1
|
Feng J, Peng J, Hsiao YC, Liu CW, Yang Y, Zhao H, Teitelbaum T, Wang X, Lu K. Non/Low-Caloric Artificial Sweeteners and Gut Microbiome: From Perturbed Species to Mechanisms. Metabolites 2024; 14:544. [PMID: 39452925 PMCID: PMC11509705 DOI: 10.3390/metabo14100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Non/low-caloric artificial sweeteners (NAS) are recognized as chemical additives substituting sugars to avoid caloric intake and subsequent sugar-derived diseases such as diabetes and hyperglycemia. Six NAS have been claimed safe and are authorized by the US Food and Drug Administration (FDA) for public use, with acceptable daily intake information available: aspartame, acesulfame-K, saccharin, sucralose, neotame, and advantame. However, the impacts of NAS on the gut microbiome have raised potential concerns, since sporadic research revealed NAS-induced microbial changes in the gastrointestinal tracts and alterations in the microbiome-host interactive metabolism. METHODS Given the fact that the gut microbiome influences kaleidoscopic physiological functions in host health, this review aimed to decipher the impacts of NAS on the gut microbiome by implementing a comprehensive two-stage literature analysis based on each NAS. RESULTS This review documented disturbed microbiomes due to NAS exposure to a maximal resolution of species level using taxonomic clustering analysis, and recorded metabolism alterations involved in gut microbiome-host interactions. CONCLUSIONS The results elucidated that specific NAS exhibited discrepant impacts on the gut microbiome, even though overlapping on the genera and species were identified. Some NAS caused glucose tolerance impairment in the host, but the key metabolites and their underlying mechanisms were different. Furthermore, this review embodied the challenges and future directions of current NAS-gut microbiome research to inspire advanced examination of the NAS exposure-gut microbiome-host metabolism axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Zhang Y, Luo C, Huang P, Chen L, Ma Y, Ding H. Effects of chronic exposure to a high fat diet, nutritive or non-nutritive sweeteners on hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes of male Sprague-Dawley rats. Eur J Nutr 2024; 63:2209-2220. [PMID: 38743096 DOI: 10.1007/s00394-024-03427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Diet-related factors are of great significance in the regulation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonad (HPG) axes. In this study, we aimed to investigate the effects of chronic exposure to a high fat diet (HFD), fructose or sucralose on the endocrine functions. METHODS Male, Sprague-Dawley rats received a normal chow diet, HFD, 10% fructose or 0.02% sucralose for 10 weeks. Behavioral changes were assessed by open field (OFT) and elevated plus-maze (EPM) tests at week 8. H&E staining was used to observe pathological changes in adrenal cortex, testis and perirenal adipose tissue. Serum hormone concentrations were quantified via enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of genes along the HPA and HPG axes were determined using real-time PCR. RESULTS All types of dietary interventions increased body weight and disturbed metabolic homeostasis, with anxiogenic phenotype in behavioral tests and damage to cell morphology of adrenal cortex and testis being observed. Along the HPA axis, significantly increased corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) concentrations were observed in the HFD or 0.02% sucralose group. For HPG axis, gonadotropin-releasing hormone (GnRH) and estradiol (E2) concentrations were significantly increased in all dietary intervention groups, while decreased concentrations of follicle-stimulating hormone (FSH) and testosterone (T) were also detected. Moreover, transcriptional profiles of genes involved in the synthesis of hormones and corresponding hormone receptors were significantly altered. CONCLUSION Long-term consumption of HFD, fructose or sucralose manifested deleterious effects on endocrine system and resulted in the dysregulation of HPA and HPG axes.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Chunyun Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430000, China.
| |
Collapse
|
3
|
Lee CY, So YS, Yoo SH, Lee BH, Seo DH. Impact of artificial sweeteners and rare sugars on the gut microbiome. Food Sci Biotechnol 2024; 33:2047-2064. [PMID: 39130663 PMCID: PMC11315849 DOI: 10.1007/s10068-024-01597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 08/13/2024] Open
Abstract
Alternative sugars are often used as sugar substitutes because of their low calories and glycemic index. Recently, consumption of these sweeteners in diet foods and beverages has increased dramatically, raising concerns about their health effects. This review examines the types and characteristics of artificial sweeteners and rare sugars and analyzes their impact on the gut microbiome. In the section on artificial sweeteners, we have described the chemical structures of different sweeteners, their digestion and absorption processes, and their effects on the gut microbiota. We have also discussed the biochemical properties and production methods of rare sugars and their positive and negative effects on gut microbial communities. Finally, we have described how artificial sweeteners and rare sugars alter the gut microbiome and how these changes affect the gut environment. Our observations aim to improve our understanding regarding the potential health implications of the consumption of artificial sweeteners and low-calorie sugars.
Collapse
Affiliation(s)
- Chang-Young Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | - Yun-Sang So
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science & Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
4
|
Cheng S, Wang S, Zheng M, Jin Y, Li J, Zhang M, Li XL, Min JZ. Simultaneous analysis of natural and artificial sweeteners in sugar-free drinks and urine samples by column-switching UHPLC-charged aerosol detection method. J Chromatogr A 2024; 1713:464533. [PMID: 38041977 DOI: 10.1016/j.chroma.2023.464533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Sweeteners are considered an alternative to high-calorie foods or drinks and have been widely used globally. However, the simultaneous separation and detection of high-polarity natural and artificial sweeteners are challenging owing to their broad-spectrum physical and chemical properties. Herein, we developed a column-switching UHPLCCAD method and used it for detecting and quantitating 12 sweeteners, including natural sweeteners (erythritol, mannitol, xylitol, sorbitol and stevioside) and artificial sweeteners (acesulfame potassium, saccharin sodium salt, sodium cyclamate, sucralose, aspartame, alitame and neotame). The LOD and LOQ were 0.932-6.25 μg/mL and 3.10-20.83 μg/mL, respectively, and the method demonstrated excellent linearity (R² ≥ 0.9990), good precision (intraday and interday precision was 0.59-6.88 %), and high recovery (average recoveries were 85.16-108.64 %). This method was applied to determine the sweeteners in 15 sugar-free drinks purchased from the local Chinese supermarkets. What's more, natural sweetener erythritol and artificial sweetener acesulfame potassium were suspected over addition in sugar-free drinks. Meanwhile the method was applied to the sweeteners in various sugar-free drinks and the dynamic monitoring of transit and excretion in vivo after drinking. Those prove that the method can be used to the detection of sugar free drinks and quality control of the sweeteners. The study highlights the potential of UHPLC-charged aerosol detection technology in detection of multiple components in food industry.
Collapse
Affiliation(s)
- Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Songze Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Mingshan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
5
|
Van den Abbeele P, Poppe J, Deyaert S, Laurie I, Otto Gravert TK, Abrahamsson A, Baudot A, Karnik K, Risso D. Low-no-calorie sweeteners exert marked compound-specific impact on the human gut microbiota ex vivo. Int J Food Sci Nutr 2023; 74:630-644. [PMID: 37537786 DOI: 10.1080/09637486.2023.2240037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Low-no-calorie sweeteners (LNCS) are used as sugar substitutes as part of strategies to reduce the risk of chronic diseases related to high sugar intake (e.g. type 2 diabetes (T2D)). This study investigated how a range of sweeteners [tagatose (TA)/maltitol (MA)/sorbitol (SO)/stevia (ST)/sucralose (SU)/acesulfame K (ACK)] impact the gut microbiota of T2D subjects and healthy human adults using the ex vivo SIFR® technology (n = 12). The cohort covered clinically relevant interpersonal and T2D-related differences. ACK/SU remained intact while not impacting microbial composition and metabolite production. In contrast, TA/SO and ST/MA were respectively readily and gradually fermented. ST and particularly TA/SO/MA increased bacterial density and SCFA production product-specifically: SO increased acetate (∼Bifidobacterium adolescentis), whilst MA/ST increased propionate (∼Parabacteroides distasonis). TA exerted low specificity as it increased butyrate for healthy subjects, yet propionate for T2D subjects. Overall, LNCS exerted highly compound-specific effects stressing that results obtained for one LNCS cannot be generalised to other LNCS.
Collapse
|
6
|
Schiffman SS, Scholl EH, Furey TS, Nagle HT. Toxicological and pharmacokinetic properties of sucralose-6-acetate and its parent sucralose: in vitro screening assays. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:307-341. [PMID: 37246822 DOI: 10.1080/10937404.2023.2213903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.
Collapse
Affiliation(s)
- Susan S Schiffman
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
| | | | - Terrence S Furey
- Departments of Genetics and Biology, University of North Carolina, Chapel Hill, NC, USA
| | - H Troy Nagle
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Raleigh, NC, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Concha F, Sambra V, Cáceres P, López-Arana S, Carvajal B, Gotteland M. Maternal consumption and perinatal exposure to non-nutritive sweeteners: should we be concerned? Front Pediatr 2023; 11:1200990. [PMID: 37377756 PMCID: PMC10291189 DOI: 10.3389/fped.2023.1200990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The context for this review is the rapid increase in the use of non-nutritive sweeteners (NNSs) instead of sugar in foods and beverages, a situation so prevalent in some countries that consumers are finding it increasingly challenging to access foods without NNSs. The benefits of consuming NNSs on obesity and diabetes are now being questioned, and studies have shown that they may exert physiological activities, sometimes independently of sweet taste receptor stimulation. Few studies, limited mainly to North American and European countries, have described the consumption of NNSs by pregnant or lactating women and infants. Most focus on beverages rather than foods, but all agree that consumption levels have increased dramatically. Although some studies report a negative impact of NNSs on the risk of preterm birth, increased birth weight and decreased gestational age, the level of evidence is low. Several studies have also reported increased weight gain in infancy, associated with maternal NNS intake. Interestingly, several NNSs have been detected in amniotic fluid and breast milk, usually (but not always) at concentrations below their established detection limit in humans. Unfortunately, the impact of chronic exposure of the fetus/infant to low levels of multiple NNSs is unknown. In conclusion, there is a stark contrast between the galloping increase in the consumption of NNSs and the small number of studies evaluating their impact in at-risk groups such as pregnant and lactating women and infants. Clearly, more studies are needed, especially in Latin America and Asia, to fill these gaps and update recommendations.
Collapse
Affiliation(s)
- Francisca Concha
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Cáceres
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Bielka Carvajal
- Department of Women and Newborn’s Health Promotion, University of Chile, Santiago, Chile
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Quintana AA, Sztapka AM, Santos Ebinuma VDC, Agatemor C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew Chem Int Ed Engl 2022; 61:e202205609. [PMID: 35789078 DOI: 10.1002/anie.202205609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/17/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) debuted with a promise of a superior sustainability footprint due to their low vapor pressure. However, their toxicity and high cost compromise this footprint, impeding their real-world applications. Fortunately, their property tunability through a rational selection of precursors, including bioderived ones, provides a strategy to ameliorate toxicity, lower cost, and endow new functions. This Review discusses whether ILs and DESs are sustainable solvents and how they contribute to sustainable chemical processes.
Collapse
Affiliation(s)
| | | | - Valéria de Carvalho Santos Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL 33124, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, Zmora N, Leshem A, Heinemann M, Linevsky R, Zur M, Ben-Zeev Brik R, Bukimer A, Eliyahu-Miller S, Metz A, Fischbein R, Sharov O, Malitsky S, Itkin M, Stettner N, Harmelin A, Shapiro H, Stein-Thoeringer CK, Segal E, Elinav E. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185:3307-3328.e19. [PMID: 35987213 DOI: 10.1016/j.cell.2022.07.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.
Collapse
Affiliation(s)
- Jotham Suez
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Yotam Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uria Mor
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mally Dori-Bachash
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sara Federici
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Niv Zmora
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Avner Leshem
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Melina Heinemann
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raquel Linevsky
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Zur
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Ben-Zeev Brik
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aurelie Bukimer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shimrit Eliyahu-Miller
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alona Metz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruthy Fischbein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Sharov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome & Cancer Division, DKFZ, Heidelberg, Germany; National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Microbiome & Cancer Division, DKFZ, Heidelberg, Germany.
| |
Collapse
|
10
|
Richardson IL, Frese SA. Non-nutritive sweeteners and their impacts on the gut microbiome and host physiology. Front Nutr 2022; 9:988144. [PMID: 36091255 PMCID: PMC9453245 DOI: 10.3389/fnut.2022.988144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Non-nutritive sweeteners (NNS) are broadly incorporated into foods, especially those representing a growing share of the beverage market. NNS are viewed as a noncaloric and desirable alternative to sugar-based sweeteners and are thought to contribute to reducing overall caloric intake. While these compounds have been studied extensively and have long been considered inert, new research has presented a different view and raises new questions about the effects of NNS on human physiology. Namely, the influence on glucose responses, the gastrointestinal epithelium, and the gut microbiome. As the gut microbiome is now recognized as a major mediator of human health and perturbations to this community are generally associated with negative health trajectories or overt disease, interactions between NNS and the gut microbiome are of increasing interest to clinicians and researchers. Several NNS compounds are now hypothesized to affect human physiology by modulating the gut microbiome, though the mechanism for this action remains unclear. The purpose of this review is to discuss the history and current knowledge of NNS, their reported utility and effects on host physiology and the gut microbiome, and describes a model for investigating the underlying mechanism behind reported effects of NNS on the gut microbiome.
Collapse
|
11
|
Agatemor C, Quintana AA, Sztapka LM, Ebinuma VDCS. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: a Fad or the Future? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Agatemor
- University of Miami - Coral Gables Campus: University of Miami Chemistry 1301 Memorial Dr 33146 Coral Gables UNITED STATES
| | - Aline Andrea Quintana
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | - Lani Maria Sztapka
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | | |
Collapse
|
12
|
Secombe KR, Ball IA, Wignall AD, Bateman E, Keefe DM, Bowen JM. Antibiotic treatment targeting gram negative bacteria prevents neratinib-induced diarrhea in rats. Neoplasia 2022; 30:100806. [PMID: 35561424 PMCID: PMC9111977 DOI: 10.1016/j.neo.2022.100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Background Neratinib is a pan-ErbB tyrosine kinase inhibitor used for extended adjuvant treatment of HER2-positive breast cancer. Diarrhea is the main adverse event associated with neratinib treatment. We aimed here to determine whether antibiotic-induced gut microbial shifts altered development of neratinib-induced diarrhea. Methods Female Albino Wistar rats (total n = 44) were given antibiotics (vancomycin, neomycin, or a cocktail of vancomycin, neomycin and ampicillin) in drinking water for four weeks, and then treated daily with neratinib (50 mg/kg) for 28 days. Diarrhea, along with markers of gastrointestinal damage and microbial alterations were measured by histopathology and 16S sequencing, respectively. Results Rats treated with vancomycin or neomycin had significantly lower levels of diarrhea than rats treated with neratinib alone. In the distal ileum, neratinib was associated with a statistically significant increase in histological damage in all treatment groups expect the antibiotic cocktail. Key features included villous blunting and fusion and some inflammatory infiltrate. Differences in microbial composition at necropsy in vehicle control, neratinib and neratinib + neomycin groups, were characterized by a neratinib-induced increase in gram-negative bacteria that was reversed by neomycin. Neomycin shifted bacterial composition so that Blautia become the dominant genus. Conclusions Narrow spectrum antibiotics reduced neratinib-induced diarrhea. This suggests that the microbiome may play a key role in the development and prolongation of diarrhea following neratinib treatment, although further research is required to understand the key bacteria and mechanisms by which they reduce diarrhea, as well as how this may impact presentation of diarrhea in clinical cohorts.
Collapse
Affiliation(s)
- Kate R Secombe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Imogen A Ball
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony D Wignall
- Division of Health Sciences, University of South Australia, South Australia, Australia
| | - Emma Bateman
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Chronic consumption of sweeteners in mice and its effect on the immune system and the small intestine microbiota. ACTA ACUST UNITED AC 2021; 41:504-530. [PMID: 34559497 PMCID: PMC8519602 DOI: 10.7705/biomedica.5806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Sweeteners are additives used in different foods. They can be natural (sucrose and stevia) or artificial (sucralose). Currently, they are routinely consumed in multiple products and their effects on the mucosa of the small intestine and its microbiota are still controversial.
Objective: To relate the consumption of sweeteners and their effect on the immune system and the microbiota of the small intestine in CD1 mice.
Materials and methods: We used 54 three-week-old CD1 mice divided into three groups in the experiments: 1) A group of three weeks without treatment, 2) a group treated for six weeks, and 3) a group treated for 12 weeks using sucrose, sucralose, and stevia. We obtained CD19+ B lymphocytes, IgA+ antibodies, transforming growth factor-beta (TGF-b), and interleukins 12 and 17 (IL-12 and -17) from Peyer’s patches and lamina propria cells while DNA was obtained from intestinal solids to identify bacterial species.
Results: After 12 weeks, sucrose and sucralose consumption caused a reduction in bacterial communities with an increase in CD19+, a decrease in IgA+ and TGF-b, and an increase in IL-12 and -17 in the Peyer’s patches while in the lamina propria there was an increase in all parameters. In contrast, stevia led to an improvement in bacterial diversity and percentage of CD19+ lymphocytes with minimal increase in IgA+, TGF-b, and IL-12, and a decrease in IL-17.
Conclusion: Sucrose and sucralose caused negative alterations in bacterial diversity and immune parameters after 12 weeks; in contrast, stevia was beneficial for the intestinal mucosa.
Collapse
|
14
|
Gómez-Fernández AR, Santacruz A, Jacobo-Velázquez DA. The complex relationship between metabolic syndrome and sweeteners. J Food Sci 2021; 86:1511-1531. [PMID: 33908634 DOI: 10.1111/1750-3841.15709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome is a multifactorial disorder originating from central obesity through a high caloric intake and a sedentary lifestyle. Metabolic syndrome increases the risk of type 2 diabetes (T2D) disease, converting it to one of the costliest chronic diseases, which reduces life quality. A strategy proposed by the food industry to reduce this problem is the generation of low-caloric products using sweeteners, which are compounds that can substitute sucrose, given their sweet taste. For many years, it was assumed that sweeteners did not have a relevant interaction in metabolism. However, recent studies have demonstrated that sweeteners interact either with metabolism or with gut microbiota, in which sweet-taste receptors play an essential role. This review presents an overview of the industrial application of most commonly consumed sweeteners. In addition, the interaction of sweeteners within the body, including their absorption, distribution, metabolism, gut microbiota metabolism, and excretion is also reviewed. Furthermore, the complex relationship between metabolic syndrome and sweeteners is also discussed, presenting results from in vivo and clinical trials. Findings from this review indicate that, in order to formulate sugar-free or noncaloric food products for the metabolic syndrome market, several factors need to be considered, including the dose, proportions, human metabolism, and interaction of sweeteners with gut microbiota and sweet-taste receptors. More clinical studies, including the metabolic syndrome, are needed to better understand the interaction of sweeteners with the human body, as well as their possible effect on the generation of dysbiosis.
Collapse
Affiliation(s)
| | - Arlette Santacruz
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, NL, Mexico
| | | |
Collapse
|
15
|
Shi Z, Chen G, Cao Z, Wu F, Lei H, Chen C, Song Y, Liu C, Li J, Zhou J, Lu Y, Zhang L. Gut Microbiota and Its Metabolite Deoxycholic Acid Contribute to Sucralose Consumption-Induced Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3982-3991. [PMID: 33755449 DOI: 10.1021/acs.jafc.0c07467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As important signal metabolites within enterohepatic circulation, bile acids (BAs) play a pivotal role during the occurrence and development of diet-induced nonalcoholic fatty liver disease (NAFLD). Here, we evaluated the functional effects of BAs and gut microbiota contributing to sucralose consumption-induced NAFLD of mice. The results showed that sucralose consumption significantly upregulated the abundance of intestinal genera Bacteroides and Clostridium, which produced deoxycholic acid (DCA) accumulating in multiple biological matrixes including feces, serum, and liver of mice. Subsequently, elevated hepatic DCA, one of the endogenous antagonists of the farnesol X receptor (Fxr), inhibited hepatic gene expression including a small heterodimer partner (Shp) and Fxr leading to sucralose-induced NAFLD in mice. Dietary supplements with fructo-oligosaccharide or metformin markedly restored genera Bacteroides and Clostridium abundance and the DCA level of sucralose-consuming mice, which eventually ameliorated NAFLD. These findings highlighted the effects of gut microbiota and its metabolite DCA on sucralose-induced NAFLD of mice.
Collapse
Affiliation(s)
- Zunji Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Gui Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Chuan Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixiang Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Jinquan Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinlin Zhou
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Limin Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Ahmad SY, Friel JK, Mackay DS. Effect of sucralose and aspartame on glucose metabolism and gut hormones. Nutr Rev 2021; 78:725-746. [PMID: 32065635 DOI: 10.1093/nutrit/nuz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Non-nutritive sweeteners are thought to be useful replacements for caloric sweeteners in sweet food and beverages, since the reduction in energy and carbohydrate intake may lead to health benefits stemming from weight management and glycemic control. However, the potential effects of non-nutritive sweeteners on glucose metabolism and gut hormones have not been determined definitively. Here, the available evidence of the effects of aspartame and sucralose consumption on glucose metabolism and gut hormones is reviewed. A majority of studies have found that consumption of aspartame or sucralose has no effect on concentrations of blood glucose, insulin, or gut hormones; however, 2 trials have shown that aspartame consumption affects glucose, insulin, and glucagon-like peptide 1 concentrations, while only a few trials have shown that sucralose consumption affects glucose, insulin, and glucagon-like peptide 1 concentrations. One study found higher glucose concentrations after sucralose consumption, while 3 studies found lower concentrations and 33 studies found no change in glucose concentrations. Moreover, only 4 studies reported increased concentrations of glucagon-like peptide 1. Three studies reported decreased insulin sensitivity following sucralose consumption, while 1 trial reported an increase in insulin sensitivity. In summary, the evidence from the clinical trials conducted to date is contradictory because of the different protocols used.
Collapse
Affiliation(s)
- Samar Y Ahmad
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James K Friel
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S Mackay
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Risdon S, Battault S, Romo-Romo A, Roustit M, Briand L, Meyer G, Almeda-Valdes P, Walther G. Sucralose and Cardiometabolic Health: Current Understanding from Receptors to Clinical Investigations. Adv Nutr 2021; 12:1500-1513. [PMID: 33578411 PMCID: PMC8321845 DOI: 10.1093/advances/nmaa185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The excess consumption of added sugar is consistently found to be associated with weight gain, and a higher risk of type 2 diabetes mellitus, coronary heart disease, and stroke. In an effort to reduce the risk of cardiometabolic disease, sugar is frequently replaced by low- and null-calorie sweeteners (LCSs). Alarmingly, though, emerging evidence indicates that the consumption of LCSs is associated with an increase in cardiovascular mortality risk that is amplified in those who are overweight or obese. Sucralose, a null-caloric high-intensity sweetener, is the most commonly used LCS worldwide, which is regularly consumed by healthy individuals and patients with metabolic disease. To explore a potential causal role for sucralose in increased cardiovascular risk, this present review summarizes the preclinical and clinical data from current research detailing the effects of sucralose on systems controlling food intake, glucose homeostasis, and gut microbiota.
Collapse
Affiliation(s)
| | | | - Alonso Romo-Romo
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Matthieu Roustit
- Université Grenoble Alpes, Inserm U1042, Grenoble, France,Grenoble Alpes University Hospital, Clinical Pharmacology, Inserm CIC1406, Grenoble, France
| | - Loic Briand
- AgroSup Dijon, INRAE, Université de Bourgogne Franche-Comté, CNRS, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | | | - Paloma Almeda-Valdes
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | | |
Collapse
|
18
|
Heating of food containing sucralose might result in the generation of potentially toxic chlorinated compounds. Food Chem 2020; 321:126700. [DOI: 10.1016/j.foodchem.2020.126700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/08/2023]
|
19
|
Sylvetsky AC, Sen S, Merkel P, Dore F, Stern DB, Henry CJ, Cai H, Walter PJ, Crandall KA, Rother KI, Hubal MJ. Consumption of Diet Soda Sweetened with Sucralose and Acesulfame-Potassium Alters Inflammatory Transcriptome Pathways in Females with Overweight and Obesity. Mol Nutr Food Res 2020; 64:e1901166. [PMID: 32281732 DOI: 10.1002/mnfr.201901166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/03/2020] [Indexed: 12/16/2022]
Abstract
SCOPE Low-calorie sweetener (LCS) consumption is associated with metabolic disease in observational studies. However, physiologic mechanisms underlying LCS-induced metabolic impairments in humans are unclear. This study is aimed at identifying molecular pathways in adipose impacted by LCSs. METHODS AND RESULTS Seven females with overweight or obesity, who did not report LCS use, consumed 12 ounces of diet soda containing sucralose and acesulfame-potassium (Ace-K) three times daily for 8 weeks. A subcutaneous adipose biopsy from the left abdomen and a fasting blood sample were collected at baseline and post-intervention. Global gene expression were assessed using RNA-sequencing followed by functional pathway analysis. No differences in circulating metabolic or inflammatory biomarkers were observed. However, ANOVA detected 828 differentially expressed annotated genes after diet soda consumption (p < 0.05), including transcripts for inflammatory cytokines. Fifty-eight of 140 canonical pathways represented in pathway analyses regulated inflammation, and several key upstream regulators of inflammation (e.g., TNF-alpha) were also represented. CONCLUSION Consumption of diet soda with sucralose and Ace-K alters inflammatory transcriptomic pathways (e.g., NF-κB signaling) in subcutaneous adipose tissue but does not significantly alter circulating biomarkers. Findings highlight the need to examine molecular and metabolic effects of LCS exposure in a larger randomized control trial for a longer duration.
Collapse
Affiliation(s)
- Allison C Sylvetsky
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA
| | - Sabyasachi Sen
- Division of Endocrinology, George Washington University School of Medicine, 2120 L. St NW, Suite 450, Washington, DC, 20037, USA
| | - Patrick Merkel
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA
| | - Fiona Dore
- Division of Endocrinology, George Washington University School of Medicine, 2120 L. St NW, Suite 450, Washington, DC, 20037, USA
| | - David B Stern
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street, NW, 7000 Science and Engineering Hall, Washington, DC, 20052, USA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr., Room 433A, Atlanta, GA, 30322, USA
| | - Hongyi Cai
- Intramural Research Program, NIDDK, NIH (PJW, KIR), 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD, 20892, USA
| | - Peter J Walter
- Intramural Research Program, NIDDK, NIH (PJW, KIR), 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD, 20892, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street, NW, 7000 Science and Engineering Hall, Washington, DC, 20052, USA.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA
| | - Kristina I Rother
- Intramural Research Program, NIDDK, NIH (PJW, KIR), 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD, 20892, USA
| | - Monica J Hubal
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, Washington, DC, 20052, USA.,Department of Kinesiology, School of Health and Human Services, Indiana University Purdue University Indianapolis, PE 266, 901 W. New York Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
20
|
Mela DJ, McLaughlin J, Rogers PJ. Perspective: Standards for Research and Reporting on Low-Energy ("Artificial") Sweeteners. Adv Nutr 2020; 11:484-491. [PMID: 31925418 PMCID: PMC7231577 DOI: 10.1093/advances/nmz137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Widely differing views exist among experts, policy makers, and the general public with regard to the potential risks and benefits of reduced- or low-energy sweeteners (LES) in the diet. These views are informed and influenced by different types of research in LES, with differing hypotheses, designs, interpretation, and communication. Given the high level of interest in LES, and the public health relevance of the research evidence base, it is important that all aspects of the research process are framed and reported in an appropriate and balanced manner. In this Perspective, we identify and give examples of a number of issues relating to research and reviews on LES, which may contribute toward apparent inconsistencies in the content and understanding of the totality of evidence. We conclude with a set of recommendations for authors, reviewers and journal editors, as general guidance to improve and better standardize the quality of LES research design, interpretation, and reporting. These focus on clarity of underlying hypotheses, characterization of exposures, and the placement and weighting of new research within the wider context of related prior work.
Collapse
Affiliation(s)
| | - John McLaughlin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Peter J Rogers
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Machek SB, Willoughby DS. Non-nutritive Sweeteners: Implications for Consumption in Athletic Populations. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Schiffman SS, Nagle HT. Revisited: Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol 2019; 132:110692. [PMID: 31351100 DOI: 10.1016/j.fct.2019.110692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Over the last two decades, safety concerns about low/no-calorie sweeteners (LNCS) have been described in the archival scientific literature including elevated risk of metabolic syndrome, type 2 diabetes, excessive weight gain, cardiovascular disease, safety, and disruption of the gut microbiome. A recent review by Lobach, Roberts, and Roland in Food and Chemical Toxicology examined 17 research articles on modulation of gut bacteria by LNCS along with other selected publications. In the conclusions of their paper, they claim that LNCS 1) do not affect gut microbiota at use levels and 2) are safe at levels approved by regulatory agencies. Both of these claims are incorrect. The scientific literature on LNCS clearly indicates that it is inappropriate to draw generalized conclusions regarding effects on gut microbiota and safety issues for compounds that vary widely chemical structure and pharmacokinetics. Scientific studies on the sweetener sucralose, used here as a representative LNCS, indicate that this organochlorine compound unequivocally and irrefutably disrupts the gut microbiome at doses relevant to human use. Results of dozens of additional research publications added and reviewed here also raise significant and extensive concerns about the safety of sucralose for the human food supply.
Collapse
Affiliation(s)
| | - H Troy Nagle
- North Carolina State University, Raleigh, NC, 27695-7911, USA
| |
Collapse
|
23
|
Green CH, Syn WK. Non-nutritive sweeteners and their association with the metabolic syndrome and non-alcoholic fatty liver disease: a review of the literature. Eur J Nutr 2019; 58:1785-1800. [PMID: 31119399 DOI: 10.1007/s00394-019-01996-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is increasing in incidence worldwide, paralleling epidemics in obesity and metabolic syndrome. Widely considered the hepatic manifestation of the metabolic syndrome, NAFLD is associated with significant morbidity, mortality, and increased healthcare costs. There is an abundance of data linking sugar-sweetened beverages, and fructose, in particular, to the metabolic syndrome and NAFLD. As a result, non-nutritive sweeteners (NNSs) are frequently substituted for sugar in drinks and a variety of foods. However, despite the widespread consumption of NNSs, there is growing concern about their impact on metabolic health. METHODS This review examines the experimental and clinical evidence on non-nutritive sweetener (NNS) consumption and features of the metabolic syndrome, including NAFLD. RESULTS Experimental animal studies show that NNS consumption can induce glucose intolerance, increased food consumption, and weight gain, with proposed mechanisms including altered gut microbiome, inhibition of protective intestinal enzymes, and increased appetite. The evidence from clinical studies is more controversial. Observational studies overwhelmingly show an association between NNS consumption and features of the metabolic syndrome, and this includes NAFLD when analyses are not adjusted for obesity. The evidence from randomized-controlled trials in humans is sparse and conflicting, and primarily evaluates weight-related outcomes. CONCLUSION Further research is urgently needed to evaluate NNS consumption and its relationship with NAFLD and the gut microbiome in humans.
Collapse
Affiliation(s)
- Caitlin H Green
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 30 Courtenay Drive-STB Suit 249, MSC 702, Charleston, SC, 29425, USA.
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 30 Courtenay Drive-STB Suit 249, MSC 702, Charleston, SC, 29425, USA.,Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque County, UPV/EHU, Leioa, Spain
| |
Collapse
|
24
|
Sánchez-Tapia M, Martínez-Medina J, Tovar AR, Torres N. Natural and Artificial Sweeteners and High Fat Diet Modify Differential Taste Receptors, Insulin, and TLR4-Mediated Inflammatory Pathways in Adipose Tissues of Rats. Nutrients 2019; 11:nu11040880. [PMID: 31010163 PMCID: PMC6520815 DOI: 10.3390/nu11040880] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
It is difficult to know if the cause for obesity is the type of sweetener, high fat (HF) content, or the combination of sweetener and fat. The purpose of the present work was to study different types of sweeteners; in particular, steviol glycosides (SG), glucose, fructose, sucrose, brown sugar, honey, SG + sucrose (SV), and sucralose on the functionality of the adipocyte. Male Wistar rats were fed for four months with different sweeteners or sweetener with HF added. Taste receptors T1R2 and T1R3 were differentially expressed in the tongue and intestine by sweeteners and HF. The combination of fat and sweetener showed an additive effect on circulating levels of GIP and GLP-1 except for honey, SG, and brown sugar. In adipose tissue, sucrose and sucralose stimulated TLR4, and c-Jun N-terminal (JNK). The combination of HF with sweeteners increased NFκB, with the exception of SG and honey. Honey kept the insulin signaling pathway active and the smallest adipocytes in white (WAT) and brown (BAT) adipose tissue and the highest expression of adiponectin, PPARγ, and UCP-1 in BAT. The addition of HF reduced mitochondrial branched-chain amino transferase (BCAT2) branched-chain keto acid dehydrogenase E1 (BCKDH) and increased branched chain amino acids (BCAA) levels by sucrose and sucralose. Our data suggests that the consumption of particular honey maintained functional adipocytes despite the consumption of a HF diet.
Collapse
Affiliation(s)
- Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico.
| | - Jonathan Martínez-Medina
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico.
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico.
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico.
| |
Collapse
|