1
|
Yang L, Liu S, Song P, Liu Z, Peng Z, Kong D, Zhou J, Yan X, Ma K, Yu Y, Liu X, Dong Q. DEHP-mediated oxidative stress leads to impaired testosterone synthesis in Leydig cells through the cAMP/PKA/SF-1/StAR pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125503. [PMID: 39657860 DOI: 10.1016/j.envpol.2024.125503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Leydig cells (LCs) injury is often irreversible upon discovery; hence, early identification of risk factors for injury is crucial. The ubiquitous plasticizer di-2-ethylhexyl phthalate (DEHP) in the environment has been shown to potentially cause damage to LCs. However, the underlying mechanisms remain unclear. The present study utilized scRNA-seq analysis, the advantage of which is the ability to explore the characteristics of various testicular cells, combined with studies in vitro and in vivo, to assay the changes in and damage processes of LCs during DEHP exposure. We found that DEHP disrupted the structure and function of LCs. GO analysis suggested that a series of pathways changed, among which the most significant were the "steroid synthesis" and "oxidative stress" pathways. Moreover, DEHP dramatically changed the manner of interaction between LCs and other cells, and the most significant type was the cell-cell contact, which included NECTIN, APP, CADM, and CD39. In addition, the activity of multiple transcription factors (TFs) decreased after DEHP exposure, and the activity of steroidogenic factor 1 (SF-1, Nr5a1) was the most obviously altered. Next, we found that the LCs region indeed experienced oxidative stress, including increased ROS signals, the decreased SOD activity and T-AOC, and increased concentration of 8-OHdG and MDA content. The testosterone level, as well as the expression of StAR, P450scc, and 3β-HSD, was also reduced. To study the association between testosterone synthesis and oxidative stress, the antioxidants N-acetyl-L-cysteine (NAC) and H2O2 were used, and we found that mono-2-ethylhexyl ester (MEHP, a major biometabolite of DEHP) disrupted testosterone synthesis through the inhibition of the cAMP/PKA/SF-1/StAR pathway by inducing oxidative stress. Our study provides new insights into the role and mechanisms of DEHP in LCs injury.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Depei Kong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xin Yan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Kai Ma
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yunfei Yu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
2
|
Hu XX, Yin YC, Xu P, Wei M, Zhang W. Network toxicology and cell experiments reveal the mechanism of DEHP-induced diabetic nephropathy via Wnt signaling pathway. Toxicol Appl Pharmacol 2024; 493:117144. [PMID: 39515621 DOI: 10.1016/j.taap.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widely recognized endocrine disruptor, has been linked to the pathogenesis of diabetic nephropathy (DN) through its interference with hormonal and metabolic homeostasis. This study integrates network toxicology with cell-based assays to elucidate the molecular mechanisms of DEHP-induced DN, seeking to identify novel targets for toxicity assessment and therapeutic intervention. Through comprehensive screening across multiple toxicology and disease-related databases, six core genes (CTNNB1, EGFR, TNF, CCND1, BCL2, CASP3) were identified as shared mediators of DEHP exposure and DN. These genes are predominantly associated with the Wnt signaling pathway, a pivotal regulator of podocyte function, including cellular adhesion, differentiation, apoptosis, and inflammatory response. Mouse glomerular podocytes (MPC-5) exposed to graded concentrations of DEHP, with or without the Wnt pathway inhibitor XAV-939, displayed significant DEHP-induced disruptions: reduced cell adhesion, proliferation, and differentiation; increased autophagy, apoptosis, and migratory activity; elevated inflammatory mediator release; and pronounced activation of the Wnt signaling pathway, evidenced by upregulation of β-catenin, EGFR, TNF, CCND1, BCL2 and downregulation of CASP3. DEHP exposure further altered transcriptional activity and chromatin structure at key loci (CTNNB1, EGFR, and TNF). XAV-939 effectively mitigated these effects, underscoring the Wnt pathway's central role in DN progression under DEHP influence. These findings highlight the complex multi-target, multi-pathway interactions of DEHP in DN pathophysiology, offering deeper mechanistic insights and potential targets for therapeutic intervention against DEHP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin-Xin Hu
- Department of Science & Education, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Ying-Chuan Yin
- Department of Endocrinology, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Peng Xu
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Min Wei
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Wang Zhang
- Department of Endocrinology, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China; Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
3
|
Mondal S, Bandyopadhyay A. Antioxidants in mitigating phthalate-induced male reproductive toxicity: A comprehensive review. CHEMOSPHERE 2024; 364:143297. [PMID: 39245218 DOI: 10.1016/j.chemosphere.2024.143297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Phthalates, widely used as plasticizers, have been increasingly linked to male reproductive toxicity through mechanisms including oxidative stress, endocrine disruption, inflammation, and apoptosis. This comprehensive review evaluates the protective role of various antioxidants in mitigating the detrimental effects of phthalates such as di-(2-ethylhexyl) phthalate (DEHP), di-butyl phthalate (DBP), mono-(2-ethylhexyl) phthalate (MEHP), and monobutyl phthalate (MBP) on male reproductive health. Antioxidants such as lycopene, ellagic acid, genistein, and selenium compounds exhibit significant efficacy in counteracting phthalate-induced damage by neutralizing reactive oxygen species (ROS), enhancing endogenous antioxidant defenses, reducing inflammatory responses, and preventing apoptosis. Lycopene demonstrates broad-spectrum protective effects, particularly through its high ROS-scavenging capacity and ability to preserve mitochondrial function. Ellagic acid effectively ameliorates oxidative stress and inflammation, while genistein enhances the Nrf2 pathway and restores hormonal balance, offering robust protection against reproductive toxicity. Selenium compounds improve antioxidant enzyme activities, providing essential support against oxidative damage. These findings underscore the potential of antioxidants as therapeutic agents against phthalate-induced male reproductive dysfunction. Future research should focus on optimizing antioxidant combinations, understanding dose-response relationships, and assessing long-term efficacy and safety to develop effective interventions for safeguarding male reproductive health.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgavati Vishwavidyalaya), Katni, 483 332, Madhya Pradesh, India.
| | - Arindam Bandyopadhyay
- Department of Zoology, University of Allahabad, Prayagraj, 211 002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Ali S, Ziyad A, Pai KSR, Muraleedharan A, Gopan A, Upadhya R, Seetharam RN, Manokaran K. Influence of Ascorbic Acid on Di-(2-Ethylhexyl) Phthalate-induced Ovarian Gene Alterations in Pubertal Female Wistar Rats. J Pharmacol Pharmacother 2024; 15:190-199. [DOI: 10.1177/0976500x241245481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
Background Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer compound affecting female reproduction, leads to scenarios, such as polycystic ovarian syndrome (PCOS) and infertility through oxidative stress (OS) mechanisms. Ascorbic acid (AA) is one of the antioxidants in infertility issues. Objectives The present study investigates the ameliorative effect of AA on DEHP-induced ovarian toxicity in pubertal female Wistar rats. Materials and Methods Thirty female Wistar rats of four weeks of age were stratified into five groups. Group I was treated with corn oil (Vehicle), groups II and III with low and high dose DEHP, and groups IV and V with low and high dose DEHP+AA were administered for 30 days. Results Increased body weight gain was noted in DEHP groups. Estradiol hormone was considerably reduced, whereas progesterone levels were increased in both low- and high-dose DEHP-treated groups. DEHP+AA groups have shown significant ( p < 0.005) protection of these hormone levels as equal to the control group. The high-dose DEHP group shows an increased, ovarian estrogen receptor (ER) alpha, ER-beta, and progesterone receptor gene expression, and DEHP+AA groups have significantly ( p < 0.005) showed expression similar to the control. OS was noted with decreased superoxide dismutase and increased malondialdehyde expression in Group III (GR III) compared to control, whereas the DEHP+AA treated group significantly protected OS by restoring the expression levels. DEHP-treated groups show elevated levels of both Bcl-2 and BAX which is specific to apoptotic expression and restored by AA treatment ( p < 0.005). Conclusion Evidence suggests that AA may protect against DEHP-induced ovarian toxicity by decreasing OS levels, improving folliculogenesis, and restoring the hormonal with receptor level alterations.
Collapse
Affiliation(s)
- Shifana Ali
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ahmed Ziyad
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karkala Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anju Muraleedharan
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adhithya Gopan
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Department of Biotherapeutics Research, Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Department of Biotherapeutics Research, Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kalaivani Manokaran
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Chen J, Zhao T, Zheng X, Kang L, Wang J, Wei Y, Wu Y, Shen L, Long C, Wei G, Wu S. Protective effects of melatonin on DEHP-induced apoptosis and oxidative stress in prepubertal testes via the PI3K/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:952-964. [PMID: 37975621 DOI: 10.1002/tox.24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.
Collapse
Affiliation(s)
- Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangqin Zheng
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Junke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhao L, Zheng J, Qin J, Xu X, Liu X, Yang S, Li S, Chen B, Du J, Dong R. Combined Astragalus, vitamin C, and vitamin E alleviate DEHP-induced oxidative stress and the decreased of insulin synthesis and secretion in INS-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115675. [PMID: 37984288 DOI: 10.1016/j.ecoenv.2023.115675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP), a common Phthalic acid ester (PAEs), has been reported to be associated with diabetes mellitus, yet the underlying mechanisms remain unknown. Combined nutrient interventions have been shown to alleviate the diabetic toxicity of DEHP. However, the effects and mechanisms of the combined intervention of Astragalus and vitamins (C and E) are currently unknown. In this study, we investigated the potential mechanisms of DEHP-induced diabetes mellitus through transcriptome analysis and vitro experiments using rat insulinoma cells (INS-1 cells). Furthermore, we explored the protection of the combined Astragalus, vitamin C, and vitamin E on DEHP-induced diabetes mellitus through these mechanisms. INS-1 cells in the logarithmic growth period were exposed to 125 umol/L DEHP followed by high-throughput sequencing analysis. The cell proliferation inhibition rate was determined using MTT assay for each group, and the cell apoptosis rate and intracellular ROS level were measured using flow cytometer. Finally, insulin levels and markers of oxidative stress were detected using ELISA kits in different groups. A total of 372 differentially expressed genes were found between the 125 umol/L DEHP and control groups, subsequent functional enrichment analyses indicated that DEHP induced oxidative stress and disturbed insulin levels. In INS-1 cells, the rate of cell proliferation inhibition, apoptosis, and the degree of oxidative stress increased concentration-dependently with increasing DEHP concentrations, while antioxidant intervention could reverse these changes. Insulin synthesis and secretion decreased after 240 μmol/L DEHP exposure stimulated by 25 mM glucose in INS-1 cells, also could antioxidant intervention alleviate these reductions. Based on these results, the underlying mechanism of DEHP impairing the function of INS-1 cells might be through apoptosis pathways induced by oxidative stress and direct reduction of insulin levels (both synthesis and secretion), while the optimal combination of Astragalus and vitamins (C and E) could exert an alleviating effect.
Collapse
Affiliation(s)
- Long Zhao
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | | | - Jin Qin
- Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, ZhengZhou 450003, China
| | - Xin Xu
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyuan Liu
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China
| | - Shuguang Li
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Bo Chen
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Ruihua Dong
- Key Lab of Public Health Safety of the Ministry of Education, Institute of Nutrition, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Brassea-Pérez E, Labrada-Martagón V, Hernández-Camacho CJ, Gaxiola-Robles R, Vázquez-Medina JP, Zenteno-Savín T. DEHP exposure impairs human skeletal muscle cell proliferation in primary culture conditions: preliminary study. Cytotechnology 2023; 75:335-348. [PMID: 37389127 PMCID: PMC10299991 DOI: 10.1007/s10616-023-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/27/2023] [Indexed: 07/01/2023] Open
Abstract
The plasticizer di (2-ethylhexyl) phthalate (DEHP) inhibits differentiation, impairs glucose metabolism, and decreases mitochondrial function in murine muscle satellite cells; however, if these effects are translated to human cells is unknown. The goal of this study was to evaluate changes in morphology and proliferation of primary human skeletal muscle cells exposed to DEHP. Rectus abdominis muscle samples were obtained from healthy women undergoing programed cesarean surgery. Skeletal muscle cells were isolated and grown under standard primary culture conditions, generating two independent sample groups of 25 subcultures each. Cells from the first group were exposed to 1 mM DEHP for 13 days and monitored for changes in cell morphology, satellite cell frequency and total cell abundance, while the second group remained untreated (control). Differences between treated and untreated groups were compared using generalized linear mixed models (GLMM). Cell membrane and nuclear envelope boundary alterations, loss of cell volume and presence of stress bodies were observed in DEHP-treated cultures. DEHP-treated cultures also showed a significant reduction in satellite cell frequency compared to controls. Exposure to DEHP reduced human skeletal muscle cell abundance. Statistical differences were found between the GLMM slopes, suggesting that exposure to DEHP reduced growth rate. These results suggest that exposure to DEHP inhibits human skeletal muscle cell proliferation, as evidenced by reduced cell abundance, potentially compromising long-term culture viability. Therefore, DEHP induces human skeletal muscle cell deterioration potentially inducing an inhibitory effect of myogenesis by depleting satellite cells. Graphical abstract
Collapse
Affiliation(s)
- Elizabeth Brassea-Pérez
- Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, 23096 La Paz, Baja California Sur Mexico
| | - Vanessa Labrada-Martagón
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec #1570, Col. Privadas del Pedregal, 78295 San Luis Potosí , San Luis Potosí Mexico
| | - Claudia J. Hernández-Camacho
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, s/n, Col. Playa Palo de Santa Rita Sur, Baja California Sur 23096 La Paz, Mexico
| | - Ramón Gaxiola-Robles
- Hospital General de Zona No.1. Instituto Mexicano del Seguro Social. 5 de Febrero y Héroes de la Independencia, Centro, 23000 La Paz, Baja California Sur Mexico
| | | | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste S.C., Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, 23096 La Paz, Baja California Sur Mexico
| |
Collapse
|
8
|
Sree CG, Buddolla V, Lakshmi BA, Kim YJ. Phthalate toxicity mechanisms: An update. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109498. [PMID: 36374650 DOI: 10.1016/j.cbpc.2022.109498] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Phthalates are one of the most widely used plasticizers in polymer products, and they are increasingly being exposed to people all over the world, generating health concerns. Phthalates are often used as excipients in controlled-release capsules and enteric coatings, and patients taking these drugs may be at risk. In both animals and human, phthalates are mainly responsible for testicular dysfunction, ovarian toxicity, reduction in steroidogenesis. In this regard, for a better understanding of the health concerns corresponding to phthalates and their metabolites, still more research is required. Significantly, multifarious forms of phthalates and their biomedical effects are need to be beneficial to investigate in the various tissues or organs. Based on these investigations, researchers can decipher their toxicity concerns and related mechanisms in the body after phthalate's exposure. This review summarizes the chemical interactions, mechanisms, and their biomedical applications of phthalates in animals and human.
Collapse
Affiliation(s)
- Chendruru Geya Sree
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati 517503, Andhra Pradesh, India
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
9
|
Vitamin C mitigates hematological and biochemical alterations caused by di(2-ethylhexyl) phthalate toxicity in female albino mice, Mus musculus. COMPARATIVE CLINICAL PATHOLOGY 2022; 31:1005-1016. [PMID: 36247333 PMCID: PMC9540055 DOI: 10.1007/s00580-022-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is ubiquitous environmental contaminant and identified as endocrine-disrupting chemical (EDC), present in plastics as plasticizer. Due to its versatile use, human exposure level reaches to danger limit. The main focus of our study is to see the effect of vitamin C on hematological and biochemical alterations caused by Di(2-ethylhexyl) Phthalate toxicity in female albino mice, Mus musculus. It is found to cause defects of the liver, kidney, and lungs. Its anti-androgenic nature brings the main focus on its toxicity associated with reproductive and endocrine system. In this experimental study, 18 young female Swiss albino mice, Mus musculus, were used and divided into 3 groups of 6 animals each as control (corn oil vehicle), DEHP group (100 mg/kg body weight dissolved in corn oil), and DEHP + vitamin-C group (100 mg/kg body weight each, dissolved in corn oil and double distilled water, respectively) for 90 days. In this research, serum metabolites were evaluated to study the effect of DEHP on glucose, total protein, and lipid profile along with some hematological, enzymological, and oxidative stress parameters. Simultaneously, we compared the effectiveness of vitamin-C against DEHP toxicity to mitigate the serum homeostasis disturbance. In present study, we observed, in DEHP-treated animals, glucose, triglycerides, very-low-density lipoprotein (VLDL), total protein, alkaline phosphatase (ALP), acid phosphatase (ACP), and alanine aminotransferase (ALT) levels increased remarkably, whereas total cholesterol, high-density lipoproteins (HDL), aspartate aminotransferase (AST), total RBC count, total WBC count, and hemoglobin (Hb) level significantly decreased as compared to control group. In addition, we noticed there was a decrease in superoxide dismutase (SOD) and increase in levels of lipid peroxidation (MDA) and interleukin-6 (IL-6) in DEHP treatment group as compared to control group. The results indicated vitamin C had a better improving effect against DEHP toxicity on balancing metabolic abnormalities and inflammation-related comorbidities.
Collapse
|
10
|
Li X, Gu W, Zhang B, Xin X, Kang Q, Yang M, Chen B, Li Y. Insights into toxicity of polychlorinated naphthalenes to multiple human endocrine receptors: Mechanism and health risk analysis. ENVIRONMENT INTERNATIONAL 2022; 165:107291. [PMID: 35609500 DOI: 10.1016/j.envint.2022.107291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study explored the combined disruption mechanism of polychlorinated naphthalenes (PCNs) on the three key receptors (estrogen receptor, thyroid receptor, and adrenoceptor) of the human endocrine system. The intensity of PCN endocrine disruption on these receptors was first determined using a molecular docking method. A comprehensive index of PCN endocrine disruption to human was quantified by analytic hierarchy process and fuzzy analysis. The mode of action between PCNs and the receptors was further identified to screen the molecular characteristics influencing PCN endocrine disruption through molecular docking and fractional factorial design. Quantitative structure-activity relationship (QSAR) models were established to investigate the toxic mechanism due to PCN endocrine disruption. The results showed that the lowest occupied orbital energy (ELUMO) was the most important factor contributing to the toxicity of PCNs on the endocrine receptors, followed by the orbital energy difference (ΔE) and positive Millikan charge (q+). Furthermore, the strategies were formulated through adjusting the nutritious diet to reduce health risk for the workers in PCN contaminated sites and the effectiveness and feasibility were assessed by molecular dynamic simulation. The simulation results indicated that the human health risk caused by PCN endocrine disruption could be effectively decreased by nutritional supplementation. The binding ability between PCNs and endocrine receptors significantly declined (up to -16.45%) with the supplementation of vitamins (A, B2, B12, C, and E) and carotene. This study provided the new insights to reveal the toxic mechanism of PCNs on human endocrine systems and the recommendations on nutritional supplements for health risk reduction. The methodology and findings could serve as valuable references for screening of potential endocrine disruptors and developing appropriate strategies for PCN or other persistent organic pollution control and health risk management.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Wenwen Gu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qiao Kang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
11
|
Brassea-Pérez E, Hernández-Camacho CJ, Labrada-Martagón V, Vázquez-Medina JP, Gaxiola-Robles R, Zenteno-Savín T. "Oxidative stress induced by phthalates in mammals: State of the art and potential biomarkers". ENVIRONMENTAL RESEARCH 2022; 206:112636. [PMID: 34973198 DOI: 10.1016/j.envres.2021.112636] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/20/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Phthalates, plasticizers that are widely used in consumer products including toys, cosmetics, and food containers, have negative effects in liver, kidney, brain, lung and reproductive system of humans and other mammals. OBJECTIVES To summarize, describe and discuss the available information on the effects of phthalate exposure in mammals, with emphasis on oxidative stress, and to suggest potential biomarkers of the health risks associated with phthalate exposure. METHODS An assessment of scientific journals was performed using the PRISMA model for systematic reviews. Manuscripts reporting effects of phthalate exposure on mammalian health published in the last decade were selected according to originality, content, and association to health hazards. RESULTS AND DISCUSSION We identified 25 peer-reviewed articles published between January 1st, 2010 and June 1st, 2021 that fit the aims and selection criteria. Phthalates induce oxidative stress and cell degenerative processes by increasing intracellular reactive species. Antioxidant cytoprotective systems decrease with time of exposure; conversely, oxidative damage markers, including thiobarbituric acid-reactive substances (TBARS), 8-hydroxy-2'-desoxyguanosine (8-OHdG) and malondialdehyde (MDA), increase. Phthalates were associated with endocrine system disfunction, metabolic disorders, infertility, nonviable pregnancy, cell degeneration, growth impairment, tumor development, and cognitive disorders. Phthalates can also aggravate health conditions such as asthma, hepatitis, diabetes, allergies, chronic liver and kidney diseases. Among humans, the more vulnerable subjects to phthalate exposure effects were children and individuals with a prior health condition. CONCLUSION Chronic exposure to phthalates induces oxidative stress in mammals with concomitant adverse effects in reproductive, respiratory, endocrine, circulatory, and central nervous systems in both in vitro and in vivo trials. Oxidative damage markers and phthalate metabolites levels were the most common biomarkers of phthalate exposure effects. Studies in free-ranging and wild mammals are nil. Further studies on the pathways that lead to metabolic disruption are needed to identify potential treatments against phthalate-induced detrimental effects.
Collapse
Affiliation(s)
- Elizabeth Brassea-Pérez
- Centro de Investigaciones Biológicas Del Noroeste S.C, Planeación Ambiental y Conservación, Av. Instituto Politécnico Nacional #195, Col. Playa Palo Santa Rita Sur, CP 23096, La Paz, Baja California Sur, Mexico
| | - Claudia J Hernández-Camacho
- Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional S/n, Col. Playa Palo de Santa Rita Sur, CP 23096, La Paz, Baja California Sur, Mexico
| | - Vanessa Labrada-Martagón
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Chapultepec #1570, Col. Privadas Del Pedregal, CP 78295, San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas Del Noroeste S.C, Planeación Ambiental y Conservación, Av. Instituto Politécnico Nacional #195, Col. Playa Palo Santa Rita Sur, CP 23096, La Paz, Baja California Sur, Mexico; Hospital General de Zona No.1. Instituto Mexicano Del Seguro Social, 5 de Febrero y Héroes de La Independencia, Centro, La Paz, Baja California Sur, C.P. 23000, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas Del Noroeste S.C, Planeación Ambiental y Conservación, Av. Instituto Politécnico Nacional #195, Col. Playa Palo Santa Rita Sur, CP 23096, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
12
|
Quilaqueo N, Villegas JV. Endocrine disruptor chemicals. A review of their effects on male reproduction and antioxidants as a strategy to counter it. Andrologia 2021; 54:e14302. [PMID: 34761829 DOI: 10.1111/and.14302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Endocrine disruptor chemicals are exogenous molecules that generate adverse effects on human health by destabilizing the homeostasis of endocrine system and affecting directly human reproductive system by inhibiting or activating oestrogenic or androgenic receptors. Endocrine disruptor chemicals generate transgenerational epigenetic problems, besides being associated with male infertility. Epidemiological data indicate that the increase in reproductive problems in males in the last 50 years is correlated with the increase of endocrine disrupting chemicals in the environment, being associated with a decrease in semen quality and direct effects on spermatozoa, such as alterations in motility, viability and acrosomal reaction, due to the generation of oxidative stress, and have also been postulated as a possible cause of testicular dysgenesis syndrome. Diverse antioxidants, such as C and E vitamins, N-acetylcysteine, selenium and natural vegetable extracts, are among the alternatives under study to counter the effects of endocrine disruptor chemicals. In some cases, the usage of them has given positive results and the opposite in others. In this review, we summarize the recent information about the effects of endocrine disruptor chemicals on male reproduction, on sperm cells, and the results of studies that have tested antioxidants as a strategy to diminish their harmful effects.
Collapse
Affiliation(s)
- Nelson Quilaqueo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile
| | - Juana V Villegas
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), University of La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, University of La Frontera, Temuco, Chile
| |
Collapse
|
13
|
Safarpour S, Zabihi E, Ghasemi-Kasman M, Nosratiyan N, Feizi F. Prenatal and breastfeeding exposure to low dose of diethylhexyl phthalate induces behavioral deficits and exacerbates oxidative stress in rat hippocampus. Food Chem Toxicol 2021; 154:112322. [PMID: 34111487 DOI: 10.1016/j.fct.2021.112322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Diethylhexyl phthalate (DEHP) is one of the most important derivatives of phthalate that has devastating effects on nervous system function. In this study, the effects of exposure with low doses of DEHP during pregnancy and lactation periods have been evaluated in rat's puppies. DEHP at doses 5, 40, 400 μg/kg/day and 300 mg/kg/day was given to mothers by gavage during pregnancy and lactation. The spatial and working memories were evaluated by Morris water maze test and Y maze, respectively. Oxidative stress levels were measured by biochemical tests. Histopathology of hippocampal tissue was assessed using hematoxylin and eosin, Nissl staining, and immunohistofluorescence in 60-days-old puppies. Behavioral data showed that low doses of DEHP decreased the working and spatial memories of male rats. Increased oxidative stress and decreased antioxidant activity were also observed in the hippocampus of rats which received the low doses of DEHP. However, neuronal damage, inflammation, and astrocyte activation were not significantly increased in the hippocampus of rats. Overall, exposure of mothers to low doses of DEHP during pregnancy and lactation cause behavioral deficits, especially in male newborn. The destructive effects of low doses of DEHP might be mediated through increased levels of oxidative stress in the brain.
Collapse
Affiliation(s)
- Soheila Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Nasrin Nosratiyan
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Mannucci C, Casciaro M, Sorbara EE, Calapai F, Di Salvo E, Pioggia G, Navarra M, Calapai G, Gangemi S. Nutraceuticals against Oxidative Stress in Autoimmune Disorders. Antioxidants (Basel) 2021; 10:antiox10020261. [PMID: 33567628 PMCID: PMC7914737 DOI: 10.3390/antiox10020261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Antioxidant mechanisms are constituted of enzymes, endogenous, and non-enzymatic, exogenous, which have the role of counterbalancing oxidative stress. Intake of these compounds occurs in the diet. Vegetables, plants, and fruits contain a wide range of alkaloids, polyphenols, and terpenoids which are called “phytochemicals”. Most of these substances are responsible for the positive properties of fruits and vegetables, which are an essential part of a healthy life with roles in ameliorating chronic illnesses and favoring longevity. Nutraceuticals are substances contained in a food or fragment of it influencing health with positive effects on health helping in precenting or treating disorders. We conducted a review illustrating the principal applications of nutraceuticals in autoimmune disorders. Literature reported several studies about exogenous dietary antioxidant supplementation in diverse autoimmune diseases such as rheumatoid arthritis, lupus, diabetes, and multiple sclerosis. In these pathologies, promising results were obtained in some cases. Positive outcomes were generally associated with a reduction of oxidative stress parameters and a boost to antioxidant systems, and sometimes with anti-inflammatory effects. The administration of exogenous substances through food derivates or dietary supplements following scientific standardization was demonstrated to be effective. Further bias-free and extended studies should be conducted that include ever-increasing oxidative stress biomarkers.
Collapse
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (E.E.S.); (G.C.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Emanuela Elisa Sorbara
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (E.E.S.); (G.C.)
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.C.); (M.N.)
| | - Eleonora Di Salvo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (F.C.); (M.N.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (E.E.S.); (G.C.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
15
|
Sung CR, Kang HG, Hong JY, Kwack SJ. Citrate ester substitutes for di-2-ethylhexyl phthalate: In vivo reproductive and in vitro cytotoxicity assessments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:589-595. [PMID: 32727286 DOI: 10.1080/15287394.2020.1798832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer for wrapping films, in toys, and in medical devices. Previous studies demonstrated that DEHP in mouse reduced testicular and epididymis weights, suppressed levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone, and decreased synthesis of testosterone by Leydig cells. Due to these anti-androgenic effects of DEHP on the reproductive system, the aim of this study was to examine whether substitutes such as acetyl triethyl citrate (ATEC) and acetyl tributyl citrate (ATBC) also damaged the reproductive system. In particular, this study investigated the anti-androgenic effects and cytotoxicity of DEHP substitutes using castrated male Sprague--Dawley rats employing the in vivo Hershberger assay and in vitro mouse Leydig (TM3) cells and mouse fibroblast (NIH-3T3) cell lines. In the Hershberger assay, rats were administered testosterone propionate and ATEC or ATBC at 20, 100, or 500 mg/kg b.w./day or DEHP (500 mg/kg b.w./day). Controls received testosterone antagonist flutamide (positive control), testosterone only (negative control), or corn oil only (vehicle control). ATEC/ATBC treatment produced no significant differences compared with testosterone in 5-androgen-dependent tissues weights including ventral prostate, seminal vesicles, levator ani-bulbocavernosus muscle, Cowper's glands, and glans penis. In the 500 mg/kg ATBC group, there was a significant reduction in liver weight. The MTT assay revealed that cell viability of both TM3 and NIH-3T3 cells treated with ATEC was not markedly altered. However, ATBC significantly reduced TM3 and NIH-3T3 cell viability in a concentration-dependent manner. Further, ATBC reduced cell viability to greater extent in TM3 versus NIH-3T3 cells. Based upon the observed effects of citrate ester substitutes on reproductive tissue responses and cytotoxicity, ATEC compared to ATBC may be a better alternative to DEHP for potential commercial uses. ABBREVIATIONS ATEC: acetyl triethyl citrate; ATBC: acetyl tributyl citrate; CG: Cowper's glands; DEHP: di-2-ethylhexyl phthalate; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; GP: glans penis; LABC: levator ani-bulbocavernosus muscle; MTT: methyl tetrazolium; NC: negative control; NT: untreated control; PC: positive control; SV: seminal vesicle; TP: testosterone propionate; VC: vehicle control; VP: ventral prostate.
Collapse
Affiliation(s)
- Chi Rim Sung
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| | - Hyeon Gyu Kang
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| | - Ji Young Hong
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University , Changwon, Republic of Korea
| |
Collapse
|
16
|
Kim MK, Kim KB, Yoon S, Kim HS, Lee BM. Risk assessment of unintentional phthalates contaminants in cosmetics. Regul Toxicol Pharmacol 2020; 115:104687. [PMID: 32474072 DOI: 10.1016/j.yrtph.2020.104687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/28/2023]
|
17
|
Habas K, Brinkworth MH, Anderson D. A male germ cell assay and supporting somatic cells: its application for the detection of phase specificity of genotoxins in vitro. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:91-106. [PMID: 32046612 DOI: 10.1080/10937404.2020.1724577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Male germ stem cells are responsible for transmission of genetic information to the next generation. Some chemicals exert a negative impact on male germ cells, either directly, or indirectly affecting them through their action on somatic cells. Ultimately, these effects might inhibit fertility, and may exhibit negative consequences on future offspring. Genotoxic anticancer agents may interact with DNA in germ cells potentially leading to a heritable germline mutation. Experimental information in support of this theory has not always been reproducible and suitable in vivo studies remain limited. Thus, alternative male germ cell tests, which are now able to detect phase specificity of such agents, might be used by regulatory agencies to help evaluate the potential risk of mutation. However, there is an urgent need for such approaches for identification of male reproductive genotoxins since this area has until recently been dependent on in vivo studies. Many factors drive alternative approaches, including the (1) commitment to the principles of the 3R's (Replacement, Reduction, and Refinement), (2) time-consuming nature and high cost of animal experiments, and (3) new opportunities presented by new molecular analytical assays. There is as yet currently no apparent appropriate model of full mammalian spermatogenesis in vitro, under the REACH initiative, where new tests introduced to assess genotoxicity and mutagenicity need to avoid unnecessary testing on animals. Accordingly, a battery of tests used in conjunction with the high throughput STAPUT gravity sedimentation was recently developed for purification of male germ cells to investigate genotoxicity for phase specificity in germ cells. This system might be valuable for the examination of phases previously only available in mammals with large-scale studies of germ cell genotoxicity in vivo. The aim of this review was to focus on this alternative approach and its applications as well as on chemicals of known in vivo phase specificities used during this test system development.
Collapse
Affiliation(s)
- Khaled Habas
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Diana Anderson
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
18
|
Wilson NA, Mantzioris E, Middleton PF, Muhlhausler BS. Influence of sociodemographic, lifestyle and genetic characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 152:102037. [PMID: 31811955 DOI: 10.1016/j.plefa.2019.102037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Omega-3 DHA is important for the prevention of preterm birth, however there is limited knowledge of the determinants of omega-3 status during pregnancy. The primary objective of this systematic review was to synthesise data from existing studies assessing relationships between sociodemographic, diet, lifestyle and genetic factors and maternal DHA status. MATERIALS AND METHODS The Medline, Embase, Amed, and CINAHL databases were searched for studies reporting measures of maternal omega-3 status and a sociodemographic/lifestyle/genetic characteristic. RESULTS Twenty-two studies were included in the final analyses. Higher dietary fish consumption/PUFA intake, higher education level and an older maternal age were associated with higher maternal omega-3 status. Higher alcohol intake, smoking and FADS genotype were each associated with lower maternal omega-3 status. DISCUSSION Differences in findings between studies make it difficult to draw clear conclusions about the relationship between these factors and maternal omega-3 DHA status, although socioeconomic status may play a role.
Collapse
Affiliation(s)
- N A Wilson
- School of Pharmacy and Medical Sciences, University of South Australia, North Terrace & Frome Rd, Adelaide SA 5000, Australia
| | - E Mantzioris
- School of Pharmacy and Medical Sciences, University of South Australia, North Terrace & Frome Rd, Adelaide SA 5000, Australia
| | - P F Middleton
- South Australian Health and Medical Research Institute, SAHMRI Women and Kids, Level 7, 72 King William Rd, North Adelaide SA 5006, Australia
| | - B S Muhlhausler
- Food and Nutrition Research Group, Department of Food and Wine Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Waite Road, Urrbrae SA 5064, Australia; Nutrition and Health Program, CSIRO Health and Biosecurity, Kintore Avenue, Adelaide SA 5001, Australia.
| |
Collapse
|
19
|
Chung BY, Choi SM, Roh TH, Lim DS, Ahn MY, Kim YJ, Kim HS, Lee BM. Risk assessment of phthalates in pharmaceuticals. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:351-360. [PMID: 30961453 DOI: 10.1080/15287394.2019.1598053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phthalates are used for industrial plasticizers to impart flexibility and durability to polyvinyl chloride. Despite widespread use of phthalates, reported endocrine-disrupting properties raise safety concerns for consumers. Since phthalates are permitted as excipients in controlled-release capsules and enteric coatings, patients taking drugs containing these chemicals may potentially be at some health risk. In this study, 102 distinct pharmaceutical products were analyzed by gas chromatography/mass spectrometry to determine phthalate content and maximal phthalate exposure rate was calculated. In 102 drug samples, di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) were detected in 9.8, 27.45, and 5.88% of cases, respectively. The highest level of DEP was found in extended-release (ER) capsules with concentrations ranging from 935.5 to 1535.37 ppb. The highest levels of DBP (1.32-7.07 ppb) were detected in tablets, whereas highest level (7.07 ppb) of DEHP was found in suspension preparations. The phthalate hazard index (HI) (human exposure tolerable daily intake) was calculated for each sample, but no sample exhibited an HI value exceeding 1; the minimum value taken to indicate a serious health risk. Thus, no apparent serious health risk from phthalate exposure arises from taking these medications. The low HI values suggest that phthalate contamination in pharmaceuticals may not pose an apparent significant risk to humans. However, the sources of phthalate present in pharmaceutical products still needs to be investigated and verified through on-site inspections in manufacturing processes in order to minimize human exposure. It is recommended that measures be taken to prevent phthalate contamination in pharmaceuticals.
Collapse
Affiliation(s)
- Bu Young Chung
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Seul Min Choi
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Tae Hyun Roh
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Duck Soo Lim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Mi Young Ahn
- b Departmrnt of Agricultural Biology , National Academy of Agricultural Science , Wanju-Gun , South Korea
| | - Yeon Joo Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
20
|
Hyun Kim D, Min Choi S, Soo Lim D, Roh T, Jun Kwack S, Yoon S, Kook Kim M, Sil Yoon K, Sik Kim H, Wook Kim D, Lee BM. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1150-1164. [PMID: 30415604 DOI: 10.1080/15287394.2018.1543231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Risk assessment and hormone evaluation were carried out for di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), endocrine disrupting chemicals (EDCs), in 302 Korean children (n = 223) and adolescents (n = 79) (< age 19). Urinary and serum concentrations of DEHP, MEHP (mono(2-ethylhexyl) phthalate), DBP, MBP (monobutyl phthalate), and PA (phthalic acid, a common final metabolite of phthalates) were detected in children and adolescents. Daily exposure levels were estimated to be 16.45 ± 36.50 μg/kg b.w./day for DEHP, which is one-third of the tolerable daily intake (TDI) value (50 μg/kg b.w./day), but 14 out of 302 participants had a hazard index (HI = intake/TDI) value >1. The mean daily exposure level of DBP was 1.23 ± 1.45 μg/kg b.w./day, which is one-eighth of the TDI value (10 μg/kg b.w./day), but 1 out of 302 participants had a HI value > 1. Positive correlations were observed between serum DBP or MEHP, and serum estradiol (E2) and/or luteinizing hormone (LH) in prepubescent children. In addition, serum MBP levels were found to be negatively correlated with serum triiodothyronine (T3) or thyroxine (T4) in male participants, and serum DEHP levels with serum thyroid stimulating hormone (TSH) in female adolescents. Low-density lipoprotein (LDL) levels were positively correlated with serum PA levels in children and adolescents. DEHP, DBP or its metabolites may be associated with altered hormone levels in children and adolescents. Data suggest that exposure levels of DEHP and DBP in Korean children need to be reduced to levels below TDI to protect them from EDC-mediated toxicities. Abbreviations: DBP: dibutyl phthalate; DEHP: di(2-ethylhexyl) phthalate; E2: estradiol; EDC: endocrine disrupting chemical; EFSA: European Food Safety Authority; FSH: follicle stimulating hormone; HDL: high density lipoprotein; HI: hazard index; LDL: low density lipoprotein; LH: luteinizing hormone; MEHP: mono(2-ethylhexyl) phthalate; MBP: monobutyl phthalate; PA: phthalic acid; PPAR: peroxisome proliferator-activated receptor gamma; PVC: polyvinyl chloride; T3: triiodothyronine; T4: thyroxine; TDI: tolerable daily intake; TG: triglyceride; TSH: thyroid stimulating hormone; UPLC/MS/MS: Ultra Performance Liquid Chromatography/Tandem Mass Spectrometry; WWF: World Wildlife Fund.
Collapse
Affiliation(s)
- Dong Hyun Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Seul Min Choi
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Duck Soo Lim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Taehyun Roh
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Seung Jun Kwack
- b College of Natural Science , Changwon National University , Changwon , Gyeongnam , Korea
| | - Sungpil Yoon
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyung Sil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Dong Wook Kim
- d College of Statistics , Sungkyunkwan University , Seoul , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|