, North Tower Road, Ithaca, New York 14853, USA.
| |
Collapse
|
25
|
Dietert RR. Developmental immunotoxicity (DIT), postnatal immune dysfunction and childhood leukemia. Blood Cells Mol Dis 2009; 42:108-12. [DOI: 10.1016/j.bcmd.2008.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/28/2022]
|
26
|
Glynn A, Thuvander A, Aune M, Johannisson A, Darnerud PO, Ronquist G, Cnattingius S. Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study. Environ Health 2008; 7:62. [PMID: 19055819 PMCID: PMC2637846 DOI: 10.1186/1476-069x-7-62] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 12/04/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and p,p'-DDE in infants. METHODS Prenatal exposure to PCBs and p,p'-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age. RESULTS Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-ortho PCB (CB-105, CB-118, CB-156, CB-167) and di-ortho PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-ortho PCB, and p,p'-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to p,p'-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and p,p'-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders. CONCLUSION This hypothesis generating study suggests that background exposure to PCBs and p,p'-DDE early in life modulate immune system development. Strong correlations between mono- and di-ortho PCBs, and p,p'-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and p,p'-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.
Collapse
Affiliation(s)
- Anders Glynn
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
| | - Ann Thuvander
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
- The National Board of Health and Welfare, SE-106 30 Stockholm, Sweden
| | - Marie Aune
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
| | - Anders Johannisson
- Department of Anatomy and Physiology, Swedish University of Agricultural Sciences, PO Box 7070, SE- 750 07 Uppsala, Sweden
| | - Per Ola Darnerud
- National Food Administration, Research and Development Department, PO Box 622, SE-751 26 Uppsala, Sweden
| | - Gunnar Ronquist
- Department of Medical Sciences, Clinical Chemistry, University Hospital of Uppsala, SE- 751 85, Uppsala, Sweden
| | - Sven Cnattingius
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
27
|
Ilbäck NG, Frisk P, Friman G. Effects of xenobiotics and nutrients on host resistance studied in experimental human infections adapted to rodents. J Pharmacol Toxicol Methods 2008; 58:179-88. [DOI: 10.1016/j.vascn.2008.05.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/12/2008] [Indexed: 01/05/2023]
|
28
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|
29
|
Yanagisawa R, Takano H, Inoue KI, Koike E, Sadakane K, Ichinose T. Effects of maternal exposure to di-(2-ethylhexyl) phthalate during fetal and/or neonatal periods on atopic dermatitis in male offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1136-41. [PMID: 18795153 PMCID: PMC2535612 DOI: 10.1289/ehp.11191] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/08/2008] [Indexed: 05/03/2023]
Abstract
BACKGROUND Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in polyvinyl chloride products and is ubiquitous in developed countries. Although maternal exposure to DEHP during fetal and/or neonatal periods reportedly affects reproductive and developmental systems, its effects on allergic diseases in offspring remain to be determined. OBJECTIVES In the present study, we examined whether maternal exposure to DEHP during fetal and/or neonatal periods in NC/Nga mice affects atopic dermatitis-like skin lesions related to mite allergen in offspring. METHODS We administered DEHP at a dose of 0, 0.8, 4, 20, or 100 microg/animal/week by intraperitoneal injection into dams during pregnancy (gestation days 0, 7, and 14) and/or lactation (postnatal days 1, 8, and 15). Eight-week-old male offspring of these treated females were injected intradermally with mite allergen into their right ears. We then evaluated clinical scores, ear thickening, histologic findings, and protein expression of eotaxin in the ear. RESULTS Maternal exposure to a 100-microg dose of DEHP during neonatal periods, but not during fetal periods, enhanced atopic dermatitis-like skin lesions related to mite allergen in males. The results were concomitant with the enhancement of eosinophilic inflammation, mast cell degranulation, and protein expression of eotaxin in overall trend. CONCLUSION Maternal exposure to DEHP during neonatal periods can accelerate atopic dermatitis-like skin lesions related to mite allergen in male offspring, possibly via T helper 2 (T(H)2)-dominant responses, which can be responsible, at least in part, for the recent increase in atopic dermatitis.
Collapse
Affiliation(s)
- Rie Yanagisawa
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Japan
- Address to correspondence H. Takano, Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan. Telephone: 81-29-850-2336. Fax: 81-29-850-2334. E-mail:
| | - Ken-ichiro Inoue
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, Japan
| |
Collapse
|
30
|
Hogaboam JP, Moore AJ, Lawrence BP. The aryl hydrocarbon receptor affects distinct tissue compartments during ontogeny of the immune system. Toxicol Sci 2007; 102:160-70. [PMID: 18024991 DOI: 10.1093/toxsci/kfm283] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is growing evidence that prenatal and early postnatal environmental factors influence the development and programming of the immune system, causing long-lasting negative health consequences. The aryl hydrocarbon receptor (AhR) is an important modulator of the development and function of the immune system; however, the mechanism is poorly understood. Exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin throughout gestation and during lactation yields adult offspring with persistent defects in their immune response to influenza virus. These functional alterations include suppressed lymphocyte responses and increased inflammation in the infected lung despite normal cellularity and anatomical development of lymphoid organs. The studies presented here were conducted to determine the critical period during immune ontogeny that is particularly sensitive to inappropriate AhR activation. We also investigated the contribution of AhR-mediated events within and extrinsic to hematopoietic cells. Our findings show that AhR activation alters different elements of the immune system at different times during development by affecting different tissue targets. In particular, diminished T-cell responses arise due to deregulated events within bone marrow-derived cells. In contrast, increased interferon gamma levels in the infected lung result from AhR-regulated events extrinsic to bone marrow-derived cells, and require AhR agonist exposure during early gestation. The persistence of AhR activation induced immune modulation was also compared, revealing that AhR activation causes long-lasting functional alterations in the developing immune system, whereas the impact on the mature immune system is transient.
Collapse
Affiliation(s)
- Jason P Hogaboam
- Department of Pharmaceutical Sciences, Center for Reproductive Biology and Biotechnology Training Program, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
31
|
Burleson GR, Burleson FG. Influenza virus host resistance model. Methods 2007; 41:31-7. [PMID: 17161300 DOI: 10.1016/j.ymeth.2006.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 12/22/2022] Open
Abstract
Host resistance (HR) models are used to evaluate the effect of a test article on clearance of an infectious microorganism in order to assess total immunocompetence. HR models serve as biomarkers of net immunological health or immunological well-being. Immunotoxicity can result either in an impaired clearance of an infectious agent, increased susceptibility to an opportunistic microorganism, prevention of immunization, or exacerbation of latent viral infections. The purpose of immunotoxicity testing is to obtain data that is meaningful for safety assessment, and for immunosuppression the major objective is to determine the significance with respect to increased susceptibility to infectious disease. Host resistance models provide the only sure method of examining the influence of test articles on the functional integrity of the immune system and its ability to eliminate pathogenic microorganisms and tumor cells. They provide the means to directly assess the functional reserve of the immune system. Clearance of influenza virus requires an intact and functional immune system that incorporates a cascade of immune responses. Mechanistic studies can be included in the influenza virus host resistance model by measuring the effect of a test article on innate immunity (cytokine and interferon production, macrophage function, and natural killer (NK) cell function) and acquired or adaptive immunity (cytotoxic T lymphocyte (CTL) activity as well as influenza-specific IgM and/or IgG antibody).
Collapse
Affiliation(s)
- Gary R Burleson
- BRT-Burleson Research Technologies, Inc., 120 First Flight Lane, Morrisville, NC 27560, USA.
| | | |
Collapse
|