1
|
Miranda RG, Guarache GC, Leão AHFF, Pereira GJ, Dorta DJ. BDE-47-mediated cytotoxicity via autophagy blockade in 3D HepaRG spheroids cultured in alginate microcapsules. Chem Biol Interact 2024; 388:110831. [PMID: 38101597 DOI: 10.1016/j.cbi.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Polybrominated Diphenyl Ethers (PBDEs) are a major class of brominated flame retardants, and their widespread use has led them to be considered contaminants with emerging concern. PBDEs have been detected in the indoor air, house dust, food, and all environmental compartments. The congener BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is the most prevalent, and hepatotoxicity, neurotoxicity, immunological changes, endocrine disruption, and genotoxic potential have been related to its exposure. Although the BDE-47 molecular toxicity pathway is directly related to intrinsic apoptotic cell death, the role of autophagy in BDE-47 toxicity remains unclear. In this context, three-dimensional cell culture has emerged as a good strategy for the replacement of animals in toxicological testing. Here, we used HepaRG spheroids cultured in alginate microcapsules to investigate the role of autophagy in BDE-47-mediated hepatotoxicity. We developed mature and functional HepaRG spheroids by culturing them in alginate microcapsules. Histological analysis revealed that HepaRG spheroids formed an extracellular matrix and stored glycogen. No apoptotic and/or necrotic cores were observed. BDE-47 showed concentration- and time-dependent cytotoxicity in HepaRG spheroids. In the early exposure period, BDE-47 initially disrupted mitochondrial activity and increased the formation of acid compartments that promoted the increase in autophagic activity; however, this autophagy was blocked, and long-term exposure to BDE-47 promoted efficient apoptotic cell death through autophagy blockade, as evidenced by an increased number of fragmented/condensed nuclei. Therefore, for the first time, we demonstrated BDE-47 toxicity and its cell pathway induces cell death using a three-dimensional liver cell culture, the HepaRG cell line.
Collapse
Affiliation(s)
- Raul Ghiraldelli Miranda
- Univesity of São Paulo (USP), School of Phamaceutical Science of Ribeirão Preto, Ribeirão Preto, SP, 14040-903, Brazil; Department of Life Science of the University of Coimbra, 3000, Coimbra, Portugal.
| | - Gabriel Cicolin Guarache
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Anderson Henrique F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Gustavo José Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Daniel Junqueira Dorta
- Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Ribeirão Preto, SP, 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute os Chemistry, Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
2
|
Chen X, Ma H, Kong C, Pan T, Gao D, Liao H, Wang J. Bioaccumulation of polystyrene nanoplastics and BDE-209 induced oxidative stress, photosynthesis and growth impairments in floating fern Salvinia natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168541. [PMID: 37979866 DOI: 10.1016/j.scitotenv.2023.168541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Aquatic ecosystems are facing increasing exposure to pollutants, posing potential threats to the stability and wellness of aquatic species. This study focused on evaluating the impacts of single and combined exposure to 80 nm polystyrene nanoplastics (PS-NPs, 0.1, 1, 10, 20 mg/L) and decabromodiphenyl ether (BDE-209, 300 ng/L) for 14 days on the bioaccumulation, growth, photosynthesis and oxidative stress in the free-floating fern Salvinia natans. PS-NPs primarily accumulated in the epidermis and trichomes of S. natans. Meanwhile, the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were significantly increased, while those for peroxidase (POD), catalase (CAT), total antioxidant capacity (T-AOC), and relative growth rate (RGR) decreased. Furthermore, the chlorophyll contents in submerged leaves were decreased, while those in floating leaves were increased at PS-NPs concentrations of 0.1 and 1 mg/L. However, the chlorophyll contents in both submerged and floating leaves displayed a decreasing trend with increasing concentrations of PS-NPs. Under the co-exposure of PS-NPs and BDE-209, the contents of MDA were significantly elevated, whereas CAT, POD, SOD, T-AOC and RGR were significantly decreased (p < 0.05). Our results revealed that, compared to single exposure, more pronounced ecotoxic effects are observed in S. natans under co-exposure to PS-NPs and BDE-209. These findings offer valuable perspectives into the possible environmental risks of BDE-209 and PS-NPs in freshwater ecosystems, contributing to the development of effective management strategies for protecting aquatic organisms and ecosystems. This research highlights the urgent need to understand the toxic effects of emerging contaminants on different aquatic organisms, emphasizing the importance of protecting and preserving aquatic ecosystems.
Collapse
Affiliation(s)
- Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ma
- Information Center of the Ministry of Water Resources, Beijing 510610, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
3
|
A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. WATER 2021. [DOI: 10.3390/w13223258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Emerging pollutants (EPs), also known as micropollutants, have been a major issue for the global population in recent years as a result of the potential threats they bring to the environment and human health. Pharmaceuticals and personal care products (PPCPs), antibiotics, and hormones that are used in great demand for health and cosmetic purposes have rapidly culminated in the emergence of environmental pollutants. EPs impact the environment in a variety of ways. EPs originate from animal or human sources, either directly discharged into waterbodies or slowly leached via soils. As a result, water quality will deteriorate, drinking water sources will be contaminated, and health issues will arise. Since drinking water treatment plants rely on water resources, the prevalence of this contamination in aquatic environments, particularly surface water, is a severe problem. The review looks into several related issues on EPs in water environment, including methods in removing EPs. Despite its benefits and downsides, the EPs treatment processes comprise several approaches such as physico-chemical, biological, and advanced oxidation processes. Nonetheless, one of the membrane-based filtration methods, ultrafiltration, is considered as one of the technologies that promises the best micropollutant removal in water. With interesting properties including a moderate operating manner and great selectivity, this treatment approach is more popular than conventional ones. This study presents a comprehensive summary of EP’s existence in the environment, its toxicological consequences on health, and potential removal and treatment strategies.
Collapse
|
4
|
Dungar BM, Schupbach CD, Jacobson JR, Kopf PG. Adrenal Corticosteroid Perturbation by the Endocrine Disruptor BDE-47 in a Human Adrenocortical Cell Line and Male Rats. Endocrinology 2021; 162:6346795. [PMID: 34370853 PMCID: PMC8402933 DOI: 10.1210/endocr/bqab160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 01/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been previously shown to alter various endocrine biosynthetic pathways. Growing epidemiological evidence suggests that PBDEs alter cardiovascular function. The goal of this study was to examine the effects of BDE-47 on adrenal corticosteroid pathways that play vital roles in cardiovascular homeostasis and pathophysiology. The effect of BDE-47 on aldosterone and cortisol secretion was characterized in a human adrenocortical cell line. HAC15 cells were exposed to various concentrations of BDE-47 (1 nM to 100 μM). Cell viability, corticosteroid secretion, gene expression of enzymes involved in corticosteroid synthesis, and metabolic activity was examined. Additionally, Sprague Dawley male rats were orally exposed to BDE-47 (10 or 100 µg/kg), 5 days per week for 16 weeks. Organ weights and plasma corticosteroid levels were measured. In HAC15 cells, basal and stimulated aldosterone and cortisol secretion was significantly increased by BDE-47. Gene expression of several enzymes involved in corticosteroid synthesis and mitochondrial metabolism also increased. In Sprague Dawley rats, adrenal but not heart, kidney, or liver weights, were significantly increased in BDE-47 treatment groups. Plasma corticosterone levels were significantly increased in the 100 µg BDE-47/kg treatment group. No change in plasma aldosterone levels were observed with BDE-47 exposure. These data indicate that BDE-47 disrupts the regulation of corticosteroid secretion and provides further evidence that PBDEs are potential endocrine disruptors. Future studies will determine the underlying molecular mechanism of altered corticosteroid production and examine whether these alterations result in underlying cardiovascular disease in our rodent model of 16-week BDE-47 exposure.
Collapse
Affiliation(s)
- Benjamin M Dungar
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Chad D Schupbach
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Jessie R Jacobson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Phillip G Kopf
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence: Phillip G. Kopf, PhD, Department of Pharmacology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| |
Collapse
|
5
|
Sun Y, Wang C, Xu X, Ruan H. Responses of plants to polybrominated diphenyl ethers (PBDEs) induced phytotoxicity: A hierarchical meta-analysis. CHEMOSPHERE 2020; 240:124865. [PMID: 31541897 DOI: 10.1016/j.chemosphere.2019.124865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/18/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Biologists have extensively investigated the toxicity of polybrominated diphenyl ethers (PBDEs) on plants in ecosystems, where experiments revealed that PBDEs can promote, inhibit, or have no significant effects on the physiological and biochemical functionality of plants. These studies have stimulated many theoretical works that aimed to elucidate the differences in the toxicity of PBDEs on various plants. However, there has been no quantitative attempt to reconcile theory with the results of empirical experiments. To close this gap between theory and experiments, we conducted a hierarchical meta-analysis to examine the toxicity of PBDEs on plants and confirmed potential sources of variation across numerous studies. Through the analysis of 1299 observations garnered from 41 studies, we revealed the significant toxicity of PBDEs on plants. This result was verified to be robust and showed no signs of bias. Our study affirmed that functional indexes can contribute to variations that lead to the toxicity of PBDEs on various plants. Furthermore, we found that lower congeners PBDEs were more toxic to plants than higher congeners PBDEs, and higher plants were more resistant to PBDEs induced phytotoxicity than lower plants. For interactive effects, only specific PBDEs concentrations had significant effects on glutathione S-transferase activities, and experimental durations had no significant impacts on any functional indexes. These results reconciled empirical studies and assisted us with elucidating the ecotoxicology of PBDEs induced phytotoxicity.
Collapse
Affiliation(s)
- Yuan Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Cuiting Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xuan Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Honghua Ruan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
6
|
Endoplasmic reticulum rather than mitochondria plays a major role in the neuronal apoptosis induced by polybrominated diphenyl ether-153. Toxicol Lett 2019; 311:37-48. [DOI: 10.1016/j.toxlet.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022]
|
7
|
Elkin ER, Bridges D, Loch-Caruso R. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine induces progressive mitochondrial dysfunction in HTR-8/SVneo trophoblasts. Toxicology 2019; 427:152283. [PMID: 31476333 DOI: 10.1016/j.tox.2019.152283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 02/08/2023]
Abstract
Trichloroethylene is an industrial solvent and common environmental pollutant. Despite efforts to ban trichloroethylene, its availability and usage persist globally, constituting a hazard to human health. Recent studies reported associations between maternal trichloroethylene exposure and increased risk for low birth weight. Despite these associations, the toxicological mechanism underlying trichloroethylene adverse effects on pregnancy remains largely unknown. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) induces mitochondrial-mediated apoptosis in a trophoblast cell line. To gain further understanding of mitochondrial-mediated DCVC placental toxicity, this study investigated the effects of DCVC exposure on mitochondrial function using non-cytolethal concentrations in placental cells. Human trophoblasts, HTR-8/SVneo, were exposed in vitro to a maximum of 20 μM DCVC for up to 12 h. Cell-based oxygen consumption and extracellular acidification assays were used to evaluate key aspects of mitochondrial function. Following 6 h of exposure to 20 μM DCVC, elevated oxygen consumption, mitochondrial proton leak and sustained energy coupling deficiency were observed. Similarly, 12 h of exposure to 20 μM DCVC decreased mitochondrial-dependent basal, ATP-linked and maximum oxygen consumption rates. Using the fluorochrome TMRE, dissipation of mitochondrial membrane potential was detected after a 12-h exposure to 20 μM DCVC, and (±)-α-tocopherol, a known suppressor of lipid peroxidation, attenuated DCVC-stimulated mitochondrial membrane depolarization but failed to rescue oxygen consumption perturbations. Together, these results suggest that DCVC caused progressive mitochondrial dysfunction, resulting in lipid peroxidation-associated mitochondrial membrane depolarization. Our findings contribute to the biological plausibility of DCVC-induced placental impairment and provide new insights into the role of the mitochondria in DCVC-induced toxicity.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
| |
Collapse
|
8
|
Dreier DA, Mello D, Meyer J, Martyniuk CJ. Linking Mitochondrial Dysfunction to Organismal and Population Health in the Context of Environmental Pollutants: Progress and Considerations for Mitochondrial Adverse Outcome Pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1625-1634. [PMID: 31034624 PMCID: PMC6961808 DOI: 10.1002/etc.4453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Mitochondria are key targets of many environmental contaminants, because specific chemicals can interact directly with mitochondrial proteins, lipids, and ribonucleic acids. These direct interactions serve as molecular initiating events that impede adenosine triphosphate production and other critical functions that mitochondria serve within the cell (e.g., calcium and metal homeostasis, apoptosis, immune signaling, redox balance). A limited but growing number of adverse outcome pathways (AOPs) have been proposed to associate mitochondrial dysfunction with effects at organismal and population levels. These pathways involve key events such as altered membrane potential, mitochondrial fission/fusion, and mitochondrial DNA damage, among others. The present critical review and analysis reveals current progress on AOPs involving mitochondrial dysfunction, and, using a network-based computational approach, identifies the localization of mitochondrial molecular initiating events and key events within multiple existing AOPs. We also present 2 case studies, the first examining the interaction between mitochondria and immunotoxicity, and the second examining the role of early mitochondrial dysfunction in the context of behavior (i.e., locomotor activity). We discuss limitations in our current understanding of mitochondrial AOPs and highlight opportunities for clarifying their details. Advancing our knowledge of key event relationships within the AOP framework will require high-throughput datasets that permit the development and testing of chemical-agnostic AOPs, as well as high-resolution research that will enhance the mechanistic testing and validation of these key event relationships. Given the wide range of chemicals that affect mitochondria, and the centrality of energy production and signaling to ecologically important outcomes such as pathogen defense, homeostasis, growth, and reproduction, a better understanding of mitochondrial AOPs is expected to play a significant, if not central, role in environmental toxicology. Environ Toxicol Chem 2019;38:1625-1634. © 2019 SETAC.
Collapse
Affiliation(s)
- David A. Dreier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Danielle Mello
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
- University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611 USA
- Address correspondence to
| |
Collapse
|
9
|
Sun Y, Sun P, Wang C, Liao J, Ni J, Zhang T, Wang R, Ruan H. Growth, physiological function, and antioxidant defense system responses of Lemna minor L. to decabromodiphenyl ether (BDE-209) induced phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:113-120. [PMID: 30884414 DOI: 10.1016/j.plaphy.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), represent one of the new types of persistent organic pollutants (POPs) that are currently found in ambient aquatic ecosystems. Lemna minor L. is a floating freshwater plant, which is widely employed for phytotoxicity studies of xenobiotic substances. For this study, we investigated the growth, physiological functions, and antioxidant capacities of L. minor, which were exposed to 0-20 mg L-1 decabromodiphenyl ether (BDE-209) for 14 days. A logistic model was suitable for describing the growth of L. minor when the BDE-209 concentration was in the range of from 0 to 15 mg L-1. When exposed to 5 and 10 mg L-1 BDE-209, the growth of L. minor was significantly increased, where the intrinsic rate (r) and the maximum capacity of the environment (K) of L. minor were significantly higher than those of the control. In this case, the chlorophyll content and soluble proteins were also markedly increased. Moreover, the photosynthetic function (Fv/Fm, PI) was enhanced. However, for 15 mg L-1 BDE-29 treated group, the growth of L. minor was significantly inhibited, with decreases in chlorophyll and the soluble protein content, until the L. minor yellowed and expired under a concentration of 20 mg L-1. Photosynthetic functions were also negatively correlated with increasing increments of BDE-209 (15 and 20 mg L-1). The malondialdehyde (MDA), superoxide anion radical (O2̄·) content, and permeability of the plasma membranes increased with higher BDE-209 concentrations (0-20 mg L-1). The superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities of L. minor increased when the BDE-209 concentration ranged from 0 to 10 mg L-1; however, the activities of SOD and POD were decreased. Only the CAT activity remained higher in contrast to the control group under 15-20 mg L-1 BDE-209. These results demonstrated that 15 mg L-1 BDE-209 imparted high toxicity to L. minor, which was a consequence of the overproduction of reactive oxygen species (ROS), which conveyed oxidative damage to plant cells. This study provided a theoretical understanding of BDE-209 induced toxicity as relates to the physiology and biochemistry of higher hydrophytes.
Collapse
Affiliation(s)
- Yuan Sun
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Peng Sun
- School of Life Science, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Cuiting Wang
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Jiahui Liao
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Juanping Ni
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Tianan Zhang
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Runsong Wang
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Honghua Ruan
- College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
10
|
Qiu N, Wang R, Sun Y, Wang X, Jiang D, Meng Y, Zhou F. Toxic effects and mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on Lemna minor. CHEMOSPHERE 2018; 193:711-719. [PMID: 29175398 DOI: 10.1016/j.chemosphere.2017.10.148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
To investigate the toxic effect and mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in aquatic plants, in vivo and in vitro exposure to BDE-47 were conducted. After 14-d exposure to 5-20 μg/L BDE-47, the growth of Lemna minor plants was significantly suppressed, and the chlorophyll and soluble protein contents in fronds markedly decreased. Accordingly, the photosynthetic efficiency (Fv/Fm, PI) decreased. When the thylakoid membranes isolated from healthy fronds was exposed to 5-20 mg/L BDE-47 directly in vitro for 1 h, the photosynthetic efficiency also decreased significantly. In both the in vitro (5-20 μg/L) and in vivo (5-20 mg/L) experiments, BDE-47 led to an increased plasma membrane permeability. Hence, we concluded that BDE-47 had a direct toxicity to photosynthetic membranes and plasma membranes. However, direct effects on the activities of peroxidase (POD), malate dehydrogenase (MDH) and nitroreductase (NR) were not observed by adding 5-20 mg/L BDE-47 into crude enzyme extracts. The malondialdehyde (MDA) and superoxide anion radical (O2-) contents in the BDE-47 treated fronds were higher than those in the control fronds, suggesting that L. minor can not effectively relieve reactive oxygen species (ROS). The data above indicates that BDE-47 is toxic to L. minor through acting directly on biomembranes, which induces the production of ROS and thus causes remarkable oxidative damage to cells.
Collapse
Affiliation(s)
- Nianwei Qiu
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Renjun Wang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yuan Sun
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiushun Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dacheng Jiang
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yuting Meng
- School of Life Science, Qufu Normal University, Qufu, Shandong 273165, China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| |
Collapse
|
11
|
Kuang S, Liu G, Cao R, Zhang L, Yu Q, Sun C. Mansouramycin C kills cancer cells through reactive oxygen species production mediated by opening of mitochondrial permeability transition pore. Oncotarget 2017; 8:104057-104071. [PMID: 29262621 PMCID: PMC5732787 DOI: 10.18632/oncotarget.22004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world and the search for novel anticancer agents is urgently required. Marine-derived isoquinolinequinones have exhibited promising anticancer activities. However, the exact mechanisms of cytotoxic activities of these isoquinolinequinones are poorly characterized. In this study, we investigated the anticancer effects and molecular mechanisms of mansouramycin C (Mm C), a cytotoxic isoquinolinequinone isolated from a marine streptomycete. We demonstrated that Mm C preferentially killed cancer cells and the cytotoxic effects were mediated by reactive oxygen species (ROS) generation. Mass spectrometry based proteomic analysis of Mm C-treated A549 cells revealed that many ROS-related proteins were differentially expressed. Proteomic-profiling after Mm C treatment identified oxidative phosphorylation as the most significant changes in pathways. Analysis also revealed extensive defects in mitochondrial structure and function. Furthermore, we disclosed that Mm C-induced ROS generation was caused by opening of mitochondrial permeability transition pore. Notably, Mm C synergized with sorafenib to induce cell death in A549 cells. Hence, we propose that the marine-derived natural compound Mm C is a potent inducer of the mitochondrial permeability transition and a promising anticancer drug candidate. Moreover, molecular mechanisms of Mm C shed new light on the understanding of the cytotoxic mechanisms of marine-derived isoquinolinequiones.
Collapse
Affiliation(s)
- Shan Kuang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ge Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ruobing Cao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Yu
- Division of Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Pereira LC, Souza AO, Tasso MJ, Oliveira AMC, Duarte FV, Palmeira CM, Dorta DJ. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1129-1144. [PMID: 28880749 DOI: 10.1080/15287394.2017.1357370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDE) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunctions, reproductive disorders, and hepatotoxicity. The widespread use of PBDE as flame retardants has culminated in daily exposure of humans and wildlife to these contaminants and resulted in their banned use. Thus assessment of the potential effects of each PBDE congener on living organisms has become cause for concern. The aim of this study was to (1) examine the effects of decabromodiphenyl ether (BDE)-209 on different functions of HepG2 cells and (2) investigate whether this congener is involved in mitochondrial toxicity. The use of multiple methods was employed to (i) study the influence of BDE-209 on mitochondrial permeability transition (MPT) process in mitochondria isolated from rat liver and (ii) determine the consequential cellular damage. Our results showed that BDE-209 induced matrix swelling related to MPT with 10 µM and ATP depletion with 0.1 µM. In addition, 0.5 μM BDE-209 reduced HepG2 cell viability, produced collapse of membrane potential, but increased levels of reactive oxygen species (ROS) after 48 h incubation. After 24 h with 5 μM treatment elevated levels of ROS, DNA fragmentation and cytochrome c release, accompanied by caspase 9 and caspase 3 activation was noted. Taken together, these results suggest that short-duration exposure (24 or 48 h) to 0.5 μM or 5 μM BDE-209 concentrations diminished HepG2 cell viability due to apoptosis associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lilian C Pereira
- a School of Pharmaceutical Sciences of Ribeirão Preto, Departament of Clinical Analysis, Toxicological and Bromatological , University of São Paulo , Ribeirão Preto , São Paulo , Brazil
- b Faculty of Agronomic Sciences of Botucatu, Department of Bioprocesses and Biotechnology , São Paulo State University , Botucatu , São Paulo , Brazil
| | - Alecsandra O Souza
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Maria J Tasso
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Alana M C Oliveira
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| | - Filipe V Duarte
- d CNC - Center for Neuroscience and Cell Biology, University of Coimbra , Faculty of Medicine , Coimbra , Portugal
- e Department of Life Sciences , University of Coimbra , Coimbra , Portugal
| | - Carlos M Palmeira
- d CNC - Center for Neuroscience and Cell Biology, University of Coimbra , Faculty of Medicine , Coimbra , Portugal
- e Department of Life Sciences , University of Coimbra , Coimbra , Portugal
| | - Daniel J Dorta
- c Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto , Departamento de Química, Universidade de São Paulo , Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
13
|
Pereira LC, Duarte FV, Varela ATIF, Rolo AP, Palmeira CMM, Dorta DJ. Exposure to BDE-153 induces autophagy in HepG2 cells. Toxicol In Vitro 2017; 42:61-68. [DOI: 10.1016/j.tiv.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
|
14
|
Yang W, Yang L, Yi Z, Wu Z, Nie J, Zhang A. Investigating the affinity of BDE154 and 3OH-BDE154 with HSA: Experimental and simulation validation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:85-93. [PMID: 28327436 DOI: 10.1016/j.etap.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
The physicochemical properties of polybrominated diphenyl ethers are important for modeling their transport, but these data are often missing. Here, satisfactory bioactivity results were obtained using human serum albumin as the carrier, 2,2',4,4',5,6'-hexabromodiphenyl ether (BDE154) and 3-hydroxy-2,2',4,4', 5,6'-hexabromodiphenyl ether (3OH-BDE154) as the ligands, using UV-visible absorbance, fluorescence, circular dichroism, molecular docking, and molecular dynamics methods. The interactions between human serum albumin and BDE154 or 3OH-BDE154 were verified, consistent with the static quenching procedure. At pH 7.4, the binding constants of the complexes for site I were relatively comparable and increased in the order BDE154<3OH-BDE154. Then, the secondary structure and kinetic parameters of albumin were analyzed using the circular dichroism spectra and GROMACS software. The data obtained from these simulations indicate that hydrophobic attraction might be the key factor for the stability of complexes. The docking experiments provided further insight into the hydrophobic pocket and showed that 3OH-BDE154 has a stronger binding affinity to human serum albumin than BDE154. The experimental spectral data were obtained and compared with the simulation results, showing good agreement. A detailed analysis of PBDEs-HSA interactions would provide valuable information to better understand the interaction on this class of compounds.
Collapse
Affiliation(s)
- Wu Yang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Lulu Yang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Zhongsheng Yi
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Zhiwei Wu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Jinfang Nie
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Human Excretion of Polybrominated Diphenyl Ether Flame Retardants: Blood, Urine, and Sweat Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3676089. [PMID: 28373979 PMCID: PMC5360950 DOI: 10.1155/2017/3676089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/26/2017] [Indexed: 01/17/2023]
Abstract
Commonly used as flame retardants, polybrominated diphenyl ethers (PBDEs) are routinely detected in the environment, animals, and humans. Although these persistent organic pollutants are increasingly recognized as having serious health implications, particularly for children, this is the first study, to our knowledge, to investigate an intervention for human elimination of bioaccumulated PBDEs. Objectives. To determine the efficacy of blood, urine, and perspiration as PBDE biomonitoring mediums; assess excretion of five common PBDE congeners (28, 47, 99, 100, and 153) in urine and perspiration; and explore the potential of induced sweating for decreasing bioaccumulated PBDEs. Results. PBDE congeners were not found in urine samples; findings focus on blood and perspiration. 80% of participants tested positive in one or more body fluids for PBDE 28, 100% for PBDE 47, 95% for PBDE 99, and 90% for PBDE 100 and PBDE 153. Induced perspiration facilitated excretion of the five congeners, with different rates of excretion for different congeners. Conclusion. Blood testing provides only a partial understanding of human PBDE bioaccumulation; testing of both blood and perspiration provides a better understanding. This study provides important baseline evidence for regular induced perspiration as a potential means for therapeutic PBDE elimination. Fetotoxic and reproductive effects of PBDE exposure highlight the importance of further detoxification research.
Collapse
|
16
|
Chen H, Tang X, Zhou B, Xu N, Wang Y. Mechanism of Deca-BDE-induced apoptosis in Neuro-2a cells: Role of death-receptor pathway and reactive oxygen species-mediated mitochondrial pathway. J Environ Sci (China) 2016; 46:241-251. [PMID: 27521956 DOI: 10.1016/j.jes.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/31/2016] [Accepted: 02/04/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hongmei Chen
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ningning Xu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - You Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
17
|
Souza AO, Tasso MJ, Oliveira AMC, Pereira LC, Duarte FV, Oliveira DP, Palmeira CM, Dorta DJ. Evaluation of Polybrominated Diphenyl Ether Toxicity on HepG2 Cells - Hexabrominated Congener (BDE-154) Is Less Toxic than Tetrabrominated Congener (BDE-47). Basic Clin Pharmacol Toxicol 2016; 119:485-497. [DOI: 10.1111/bcpt.12598] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Alecsandra O. Souza
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Maria J. Tasso
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Alana M. C. Oliveira
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Lilian C. Pereira
- Department of Clinical Analysis, Toxicological and Bromatological; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Filipe V. Duarte
- CNC - Center for Neuroscience and Cell Biology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Danielle P. Oliveira
- Department of Clinical Analysis, Toxicological and Bromatological; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Carlos M. Palmeira
- CNC - Center for Neuroscience and Cell Biology; Faculty of Medicine; University of Coimbra; Coimbra Portugal
- Department of Life Sciences; University of Coimbra; Coimbra Portugal
| | - Daniel J. Dorta
- Department of Chemistry; Faculty of Philosophy; Sciences and Languages of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
18
|
Kodavanti PRS, Royland JE, Osorio C, Winnik WM, Ortiz P, Lei L, Ramabhadran R, Alzate O. Developmental exposure to a commercial PBDE mixture: effects on protein networks in the cerebellum and hippocampus of rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:428-36. [PMID: 25616259 PMCID: PMC4421769 DOI: 10.1289/ehp.1408504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are structurally similar to polychlorinated biphenyls (PCBs) and have both central (learning and memory deficits) and peripheral (motor dysfunction) neurotoxic effects at concentrations/doses similar to those of PCBs. The cellular and molecular mechanisms for these neurotoxic effects are not fully understood; however, several studies have shown that PBDEs affect thyroid hormones, cause oxidative stress, and disrupt Ca2+-mediated signal transduction. Changes in these signal transduction pathways can lead to differential gene regulation with subsequent changes in protein expression, which can affect the development and function of the nervous system. OBJECTIVE In this study, we examined the protein expression profiles in the rat cerebellum and hippocampus following developmental exposure to a commercial PBDE mixture, DE-71. METHODS Pregnant Long-Evans rats were dosed perinatally with 0 or 30.6 mg/kg/day of DE-71 from gestation day 6 through sampling on postnatal day 14. Proteins from the cerebellum and hippocampus were extracted, expression differences were detected by two-dimensional difference gel electrophoresis, and proteins were identified by tandem mass spectrometry. Protein network interaction analysis was performed using Ingenuity® Pathway Analysis, and the proteins of interest were validated by Western blotting. RESULTS Four proteins were significantly differentially expressed in the cerebellum following DE-71 exposure, whereas 70 proteins were significantly differentially expressed in the hippocampus. Of these proteins, 4 from the cerebellum and 47 from the hippocampus, identifiable by mass spectrometry, were found to have roles in mitochondrial energy metabolism, oxidative stress, apoptosis, calcium signaling, and growth of the nervous system. CONCLUSIONS Results suggest that changes in energy metabolism and processes related to neuroplasticity and growth may be involved in the developmental neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, and 2Genetic and Cellular Toxicology Branch, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|