1
|
Meganathan V, Hamilton CE, Natarajan K, Keshava S, Boggaram V. NADPH and xanthine oxidases control induction of inflammatory mediator expression by organic dust in the lung. FASEB J 2022; 36:e22381. [PMID: 35661421 DOI: 10.1096/fj.202100732r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Exposure to organic dust in animal and agricultural farms and the ensuing lung inflammation are linked to the development of respiratory diseases. We found previously that elevated production of reactive oxygen species (ROS) by aqueous poultry organic dust extract (hereafter referred to as dust extract) mediates induction of proinflammatory mediators in airway epithelial cells. In the present study, we investigated whether ROS generated by NADPH oxidases (NOX) and xanthine oxidase (XO) controls induction of inflammatory mediators by dust extract and the underlying mechanisms in bronchial epithelial cells. Using chemical inhibitors and siRNA targeted knockdown, we found that NOX1, NOX2, NOX4, and XO-derived ROS regulates induction of proinflammatory mediator levels. Like airway epithelial cells in vitro, NOX inhibitor VAS2870 reduced keratinocyte chemoattractant (KC), IL-6, and TNF-α production and 4-hydroxynonenal (4-HNE) staining induced by dust extract in mouse lungs. VAS2870 inhibition of proinflammatory mediators was associated with reduced NFκB and Stat3 activation indicating that NOX generated ROS activates NFκB and Stat3 to induce proinflammatory gene expression. Dust extract increased the membrane association of p47phox in airway epithelial cells indicating NOX2 activation but had no effect on NOX2 protein levels. In summary, our studies have shown that NOX and XO generated ROS control organic dust induction of proinflammatory mediators in airway epithelial cells via NFκB and Stat3 activation.
Collapse
Affiliation(s)
- Velmurugan Meganathan
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, USA
| | - Cory E Hamilton
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, USA
| | - Kartiga Natarajan
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, USA
| | - Vijay Boggaram
- Department of Cellular and Molecular Biology, Health Science Center, University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
2
|
Are In Vitro Cytotoxicity Assessments of Environmental Samples Useful for Characterizing the Risk of Exposure to Multiple Contaminants at the Workplace? A Systematic Review. TOXICS 2022; 10:toxics10020072. [PMID: 35202258 PMCID: PMC8879481 DOI: 10.3390/toxics10020072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
In some occupational environments risk characterization is challenging or impossible to achieve due to the presence of multiple pollutants and contaminants. Thus, in vitro testing using the most relevant cell lines will provide information concerning health effects due to the co-exposure to multiple stressors. The aim of this review article is to identify studies where the cytotoxicity assessment was performed in environmental samples, as well as to describe the main outputs and challenges regarding risk characterization and management. This study is based on a study of the available information/data on cytotoxicity assessment performed on environmental samples following the PRISMA methodology. Different cell lines were used depending on the environment assessed and exposure routes implicated. The A549 alveolar epithelial cell line was applied in four studies for occupational exposure in the waste sorting industry and for outdoor environments; lymphocytes were used in two studies for occupational and outdoor environments; swine kidney cells were used in three studies performed in the waste industry and hepatocellular/Hep G2 in one study in the waste industry. Cytotoxicity assessments in environmental samples should have a more prominent role due to their contribution for identifying and better understanding the associations between co-exposure to environmental contaminants and adverse human health effects as a prioritization for risk management.
Collapse
|
3
|
Viegas C, Twarużek M, Dias M, Almeida B, Carolino E, Soszczyńska E, Ałtyn I, Viegas S, Caetano LA. Cytotoxic effect of filtering respiratory protective devices from the waste sorting industry: is in vitro toxicology useful for risk characterization? ENVIRONMENTAL RESEARCH 2020; 191:110134. [PMID: 32860779 DOI: 10.1016/j.envres.2020.110134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The use of Filtering Respiratory Protective Devices (FRPD) is mandatory in Portugal to protect workers from the waste industry of harmful exposures. Deleterious health effects of exposure to bioburden via inhalation and/or ingestion include respiratory symptoms and nephrotoxicity. Between January and February 2019, 118 FRPD samples were collected in one waste sorting industry and characterized regarding microbial contamination and cytotoxicity, defined as cell metabolic activity, through the MTT colorimetric assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide). Cytotoxic effect was classified according to percentage of extinction values with respect to the control group, as follows: absent (≥90); low (80%-90%, +); medium (60%-79%, ++); and high (below 60%, +++). For 113 samples the MTT assay revealed a cytotoxic effect in A549 cells, of which 81 presented high cytotoxicity. In SK cells, a cytotoxic effect was observed in 56 samples, of which five displayed a high cytotoxic effect. Several moderate (p < 0.05) to strong (p < 0.01) correlations were found between higher bacterial and fungal counts both in interior layers (fungi and bacteria) and in exhalation valves (fungi) of FRPD samples and reduced cell metabolic activity of SK cells. On the basis of the obtained results for the cytotoxic effect of FRPD samples on two different cells lines, it was determined that A549 cells exhibited a cytotoxic effect for a higher number of FRPD, whereas the SK cells model correlated better with the other assessed parameters, namely, bacterial and fungal counts and conditions of FRPD use. Although the results are not conclusive on the most appropriate cell line to assess FRPD cytotoxicity, they reinforce the importance of in vitro toxicology in exposure assessments to determine the cytotoxicity of mixtures of contaminants, for better risk characterization and selection of appropriate risk management measures.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Iwona Ałtyn
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Meganathan V, Moyana R, Natarajan K, Kujur W, Kusampudi S, Mulik S, Boggaram V. Bacterial extracellular vesicles isolated from organic dust induce neutrophilic inflammation in the lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L893-L907. [PMID: 32996778 DOI: 10.1152/ajplung.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhalation of organic dust is an occupational hazard leading to the development of respiratory symptoms and respiratory diseases. Bioaerosols from concentrated animal feeding operations are rich in bacteria and could carry bacterial extracellular vesicles (EVs) that could induce lung inflammation. It is not known if organic dust contains bacterial EVs and whether they modulate lung inflammation. Herein, we show that poultry organic dust contains bacterial EVs (dust EVs) that induce lung inflammation. Treatment of airway epithelial cells, THP-1-monocytes and -macrophages with dust EVs rapidly induced IL-8, IL-6, ICAM-1, proIL-1β, and TNF-α levels. In airway epithelial cells, induction of inflammatory mediators was due to increased mRNA levels and NF-κB activation. Induction of inflammatory mediators by dust EVs was not inhibited by polymyxin B. Single and repeated treatments of mice with dust EVs increased lung KC, IL-6, and TNF-α levels without significantly altering IL-17A levels. Increases in cytokines were associated with enhanced neutrophil infiltration into the lung. Repeated treatments of mice with dust EVs increased lung mean linear intercept and increased collagen deposition around airways indicating lung remodeling. Peribronchial cell infiltrates and airway epithelial thickening were also observed in treated mice. Because bacterial EVs are nanometer-sized particles, they can reach and accumulate in the bronchiolar and alveolar regions causing lung injury leading to the development of respiratory diseases. Our studies have provided new evidence for the presence of bacterial EVs in organic dust and for their role as one of the causative agents of organic dust-induced lung inflammation and lung injury.
Collapse
Affiliation(s)
- Velmurugan Meganathan
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Regina Moyana
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Kartiga Natarajan
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Weshely Kujur
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shilpa Kusampudi
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Sachin Mulik
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Vijay Boggaram
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
5
|
Natarajan K, Meganathan V, Mitchell C, Boggaram V. Organic dust induces inflammatory gene expression in lung epithelial cells via ROS-dependent STAT-3 activation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L127-L140. [PMID: 31042082 DOI: 10.1152/ajplung.00448.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to dust in agricultural and animal environments, known as organic dust, is associated with the development of respiratory symptoms and respiratory diseases. Inflammation is a key feature of lung pathologies associated with organic dust exposure, and exposure to organic dust induces the expression of several immune and inflammatory mediators. However, information on transcription factors and cellular and molecular mechanisms controlling the production of immune and inflammatory mediators induced by organic dust is limited. In this study, we have identified STAT-3 as an important transcription factor controlling the induction of expression of immune and inflammatory mediators by poultry dust extracts in airway epithelial cells and in mouse lungs and delineated the cellular pathway for STAT-3 activation. Poultry dust extract activated STAT-3 phosphorylation in Beas2B and normal human bronchial epithelial cells and in mouse lungs. Chemical inhibition and siRNA knockdown of STAT-3 suppressed induction of immune and inflammatory mediator expression. Antioxidants suppressed the increase of STAT-3 phosphorylation induced by poultry dust extract indicating that oxidative stress [elevated reactive oxygen species (ROS) levels] is important for the activation. Chemical inhibition and siRNA knockdown experiments demonstrated that STAT-3 activation is dependent on the activation of nonreceptor tyrosine-protein kinase 2 (TYK2) and epidermal growth factor receptor (EGFR) tyrosine kinases. Our studies show that poultry dust extract controls the induction of immune and inflammatory mediator expression via a cellular pathway involving oxidative stress-mediated STAT-3 activation by TYK2 and EGFR tyrosine kinases.
Collapse
Affiliation(s)
- Kartiga Natarajan
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Courtney Mitchell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Vijay Boggaram
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
6
|
Viegas S, Caetano LA, Korkalainen M, Faria T, Pacífico C, Carolino E, Quintal Gomes A, Viegas C. Cytotoxic and Inflammatory Potential of Air Samples from Occupational Settings with Exposure to Organic Dust. TOXICS 2017; 5:E8. [PMID: 29051440 PMCID: PMC5606674 DOI: 10.3390/toxics5010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Abstract
Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-1β), were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers.
Collapse
Affiliation(s)
- Susana Viegas
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Liliana Aranha Caetano
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 649-003 Lisbon, Portugal.
| | - Merja Korkalainen
- National Institute for Health and Welfare (THL), Department of Health Security, Chemicals and Health Unit, P.O. Box 95, FIN-70701 Kuopio, Finland.
| | - Tiago Faria
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Cátia Pacífico
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Elisabete Carolino
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Anita Quintal Gomes
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Institute of Molecular Medicine, Faculty of Medicine. University of Lisbon, 649-028 Lisbon, Portugal.
| | - Carla Viegas
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| |
Collapse
|
7
|
Hawley B, Schaeffer J, Poole JA, Dooley GP, Reynolds S, Volckens J. Differential response of human nasal and bronchial epithelial cells upon exposure to size-fractionated dairy dust. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:583-94. [PMID: 25965193 PMCID: PMC4430335 DOI: 10.1080/15287394.2015.1015699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction; however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of proinflammatory transcripts (interleukin [IL]-8, IL-6, and tumor necrosis factor [TNF]-α) were measured 2 h after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a proinflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells, and therefore that the two cell types need to be considered separately in airway cell models of agricultural dust toxicity.
Collapse
Affiliation(s)
- Brie Hawley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Joshua Schaeffer
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA 80523
- High Plains Intermountain Center for Agricultural Health and Safety; 154B EHB Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523-1681
| | - Jill A. Poole
- High Plains Intermountain Center for Agricultural Health and Safety; 154B EHB Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523-1681
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Internal Medicine, University of Nebraska Medical Center, 985990 The Nebraska Medical Center, Omaha, NE 68198-5990
| | - Gregory P. Dooley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Stephen Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA 80523
- High Plains Intermountain Center for Agricultural Health and Safety; 154B EHB Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523-1681
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA 80523
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA 80523
| |
Collapse
|
8
|
Viegas S, Faísca VM, Dias H, Clérigo A, Carolino E, Viegas C. Occupational exposure to poultry dust and effects on the respiratory system in workers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:230-239. [PMID: 23514065 DOI: 10.1080/15287394.2013.757199] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Farmers are occupationally exposed to many respiratory hazards at work and display higher rates of asthma and respiratory symptoms than other workers. Dust is one of the components present in poultry production that increases risk of adverse respiratory disease occurrence. Dust originates from poultry residues, molds, and feathers and is biologically active as it contains microorganisms. Exposure to dust is known to produce a variety of clinical responses, including asthma, chronic bronchitis, chronic airways obstructive disease (COPD), allergic alveolitis, and organic dust toxic syndrome (ODTS). A study was developed to determine particle contamination in seven poultry farms and correlate this with prevalence rate of respiratory defects and record by means of a questionnaire the presence of clinical symptoms associated with asthma and other allergy diseases by European Community Respiratory Health Survey. Poultry farm dust contamination was found to contain higher concentrations of particulate matter (PM) PM5 and PM10. Prevalence rate of obstructive pulmonary disorders was higher in individuals with longer exposure regardless of smoking status. In addition, a high prevalence for asthmatic (42.5%) and nasal (51.1%) symptoms was noted in poultry workers. Data thus show that poultry farm workers are more prone to suffer from respiratory ailments and this may be attributed to higher concentrations of PM found in the dust. Intervention programs aimed at reducing exposure to dust will ameliorate occupational working conditions and enhance the health of workers.
Collapse
Affiliation(s)
- S Viegas
- Higher School of Health Technology, Lisboa/Polytechnic Institute of Lisbon, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
9
|
Viegas S, Veiga L, Figueredo P, Almeida A, Carolino E, Sabino R, Veríssimo C, Viegas C. Occupational exposure to aflatoxin B1 in swine production and possible contamination sources. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:944-951. [PMID: 24156697 DOI: 10.1080/15287394.2013.826569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although the adverse health consequences of ingestion of food contaminated with aflatoxin B1 (AFB1) are known, relatively few studies are available on the adverse effects of exposure in occupational settings. Taking this into consideration, our study was developed aiming to elucidate the possible effects of occupational exposure to AFB1 in Portuguese swine production facilities using a specific biomarker to assess exposure to AFB1. In total, 28 workers participated in this study, providing blood samples, and a control group (n = 30) was composed of subjects without any type of agricultural activity. Fungal contamination was also studied by conventional methods through air, surfaces, and new and used floor coverage. Twenty-one workers (75%) showed detectable levels of AFB1 with values ranging from <1 ng/ml to 8.94 ng/ml and with a mean value of 1.91 ± 1.68 ng/ml. In the control group, the AFB1 values were all below 1 ng/ml. Twelve different Aspergillus species were identified. Aspergillus versicolor presented the highest airborne spore counts (3210 CFU/m3) and was also detected in higher values in surfaces (>300 CFU/cm2). Data indicate that exposure to AFB1 occurs in swine barns, and this site serves as a contamination source in an occupational setting.
Collapse
Affiliation(s)
- Susana Viegas
- a Environmental Health RG, Lisbon School of Health Technology, Polytechnique Institute of Lisbon , Lisboa , Portugal
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Viegas C, Carolino E, Sabino R, Viegas S, Veríssimo C. Fungal contamination in swine: a potential occupational health threat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:272-280. [PMID: 23514069 DOI: 10.1080/15287394.2013.757205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Poor air quality in a pig-confinement building may potentially place farmers at higher health risk than other workers for exposure to airborne pollutants that may reach infectious levels. The aim of this study was to assess worker exposure to fungi in indoor environments in Portuguese swine buildings. Air samples from 7 swine farms were collected at a flow rate of 140 L/min, at 1 m height, onto malt extract agar supplemented with chloramphenicol (MEA). Surfaces samples of the same indoor sites were obtained by swabbing the surfaces. Samples from the floor covering were also collected from four of seven swine farms. All collected samples were incubated at 27°C for 5-7 days. After lab processing and incubation of obtained samples, quantitative colony-forming units (CFU)/m(3), CFU/cm(2), and CFU/g and qualitative results were determined with identification of isolated fungal species. Aspergillus versicolor was the most frequent species found in air (21%), followed by Scopulariopsis brevicaulis (17%) and Penicillium sp. (14%). Aspergillus versicolor was also the most frequent species noted on surfaces (26.6%), followed by Cladosporium sp. (22.4%) and Scopulariopsis brevicaulis (17.5%). Chrysosporium was the most frequently found genera in the new floor covering (38.5%), while Mucor was the most prevalent genera (25.1%) in used floor covering. Our findings corroborate a potential occupational health threat due to fungi exposure and suggest the need for a preventive strategy.
Collapse
Affiliation(s)
- C Viegas
- Higher School of Health Technologies of Lisbon-IPL, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
11
|
Viegas S, Mateus V, Almeida-Silva M, Carolino E, Viegas C. Occupational exposure to particulate matter and respiratory symptoms in Portuguese swine barn workers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:1007-1014. [PMID: 24168036 DOI: 10.1080/15287394.2013.831720] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.
Collapse
Affiliation(s)
- S Viegas
- a Environmental Health RG, Lisbon School of Health Technology , Polytechnique Institute of Lisbon , Lisboa , Portugal
| | | | | | | | | |
Collapse
|
12
|
Harting JR, Gleason A, Romberger DJ, Von Essen SG, Qiu F, Alexis N, Poole JA. Chronic obstructive pulmonary disease patients have greater systemic responsiveness to ex vivo stimulation with swine dust extract and its components versus healthy volunteers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1456-70. [PMID: 23116451 PMCID: PMC4001714 DOI: 10.1080/15287394.2012.722186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by an airway and systemic inflammatory response. Bioaerosols/organic dusts are important agricultural pollutants that may lead to COPD. These environments are complex, containing a rich source of various microbial components. The objective of this study was to determine whether individuals with COPD have enhanced systemic responsiveness to settled swine facility organic dust extract (ODE) or its main pathogenic components (peptidoglycan [PGN], lipopolysaccharide [LPS]) versus healthy volunteers. A modified whole blood assay (WBA) that included occupational levels of ODE and concentrations of LPS and PGN found in ODE was used to determine systemic responsiveness (mediator release), and sputum inflammatory markers were measured to explore for systemic and airway associations. Sputum samples were evaluated for cell counts, and tumor necrosis factor (TNF)-α, interleukin (IL)-8/CXCL8, IL-6, and IL-10. Ex vivo whole blood stimulation with ODE, LPS, and PGN each resulted in significant mediator release in all subjects, with the highest occurring with ODE; PGN resulted in significantly enhanced TNF-α and IL-8 as compared to LPS. COPD subjects demonstrated greater systemic responsiveness using the modified WBA versus healthy controls. Within COPD subjects, blood baseline TNF-α, IL-8, and IL-10 and ODE-, PGN-, and LPS-stimulated IL-8 levels significantly correlated with lung function. In conclusion, dust-induced mediator release was robust, and PGN, in part, resembled dust-induced mediator release. Subjects with COPD demonstrated increased mediator release following ex vivo whole blood stimulation with bioaerosol components, suggesting that circulating blood cells in COPD subjects may be primed to respond greater to microbial/inflammatory insult.
Collapse
Affiliation(s)
- Janel R. Harting
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Angela Gleason
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Debra J. Romberger
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | | | - Fang Qiu
- College of Public Health, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Neil Alexis
- University of North Carolina School of Medicine, Center for Environmental Medicine, Asthma & Lung Biology, Chapel Hill, NC 27599-7310
| | - Jill A. Poole
- Omaha Veterans Administration Medical Center, Omaha, NE 68105
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Medicine, University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| |
Collapse
|
13
|
May S, Romberger DJ, Poole JA. Respiratory health effects of large animal farming environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:524-41. [PMID: 23199220 PMCID: PMC4001716 DOI: 10.1080/10937404.2012.744288] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With increases in large animal-feeding operations to meet consumer demand, adverse upper and lower respiratory health effects in exposed agriculture workers are a concern. The aim of this study was to review large animal confinement feeding operational exposures associated with respiratory disease with a focus on recent advances in the knowledge of causative factors and cellular and immunological mechanisms. A PubMed search was conducted with the keywords airway, farm, swine, dairy, horse, cattle inflammation, organic dust, endotoxin, and peptidoglycan, among items were published between 1980 and now. Articles were selected based on their relevance to environmental exposure and reference to airway diseases. Airway diseases included rhinitis, sinusitis, mucus membrane inflammation syndrome, asthma, chronic bronchitis, chronic obstructive pulmonary disease, hypersensitivity pneumonitis, and organic dust toxic syndrome. There is lower prevalence of immunoglobulin (Ig) E-mediated asthma and atopy in farmers and their children, but organic dust worsens existing asthma. Multiple etiologic factors are linked to disease, including allergens, organic dusts, endotoxins, peptidoglycans, and gases. Large animal confinement feeding operations contain a wide diversity of microbes with increasing focus on gram-positive bacteria and archaebacteria as opposed to gram-negative bacteria in mediating disease. Toll-like receptors (TLR) and nucleotide oligomerization domain (NOD)-like innate immune pathways respond to these exposures. Finally, a chronic inflammatory adaptation, tolerance-like response in chronically exposed workers occurs. Large animal confinement farming exposures produce a wide spectrum of upper and lower respiratory tract diseases due to the complex diversity of organic dust, particulates, microbial cell wall components, and gases and resultant activation of various innate immune receptor signaling pathways.
Collapse
Affiliation(s)
- Sara May
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Internal Medicine,; University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| | - Debra J. Romberger
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Internal Medicine,; University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
- Veterans Administration Nebraska Western Iowa Healthcare System, Omaha, NE, 4101 Woolworth Ave., 68105
| | - Jill A. Poole
- Pulmonary, Critical Care, Sleep & Allergy Division; Department of Internal Medicine,; University of Nebraska Medical Center, 985300 The Nebraska Medical Center, Omaha, NE 68198-5300
| |
Collapse
|