1
|
Jarosz K, Borek-Dorosz A, Drozdek M, Rokicińska A, Kiełbasa A, Janus R, Setlak K, Kuśtrowski P, Zapotoczny S, Michalik M. Abiotic weathering of plastic: Experimental contributions towards understanding the formation of microplastics and other plastic related particulate pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170533. [PMID: 38307281 DOI: 10.1016/j.scitotenv.2024.170533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The increasing use of plastic (synthetic polymers) results in the release of uncontrollable amounts of synthetic materials into the environment through waste, infrastructure, and essential goods. As plastic materials undergo weathering, a complex process unfolds, leading to the formation of pollutants, notably microplastics. This study employs multiple instrumental methods to explore the intricate abiotic degradation of the five most commonly used synthetic polymers in environmentally relevant conditions. An extensive set of analytical techniques, along with chemometric analysis of the results of Raman spectroscopy, was used to characterize the materials and evaluate the nature and extent of degradation caused by artificial weathering under temperature, humidity, and solar-like irradiation cycles. Investigation focuses on the link between abiotic weathering and the generation of micro- and nanoplastics, accompanied by molecular and surface adhesion changes, and the release of additives such as metals and metal oxides. Research reveals that microplastics may exhibit varied physical properties due to the incorporation of significant quantities of high-density additives from the parent plastic, which might influence the extraction methods and the transportation models' accuracy. At the molecular and microscopic scales, non-homogeneous pathways through which plastic decomposes during weathering were observed. The formation of additive-polymer combinations might play a pivotal role in the monitoring approaches for microplastics, presenting unique challenges in assessing the environmental impact of different plastic types. These findings offer complex insight into abiotic weathering, microplastics' generation, and the influence of additives that were previously overlooked in toxicity and health assessment studies. As plastic pollution continues to escalate, understanding these complex processes is crucial for microplastic monitoring development and adopting effective preventative measures.
Collapse
Affiliation(s)
- Kinga Jarosz
- Institute of Geological Sciences, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 3a, 30-387 Kraków, Poland.
| | | | - Marek Drozdek
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | - Anna Rokicińska
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Kiełbasa
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, ul. Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Rafał Janus
- Faculty of Energy and Fuels, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Kinga Setlak
- Faculty of Material Engineering and Physics, Cracow University of Technology, ul. Jana Pawła II 37, 31-864 Krakow, Poland.
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland.
| | - Marek Michalik
- Institute of Geological Sciences, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 3a, 30-387 Kraków, Poland.
| |
Collapse
|
2
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
3
|
The Role of Titanium Dioxide (E171) and the Requirements for Replacement Materials in Oral Solid Dosage Forms: An IQ Consortium Working Group Review. J Pharm Sci 2022; 111:2943-2954. [PMID: 35973604 DOI: 10.1016/j.xphs.2022.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Titanium dioxide (in the form of E171) is a ubiquitous excipient in tablets and capsules for oral use. In the coating of a tablet or in the shell of a capsule the material disperses visible and UV light so that the contents are protected from the effects of light, and the patient or caregiver cannot see the contents within. It facilitates elegant methods of identification for oral solid dosage forms, thus aiding in the battle against counterfeit products. Titanium dioxide ensures homogeneity of appearance from batch to batch fostering patient confidence. The ability of commercial titanium dioxide to disperse light is a function of the natural properties of the anatase polymorph of titanium dioxide, and the manufacturing processes used to produce the material utilized in pharmaceuticals. In some jurisdictions E171 is being considered for removal from pharmaceutical products, as a consequence of it being delisted as an approved colorant for foods. At the time of writing, in the view of the authors, no system or material which could address both current and future toxicological concerns of Regulators and the functional needs of the pharmaceutical industry and patients has been identified. This takes into account the assessment of materials such as calcium carbonate, talc, isomalt, starch and calcium phosphates. In this paper an IQ Consortium team outlines the properties of titanium dioxide and criteria to which new replacement materials should be held.
Collapse
|
4
|
Costa M, Blaschke TF, Amara SG, Meyer UA, Insel PA. Introduction to the Theme "Old and New Toxicology: Interfaces with Pharmacology". Annu Rev Pharmacol Toxicol 2021; 61:1-7. [PMID: 33411582 DOI: 10.1146/annurev-pharmtox-092220-033032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The theme of Volume 61 is "Old and New Toxicology: Interfaces with Pharmacology." Old toxicology is exemplified by the authors of the autobiographical articles: B.M. Olivera's work on toxins and venoms from cone snails and P. Taylor's studies of acetylcholinesterase and the nicotinic cholinergic receptor, which serve as sites of action for numerous pesticides and venoms. Other articles in this volume focus on new understanding and new types of toxicology, including (a) arsenic toxicity, which is an ancient poison that, through evolution, has caused most multicellular organisms to express an active arsenic methyltransferase to methylate arsenite, which accelerates the excretion of arsenic from the body; (b) small molecules that react with lipid dicarbonyls, which are now considered the most toxic oxidative stress end products; (c) immune checkpoint inhibitors (ICIs), which have revolutionized cancer therapy but have numerous immune-related adverse events, including cardiovascular complications; (d) autoimmunity caused by the environment; (e) idiosyncratic drug-induced liver disease, which together with the toxicity of ICIs represents new toxicology interfacing with pharmacology; and (f) sex differences in the development of cardiovascular disease, with men more susceptible than women to vascular inflammation that initiates and perpetuates disease. These articles and others in Volume 61 reflect the interface and close integration of pharmacology and toxicology that began long ago but continues today.
Collapse
Affiliation(s)
- Max Costa
- Department of Environmental Medicine, NYU Grossman School of Medicine, New York, New York 10010, USA;
| | | | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Urs A Meyer
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Yusuf A, Al Jitan S, Garlisi C, Palmisano G. A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. CHEMOSPHERE 2021; 278:130440. [PMID: 33838416 DOI: 10.1016/j.chemosphere.2021.130440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present a critical review on antimicrobial nanomaterials with demonstrated potential for application as a disinfection technology in wastewater treatment. Studies involving fabrication and testing of antimicrobial nanomaterials for wastewater treatment were gathered, critically reviewed, and analyzed. Our review shows that there are only a few eligible candidate nanoparticles (NPs) (metal and metal oxide) that can adequately serve as an antimicrobial agent. Nanosilver (nAg) was the most studied and moderately understood metal NPs with proven antimicrobial activity followed by ZnO (among antimicrobial metal oxide NPs) which outperformed titania (in the absence of light) in efficacy due to its better solubility in aqueous condition. The direction of future work was found to be in the development of antimicrobial nanocomposites, since they provide more stability for antimicrobial metal and metal oxides NPs in water, thereby increasing their activity. This review will serve as an updated survey, yet touching also the fundamentals of the antimicrobial activity, with vital information for researchers planning to embark on the development of superior antimicrobial nanomaterials for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Corrado Garlisi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Birinci Y, Niazi JH, Aktay-Çetin O, Basaga H. Quercetin in the form of a nano-antioxidant (QTiO 2) provides stabilization of quercetin and maximizes its antioxidant capacity in the mouse fibroblast model. Enzyme Microb Technol 2020; 138:109559. [PMID: 32527528 DOI: 10.1016/j.enzmictec.2020.109559] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
Living cells are constantly exposed to reactive oxygen species (ROS) causing them to rely on a constant supply of exogenous antioxidants. Quercetin (Q) is one of the potent exogenous antioxidants utilized in various antioxidant formulations. However, the potential application of Q is largely limited because of its poor water solubility. In this study, we employed titanium dioxide (TiO2) nanoparticles to maximize cellular penetration and antioxidant effect of Q on mouse fibroblast cells. To accomplish this, polyethylene glycol (PEG) modified TiO2-nanoparticle surfaces were utilized that exhibited better dispersion, with enhanced biocompatibility. Cell viability assays using Q and Q-conjugated TiO2-nanoparticles (QTiO2) were evaluated in terms of cell morphology as well as with an immunoblotting analysis to look for key biomarkers of apoptosis. In addition, cleavages of Cas 3 and PARP were obtained in cells treated with Q. Furthermore, antioxidant defence with QTiO2 was validated by means of the Nrf2 upregulation pathway. We also observed increased expressions of target enzymes; HO-1, NQO1 and SOD1 in QTiO2-treated cells. The antioxidant potency of the QTiO2 nano-antioxidant form was successfully tested in ROS and superoxide radicals induced cells. Our results demonstrated that the QTiO2 nano-antioxidant promoted a high quercetin bioavailability and stability, in cells with maximal antioxidant potency against ROS, with no signs of cytotoxicity.
Collapse
Affiliation(s)
- Yelda Birinci
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey
| | - Javed H Niazi
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul, Turkey
| | - Oznur Aktay-Çetin
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey
| | - Huveyda Basaga
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| |
Collapse
|
7
|
Limage R, Tako E, Kolba N, Guo Z, García-Rodríguez A, Marques CNH, Mahler GJ. TiO 2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000601. [PMID: 32338455 PMCID: PMC7282385 DOI: 10.1002/smll.202000601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Nanoparticles (NPs) are used in food packaging and processing and have become an integral part of many commonly ingested products. There are few studies that have focused on the interaction between ingested NPs, gut function, the mucus layer, and the gut microbiota. In this work, an in vitro model of gastrointestinal (GI) tract is used to determine whether, and how, the mucus layer is affected by the presence of Gram-positive, commensal Lactobacillus rhamnosus; Gram-negative, opportunistic Escherichia coli; and/or exposure to physiologically relevant doses of pristine or digested TiO2 NPs. Caco-2/HT29-MTX-E12 cell monolayers are exposed to physiological concentrations of bacteria (expressing fluorescent proteins) and/or TiO2 nanoparticles for a period of 4 h. To determine mucus thickness and composition, cell monolayers are stained with alcian blue, periodic acid schiff, or an Alexa Fluor 488 conjugate of wheat germ agglutinin. It is found that the presence of both bacteria and nanoparticles alter the thickness and composition of the mucus layer. Changes in the distribution or pattern of mucins can be indicative of pathological conditions, and this model provides a platform for understanding how bacteria and/or NPs may interact with and alter the mucus layer.
Collapse
Affiliation(s)
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Zhongyuan Guo
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
8
|
Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110303. [PMID: 31761191 DOI: 10.1016/j.msec.2019.110303] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs), first developed in the 1990s, have been applied in numerous biomedical fields such as tissue engineering and therapeutic drug development. In recent years, TiO2-based drug delivery systems have demonstrated the ability to decrease the risk of tumorigenesis and improve cancer therapy. There is increasing research on the origin and effects of pristine and doped TiO2-based nanotherapeutic drugs. However, the detailed molecular mechanisms by which drug delivery to cancer cells alters sensing of gene mutations, protein degradation, and metabolite changes as well as its associated cumulative effects that determine the microenvironmental mechanosensitive metabolism have not yet been clearly elucidated. This review focuses on the microenvironmental influence of TiO2-NPs induced various mechanical stimuli on tumor cells. The differential expression of genome, proteome, and metabolome after treatment with TiO2-NPs is summarized and discussed. In the tumor microenvironment, mechanosensitive DNA mutations, gene delivery, protein degradation, inflammatory responses, and cell viability affected by the mechanical stimuli of TiO2-NPs are also examined.
Collapse
|
9
|
Investigation of the potential of using TiO2 nanoparticles as a contrast agent in computed tomography and magnetic resonance imaging. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01098-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Genotoxicity analysis of rutile titanium dioxide nanoparticles in mice after 28 days of repeated oral administration. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00277-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Ismail NA, Amin KAM, Majid FAA, Razali MH. Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: Physicochemical, mechanical, antibacterial properties and wound healing studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109770. [PMID: 31349525 DOI: 10.1016/j.msec.2019.109770] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 02/01/2023]
Abstract
In this work, the potential of titanium dioxide nanoparticles incorporated gellan gum (GG + TiO2-NPs) biofilm as wound dressing material was investigated. The GG + TiO2-NPs biofilm was prepared via evaporative casting technique and was characterized using FTIR, XRD, and SEM to study their physiochemical properties. The mechanical properties, swelling and water vapor transmission rate (WVTR) of biofilm was determined to comply with an ideal wound dressing material. In vitro and in vivo wound healing studies was carried out to evaluate the performance of GG + TiO2-NPs biofilm. In vitro wound healing was studied on 3 T3 mouse fibroblast cells for cell viability, cell proliferation, and scratch assay. The acridine orange/propidium iodide (AO/PI) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the viability of cell and cell proliferation. Cell migration assay was analyzed using Essen BioScience IncuCyteTM Zoom system. In vivo wound healing via open excision wounds model on Sprague Dawley rat was studied within 14 days. The FT-IR spectra of GG + TiO2-NPs biofilm show main bands assigned to OH stretching, OH deformation, and TiO stretching modes. XRD pattern of GG + TiO2-NPs biofilm suggesting that TiO2-NPs was successfully incorporated in biofilm and well distributed on the surface as proved by SEM analysis. The GG + TiO2-NPs biofilm shows higher mechanical strength and swelling (3.76 ± 0.11 MPa and 1061 ± 6%) as compared to pure GG film (3.32 ± 0.08 Mpa and 902 ± 6%), respectively. GG + TiO2-NPs biofilm shows good antibacterial properties as 9 ± 0.25 mm and 11 ± 0.06 mm exhibition zone was observed against Staphylococcus aureus and Escherichia coli bacteria, respectively. While no exhibition zone was obtained for pure GG biofilm. GG + TiO2-NPs biofilm also demonstrated better cell-to-cell interaction properties, as it's promoted cell proliferation and cell migration to accelerate open excision wound healing on Sprague Dawley rat. The wound treated with GG + TiO2-NPs biofilm was healed within 14 days, on the other hand, the wound is still can be seen when it was treated with GG. However, GG and GG + TiO2-NPs biofilm show no cytotoxicity effects on mouse fibroblast cells.
Collapse
Affiliation(s)
- Nur Arifah Ismail
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Darul Iman, Malaysia
| | - Khairul Anuar Mat Amin
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Darul Iman, Malaysia
| | - Fadzillah Adibah Abdul Majid
- Institute Biotechnology Marine, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Darul Iman, Malaysia
| | - Mohd Hasmizam Razali
- School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Darul Iman, Malaysia.
| |
Collapse
|
12
|
Khan ST, Malik A. Engineered nanomaterials for water decontamination and purification: From lab to products. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:295-308. [PMID: 30312926 DOI: 10.1016/j.jhazmat.2018.09.091] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Clean water is vital for life; it is required not only for drinking but also for the preparation of food and proper hygiene. Unfortunately, more than fifty percent of the world population mainly in China and India face a severe scarcity of water. Around 1.8 billion people inevitably drink water from sources having fecal contamination resulting in the death of about a million children every year. Scientists are developing various economic technologies to decontaminate and purify water. Nanomaterials-based technology offers an economic and effective alternative for water purification and decontamination. As nanomaterials are available globally, have remarkable antimicrobial activity and the ability to effectively remove organic and inorganic pollutants from water. This review discusses the potential role of nanomaterials in the purification of drinking water. As nanomaterials exhibit remarkable antimicrobial and antiparasitic activities against waterborne pathogens and parasites of primary concern like Shigella dysenteriae, Vibrio cholera, and Entamoeba histolytica. Nanomaterials also demonstrate the ability to absorb toxic chemicals like mercury and dyes from polluted water. However, for successful commercialization of the technology, some inherent bottlenecks need to be addressed adequately. These include nanoparticles aggregation, their seepage into drinking water and adverse effects on human health and the environment. Nanocomposites are being developed to overcome these problems and to combine two or more desirable properties for water purification. Widespread and large-scale use of nanomaterials for water purification soon may become a reality. Products containing nanomaterials such as Karofi, Lifestraw, and Tupperware for water purification are already available in the market.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, UP, India.
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
13
|
Li Y, Yan J, Ding W, Chen Y, Pack LM, Chen T. Genotoxicity and gene expression analyses of liver and lung tissues of mice treated with titanium dioxide nanoparticles. Mutagenesis 2017; 32:33-46. [PMID: 28011748 DOI: 10.1093/mutage/gew065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used in paints, plastics, papers, inks, foods, toothpaste, pharmaceuticals and cosmetics. However, TiO2 NPs cause inflammation, pulmonary damage, fibrosis and lung tumours in animals and are possibly carcinogenic to humans. Although there are a large number of studies on the toxicities of TiO2 NPs, the data are inconclusive and the mechanisms underlying the toxicity are not clear. In this study, we used the Comet assay to evaluate genotoxicity and whole-genome microarray technology to analyse gene expression pattern in vivo to explore the possible mechanisms for toxicity and genotoxicity of TiO2 NPs. Mice were treated with three daily i.p. injections of 50 mg/kg 10 nm anatase TiO2 NPs and sacrificed 4 h after the last treatment. The livers and lungs were then isolated for the Comet assay and whole genome microarray analysis of gene expression. The NPs were heavily accumulated in liver and lung tissues. However, the treatment was positive for DNA strand breaks only in liver measured with the standard Comet assay, but positive for oxidative DNA adducts in both liver and lung as determined with the enzyme-modified Comet assay. The genotoxicity results suggest that DNA damage mainly resulted from oxidised nucleotides. Gene expression profiles and functional analyses revealed that exposure to TiO2 NPs triggered distinct gene expression patterns in both liver and lung tissues. The gene expression results suggest that TiO2 NPs impair DNA and cells by interrupting metabolic homeostasis in liver and by inducing oxidative stress, inflammatory responses and apoptosis in lung. These findings have broad implications when evaluating the safety of TiO2 NPs used in numerous consumer products.
Collapse
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA.,Covance Laboratories, Inc., Greenfield, IN 46140, USA and
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Lindsay M Pack
- Nanotechnology Core Facility, National Center for Toxicological Research, Jefferson, AR 72079, USA.,Present address: Arkansas Children's Nutrition Center, Arkansas Children's Hospital, Little Rock, AR 72202, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR 72079, USA,
| |
Collapse
|
14
|
Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg Chem Appl 2017; 2017:4101735. [PMID: 28373829 PMCID: PMC5360948 DOI: 10.1155/2017/4101735] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
Although nanoparticles (NPs) have made incredible progress in the field of nanotechnology and biomedical research and their applications are demanded throughout industrial world particularly over the past decades, little is known about the fate of nanoparticles in ecosystem. Concerning the biosafety of nanotechnology, nanotoxicity is going to be the second most priority of nanotechnology that needs to be properly addressed. This review covers the chemical as well as the biological concerns about nanoparticles particularly titanium dioxide (TiO2) NPs and emphasizes the toxicological profile of TiO2 at the molecular level in both in vitro and in vivo systems. In addition, the challenges and future prospects of nanotoxicology are discussed that may provide better understanding and new insights into ongoing and future research in this field.
Collapse
|
15
|
Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax. NANOMATERIALS 2016; 6:nano6120237. [PMID: 28335365 PMCID: PMC5302719 DOI: 10.3390/nano6120237] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax.
Collapse
|
16
|
Türkez H, Geyikoğlu F. An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes. Toxicol Ind Health 2016; 23:19-23. [PMID: 17722736 DOI: 10.1177/0748233707076764] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Titanium dioxide (TiO2) is extensively used in many industrial areas, including cosmetics, pharmaceutical, paint and paper production. Although the uses of TiO2have become so widespread, there is limited information concerning its toxicity on humans. However, the genotoxicity of TiO2remains to be controversial. The possible genotoxic effects of TiO2have been evaluated in human whole blood cultures (WBCs) related to oxidative status. The blood was processed to examine the following oxidative stress markers: glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase. In addition, the frequencies of sister-chromatid exchanges (SCEs) and micronuclei (MN) were scored as genetic endpoints. Different concentrations of TiO2(1, 2, 3, 5, 7.5 and 10 μM) were tested. From the results, it appeared that TiO2was able to induce genotoxic effects, as observed by the increases found in SCE and MN frequencies in TiO2-treated cultures. Present results also show that treatments with TiO2promoted oxidative stress in human WBC with an increase in concentrations. In conclusion, our data indicate that TiO2can enhance oxidative stress-mediated DNA damage in vitro. Toxicology and Industrial Health 2007; 23: 19—23.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, 25240, Erzurum, Turkey.
| | | |
Collapse
|
17
|
Gali NK, Ning Z, Daoud W, Brimblecombe P. Investigation on the mechanism of non-photocatalytically TiO2 -induced reactive oxygen species and its significance on cell cycle and morphology. J Appl Toxicol 2016; 36:1355-63. [PMID: 27191363 DOI: 10.1002/jat.3341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
Titanium dioxide (TiO2 ) nanoparticles are widely used in daily human life, and were reported to elicit biological effects such as oxidative stress either generating reactive oxygen species (ROS) or causing cell necrosis without generating ROS, whose underlying molecular mechanisms are not yet known. In this study, the role of dissolved oxygen in TiO2 catalytic activity in dark environment, and long-term cytotoxic effects of TiO2 exposure were investigated. To determine the effect of dissolved oxygen, the anatase-TiO2 nanoparticle suspension was prepared both in deoxygenated and regular MilliQ water, and a ~ 9-fold higher ROS in regular MilliQ samples was observed compared to deoxygenated samples while in the dark, which suggested dissolved oxygen as the driving agent behind the TiO2 catalytic reaction. On the other hand, the differential cell viability and endogenous ROS activity was demonstrated through a sensitive macrophage-based assay, on a dose- and time-dependent manner. Both the cell number and endogenous ROS activity increased with increase in time till 48 h, followed by a reduction at 72 h exposure period. Long-term exposures to these nanoparticles even at low concentrations were found detrimental to cells, where late apoptosis until 48 h and necrosis at 72 h leading to cell death were noted. Late apoptotic events and cell membrane cytoskeletal actin rearrangement observed were hypothesized to be induced by particle-mediated cellular ROS. This in addition to radical generation ability of TiO2 in the dark will help further in better understanding of the toxicity mechanism in cells beyond ROS generation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nirmal Kumar Gali
- School of Energy & Environment, City University of Hong Kong, Hong Kong, SAR
| | - Zhi Ning
- School of Energy & Environment, City University of Hong Kong, Hong Kong, SAR
| | - Walid Daoud
- School of Energy & Environment, City University of Hong Kong, Hong Kong, SAR
| | - Peter Brimblecombe
- School of Energy & Environment, City University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
18
|
Gornati R, Longo A, Rossi F, Maisano M, Sabatino G, Mauceri A, Bernardini G, Fasulo S. Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland. Nanotoxicology 2016; 10:807-17. [PMID: 26846715 DOI: 10.3109/17435390.2015.1132348] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the wide use of nanoscale materials in several fields, some aspects of the nanoparticle behavior have to be still investigated. In this work, we faced the aspect of environmental effects of increasing concentrations of TiO2NPs using the Mytilus galloprovincialis as an animal model and carrying out a multidisciplinary approach to better explain the results. Bioaccumulation suggested that the gills and digestive gland are the most sensitive organs to TiO2NP exposure. Histological observations have evidenced an altered tissue organization and a consistent infiltration of hemocytes, as a consequence of the immune system activation, even though an increase in lipid peroxidation is uncertain and DNA damage became relevant only at high exposure dose (10 mg/L) or for longer exposure time (96 h). However, the over expression of SOD1 mRNA strengthen the concept that the toxicity of TiO2NPs could occur indirectly by ROS production. TEM analysis showed the presence of multilamellar bodies, RER fragmentation, and cytoplasmic vacuolization within relevant presence of dense granules, residual bodies, and lipid inclusions. These findings support the evidence of an initial inflammatory response by the cells of the target organs leading to apoptosis. In conclusion, we can state that certainly the exposure to TiO2NPs has affected our animal model from cellular to molecular levels. Interestingly, the same responses are caused by lower TiO2NP concentration and longer exposure time as well as higher doses and shorter exposure. We do not know if some of the conditions detected are reversible, then further studies are required to clarify this aspect.
Collapse
Affiliation(s)
- Rosalba Gornati
- a Dipartimento di Biotecnologie e Scienze della Vita , Università dell'Insubria , Varese , Italy .,b "The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria , Milano , Italy
| | - Arturo Longo
- c Dipartimento di Scienze Biologiche e Ambientali , and
| | - Federica Rossi
- a Dipartimento di Biotecnologie e Scienze della Vita , Università dell'Insubria , Varese , Italy
| | - Maria Maisano
- c Dipartimento di Scienze Biologiche e Ambientali , and
| | - Giuseppe Sabatino
- d Dipartimento di Fisica e Scienze della Terra , Università di Messina , Messina , Italy
| | | | - Giovanni Bernardini
- a Dipartimento di Biotecnologie e Scienze della Vita , Università dell'Insubria , Varese , Italy .,b "The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria , Milano , Italy
| | | |
Collapse
|
19
|
El-Said KS, Ali EM, Kanehira K, Taniguchi A. Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines. J Nanobiotechnology 2014; 12:48. [PMID: 25441061 PMCID: PMC4260178 DOI: 10.1186/s12951-014-0048-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/24/2014] [Indexed: 12/04/2022] Open
Abstract
Background Titanium dioxide nanoparticles (TiO2 NPs) are widely used in the biological sciences. The increasing use of TiO2 NPs increases the risk of humans and the environment being exposed to NPs. We previously showed that toll-like receptors (TLRs) play an important role in the interactions between NPs and cells. Our previous results indicated that TLR4 increased the DNA damage response induced by TiO2 NPs, due to enhanced NP uptake into the cytoplasm, whereas TLR3 expression decreased the DNA damage response induced by TiO2 NPs because of NP retention in the endosome. In this study, we explored the molecular mechanism of the DNA damage response induced by TiO2 NPs using TLR3 or TLR4 transfected cells. We examined the effect of TLR3 or TLR4 over-expression on oxidative stress and the effect of DNA damage induced by TiO2 NPs on gene expression levels. Results Our results showed evidence for elevated oxidative stress, including the generation of reactive oxygen species (ROS), with increased hydrogen peroxide levels, decreased glutathione peroxidase, and reduced glutathione and activated caspase-3 levels in cells exposed for 48 h to 10 μg/ml TiO2 NPs. These effects were enhanced by TLR4 and reduced by TLR3 over-expression. Seventeen genes related to DNA double-strand breaks and apoptosis were induced, particularly IP6K3 and ATM. Conclusion Our results indicated that TiO2 NPs induced ROS, and the above molecules are implicated in the genotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Cell-Material Interaction Group, Biomaterial Unit, Nano-Bio Field, Interaction Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan. .,Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Ehab Mostafa Ali
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Koki Kanehira
- Biotechnology Group, TOTO Ltd. Research Institute, Honson 2-8-1, Chigasaki, Kanagawa, 253-8577, Japan.
| | - Akiyoshi Taniguchi
- Cell-Material Interaction Group, Biomaterial Unit, Nano-Bio Field, Interaction Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan. .,Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Japan. .,National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| |
Collapse
|
20
|
Mohamud R, Xiang SD, Selomulya C, Rolland JM, O’Hehir RE, Hardy CL, Plebanski M. The effects of engineered nanoparticles on pulmonary immune homeostasis. Drug Metab Rev 2013; 46:176-90. [DOI: 10.3109/03602532.2013.859688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, Kumar J. Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. ADV POWDER TECHNOL 2013. [DOI: 10.1016/j.apt.2013.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
HELMIG SIMONE, DOPP ELKE, WENZEL SIBYLLE, WALTER DIRK, SCHNEIDER JOACHIM. Induction of altered mRNA expression profiles caused by fibrous and granular dust. Mol Med Rep 2013; 9:217-28. [DOI: 10.3892/mmr.2013.1765] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/02/2013] [Indexed: 11/05/2022] Open
|
23
|
Ghosh M, Chakraborty A, Mukherjee A. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cellsin vitro. J Appl Toxicol 2013; 33:1097-110. [DOI: 10.1002/jat.2863] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/26/2012] [Accepted: 01/13/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Manosij Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany; University of Calcutta; Kolkata; India
| | | | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany; University of Calcutta; Kolkata; India
| |
Collapse
|
24
|
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013. [PMID: 23587290 DOI: 10.1186/17438977-10-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Collapse
Affiliation(s)
- Hongbo Shi
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, PR China
| | | | | | | |
Collapse
|
25
|
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013; 10:15. [PMID: 23587290 PMCID: PMC3637140 DOI: 10.1186/1743-8977-10-15] [Citation(s) in RCA: 803] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/02/2013] [Indexed: 01/19/2023] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. TiO2 NPs possess different physicochemical properties compared to their fine particle (FP) analogs, which might alter their bioactivity. Most of the literature cited here has focused on the respiratory system, showing the importance of inhalation as the primary route for TiO2 NP exposure in the workplace. TiO2 NPs may translocate to systemic organs from the lung and gastrointestinal tract (GIT) although the rate of translocation appears low. There have also been studies focusing on other potential routes of human exposure. Oral exposure mainly occurs through food products containing TiO2 NP-additives. Most dermal exposure studies, whether in vivo or in vitro, report that TiO2 NPs do not penetrate the stratum corneum (SC). In the field of nanomedicine, intravenous injection can deliver TiO2 nanoparticulate carriers directly into the human body. Upon intravenous exposure, TiO2 NPs can induce pathological lesions of the liver, spleen, kidneys, and brain. We have also shown here that most of these effects may be due to the use of very high doses of TiO2 NPs. There is also an enormous lack of epidemiological data regarding TiO2 NPs in spite of its increased production and use. However, long-term inhalation studies in rats have reported lung tumors. This review summarizes the current knowledge on the toxicology of TiO2 NPs and points out areas where further information is needed.
Collapse
Affiliation(s)
- Hongbo Shi
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Ruth Magaye
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Public Health Department of Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang Province, 315211, P. R. China
| |
Collapse
|
26
|
Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis 2013; 4:e549. [PMID: 23519118 PMCID: PMC3615742 DOI: 10.1038/cddis.2013.76] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The long-term health risks of nanoparticles remain poorly understood, which is a serious concern given their prevalence in the environment from increased industrial and domestic use. The extent to which such compounds contribute to cellular toxicity is unclear, and although it is known that induction of oxidative stress pathways is associated with this process, the proteins and the metabolic pathways involved with nanoparticle-mediated oxidative stress and toxicity are largely unknown. To investigate this problem further, the effect of TiO2 on the HaCaT human keratinocyte cell line was examined. The data show that although TiO2 does not affect cell cycle phase distribution, nor cell death, these nanoparticles have a considerable and rapid effect on mitochondrial function. Metabolic analysis was performed to identify 268 metabolites of the specific pathways involved and 85 biochemical metabolites were found to be significantly altered, many of which are known to be associated with the cellular stress response. Importantly, the uptake of nanoparticles into the cultured cells was restricted to phagosomes, TiO2 nanoparticles did not enter into the nucleus or any other cytoplasmic organelle. No other morphological changes were detected after 24-h exposure consistent with a specific role of mitochondria in this response.
Collapse
|
27
|
Vogt O, Lademann J, Rancan F, Meinke M, Schanzer S, Stockfleth E, Sterry W, Lange-Asschenfeldt B. Photoprotective Properties of the Fluorescent Europium Complex in UV-Irradiated Skin. Skin Pharmacol Physiol 2013; 26:76-84. [DOI: 10.1159/000345976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/19/2012] [Indexed: 12/25/2022]
|
28
|
Planchon M, Ferrari R, Guyot F, Gélabert A, Menguy N, Chanéac C, Thill A, Benedetti MF, Spalla O. Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf B Biointerfaces 2012; 102:158-64. [PMID: 23006561 DOI: 10.1016/j.colsurfb.2012.08.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/17/2022]
Abstract
Seine River water was used as a natural environmental medium to quantify the ecotoxicological impact of three types of manufactured titanium dioxide (TiO(2)) nanoparticles toward the model bacterium Escherichia coli. Under ambient light, a significant toxicity starting at 10 ppm of TiO(2) in water was observed. Presence of the anatase polymorph slightly increased the toxicity in comparison to pure rutile samples. Furthermore, the toxicity was found to be lower at pH 5 compared to Seine water (pH 8). To assess the nanoparticles state of dispersion and their interactions with bacteria, cryogenic transmission electron microscopy (TEM) and zeta potential measurements were performed. A higher sorption of nanoparticle aggregates on cells is observed at pH 5 compared to Seine water. This allows concluding that the observed toxicity is not directly linked to the particles sorption onto the cell surfaces. In spite of stronger interaction between cells and nanoparticles at pH 5, a bacterial subpopulation apparently non-interacting with nanoparticles is evidenced by both TEM and zeta potential measurements. Such heterogeneities in cell populations can increase global bacterial resistance to TiO(2) nanoparticles.
Collapse
Affiliation(s)
- Mariane Planchon
- CEA Saclay, DSM/IRAMIS/SIS2M/LIONS, UMR CEA-CNRS 3299, 91191 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Visible light–responsive core-shell structured In2O3@CaIn2O4 photocatalyst with superior bactericidal properties and biocompatibility. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:609-17. [DOI: 10.1016/j.nano.2011.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 09/12/2011] [Accepted: 09/25/2011] [Indexed: 11/18/2022]
|
30
|
Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, Biris AS, Rice P, Zhou T, Chen T. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 2012; 32:934-43. [PMID: 22744910 DOI: 10.1002/jat.2781] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 11/10/2022]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are being used increasingly for various industrial and consumer products, including cosmetics and sunscreens because of their photoactive properties. Therefore, the toxicity of TiO2-NPs needs to be thoroughly understood. In the present study, the genotoxicity of 10nm uncoated sphere TiO2-NPs with an anatase crystalline structure, which has been well characterized in a previous study, was assessed using the Salmonella reverse mutation assay (Ames test) and the single-cell gel electrophoresis (Comet) assay. For the Ames test, Salmonella strains TA102, TA100, TA1537, TA98 and TA1535 were preincubated with eight different concentrations of the TiO2-NPs for 4 h at 37 °C, ranging from 0 to 4915.2 µg per plate. No mutation induction was found. Analyses with transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) showed that the TiO2-NPs were not able to enter the bacterial cell. For the Comet assay, TK6 cells were treated with 0-200 µg ml(-1) TiO2-NPs for 24 h at 37 °C to detect DNA damage. Although the TK6 cells did take up TiO2-NPs, no significant induction of DNA breakage or oxidative DNA damage was observed in the treated cells using the standard alkaline Comet assay and the endonuclease III (EndoIII) and human 8-hydroxyguanine DNA-glycosylase (hOGG1)-modified Comet assay, respectively. These results suggest that TiO2-NPs are not genotoxic under the conditions of the Ames test and Comet assay.
Collapse
Affiliation(s)
- Robert S Woodruff
- Division of Microbiology, Arkansas Regional Laboratory, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; is it safe? Radiol Oncol 2011; 45:227-47. [PMID: 22933961 PMCID: PMC3423755 DOI: 10.2478/v10019-011-0037-0] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/27/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Titanium dioxide (TiO(2)) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO(2) nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO(2) nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO(2) nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO(2) nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO(2) nanoparticles are classified as "possible carcinogenic to humans" by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO(2) nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO(2) is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO(2) may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. CONCLUSIONS Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO(2) nanoparticles should be used with great care.
Collapse
Affiliation(s)
- Matej Skocaj
- Jožef Stefan Institute, Department for Nanostructured Materials, Ljubljana, Slovenia
| | - Metka Filipic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia
| | - Jana Petkovic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia
| | - Sasa Novak
- Jožef Stefan Institute, Department for Nanostructured Materials, Ljubljana, Slovenia
| |
Collapse
|
32
|
Unnithan J, Rehman MU, Ahmad FJ, Samim M. Aqueous synthesis and concentration-dependent dermal toxicity of TiO2 nanoparticles in Wistar rats. Biol Trace Elem Res 2011; 143:1682-94. [PMID: 21424781 DOI: 10.1007/s12011-011-9010-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/16/2011] [Indexed: 11/28/2022]
Abstract
A number of dermal toxicological studies using TiO(2) nanoparticles exist which are based on the study of various animal models like mice, rabbits etc. However, a well-defined study is lacking on the dermal toxic effects of TiO(2) nanoparticles on rats, which are the appropriate model for systemic absorption study of nanoparticles. Furthermore, toxicity of TiO(2) nanoparticles varies widely depending upon the size, concentration, crystallinity, synthesis method etc. This study was conducted to synthesize TiO(2) nanoparticles of different sizes (∼15 to ∼30 nm) by aqueous method, thereby evaluating the concentration-dependent toxicological effects of the ∼20-nm sized nanoparticles on Wistar rats. Characterization of the particles was done by transmission electron microscope, dynamic light scattering instrument, X-ray diffractrometer, and ultraviolet spectrophotometer. The toxicity study was conducted for 14 days (acute), and it is observed that TiO(2) nanoparticles (∼20 nm) at a concentration of 42 mg/kg, when applied topically showed toxicity on rat skin at the biochemical level. However, the histopathological studies did not show any observable effects at tissue level. Our data suggest that well-crystallized spherical-shaped ∼20 nm anatase TiO(2) nanoparticles synthesized in aqueous medium can induce concentration-dependent biochemical alteration in rat skin during short-term exposure.
Collapse
Affiliation(s)
- Jyotisree Unnithan
- Nanosynthesis Lab, Faculty of Engineering and Interdisciplinary Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | | | | | | |
Collapse
|
33
|
Petković J, Küzma T, Rade K, Novak S, Filipič M. Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells. JOURNAL OF HAZARDOUS MATERIALS 2011; 196:145-152. [PMID: 21945684 DOI: 10.1016/j.jhazmat.2011.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/23/2011] [Accepted: 09/02/2011] [Indexed: 05/31/2023]
Abstract
Titanium dioxide (TiO(2)) is active in the UV region of the light spectra and is used as a photocatalyst in numerous applications. Photo-activated anatase TiO(2) particles promote increased production of free radicals. This is a desirable property, although the potential toxicity of such photo-activated TiO(2) particles on exposure of humans and the environment remains unknown. Therefore, we studied whether pre-irradiation of TiO(2) particles with UV influences their cytotoxic and genotoxic potential. The TiO(2) particles, as TiO(2)-A (<25 nm) and TiO(2)-B (>100 nm), were UV pre-irradiated (24h) and tested for cytotoxic and genotoxic activities in human hepatoma HepG2 cells. Non-irradiated TiO(2)-A/B at 1.0-250 μg/ml did not reduce viability of HepG2 cells, nor induce significant increases in DNA strand breaks; only TiO(2)-A induced significant increases in oxidative DNA damage. After UV pre-irradiation, both TiO(2)-A and TiO(2)-B reduced cell viability and induced significant increases in DNA strand breaks and oxidative DNA damage. This is the first study that shows that UV pre-irradiation of anatase TiO(2) particles results in increased cytotoxic and genotoxic potential. This warrants further studies as it has important implications for environmental and human health risk assessment and preventive actions to limit human exposure.
Collapse
Affiliation(s)
- Jana Petković
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
34
|
Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kudo N, Kubota Y, Terasaka S, Houkin K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. ULTRASONICS SONOCHEMISTRY 2011; 18:1197-204. [PMID: 21257331 DOI: 10.1016/j.ultsonch.2010.12.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 12/26/2010] [Accepted: 12/27/2010] [Indexed: 05/23/2023]
Abstract
Sonodynamic therapy is expected to be a novel therapeutic strategy for malignant gliomas. The titanium dioxide (TiO(2)) nanoparticle, a photosensitizer, can be activated by ultrasound. In this study, by using water-dispersed TiO(2) nanoparticles, an in vitro comparison was made between the photodynamic and sonodynamic damages on U251 human glioblastoma cell lines. Water-dispersed TiO(2) nanoparticles were constructed by the adsorption of chemically modified polyethylene glycole (PEG) on the TiO(2) surface (TiO(2)/PEG). To evaluate cytotoxicity, U251 monolayer cells were incubated in culture medium including 100 μg/ml of TiO(2)/PEG for 3h and subsequently irradiated by ultraviolet light (5.0 mW/cm(2)) or 1.0MHz ultrasound (1.0 W/cm(2)). Cell survival was estimated by MTT assay 24h after irradiation. In the presence of TiO(2)/PEG, the photodynamic cytotoxic effect was not observed after 20 min of an ultraviolet light exposure, while the sonodynamic cytotoxicity effect was almost proportional to the time of sonication. In addition, photodynamic cytotoxicity of TiO(2)/PEG was almost completely inhibited by radical scavenger, while suppression of the sonodynamic cytotoxic effect was not significant. Results of various fluorescent stains showed that ultrasound-treated cells lost their viability immediately after irradiation, and cell membranes were especially damaged in comparison with ultraviolet-treated cells. These findings showed a potential application of TiO(2)/PEG to sonodynamic therapy as a new treatment of malignant gliomas and suggested that the mechanism of TiO(2)/PEG mediated sonodynamic cytotoxicity differs from that of photodynamic cytotoxicity.
Collapse
Affiliation(s)
- Shigeru Yamaguchi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lapied E, Nahmani JY, Moudilou E, Chaurand P, Labille J, Rose J, Exbrayat JM, Oughton DH, Joner EJ. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. ENVIRONMENT INTERNATIONAL 2011; 37:1105-10. [DOI: 10.1016/j.envint.2011.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/15/2011] [Indexed: 12/12/2022]
|
36
|
Li J, Wang X, Jiang H, Lu X, Zhu Y, Chen B. New strategy of photodynamic treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro. NANOSCALE 2011; 3:3115-3122. [PMID: 21666907 DOI: 10.1039/c1nr10185d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As one of the best biocompatible semiconductor nanomaterials, TiO(2) nanofibers can act as a good photosensitizer material and show potential application in the field of drug carriers and photodynamic therapy to cure diseases. Celastrol, one of the active components extracted from T. wilfordii Hook F., was widely used in traditional Chinese medicine for many diseases. In this study, the cytotoxicity of celastrol for HepG2 cancer cells was firstly explored. The results showed that celastrol could inhibit cancer cell proliferation in a time-dependent and dose-dependent manner, inducing apoptosis and cell cycle arrest at G2/M phase in HepG2 cells. After the TiO(2) nanofibers were introduced into the system of celastrol, the cooperation effect showed that the nanocomposites between TiO(2) nanofibers and celastrol could enhance the cytotoxicity of celastrol for HepG2 cells and cut down the drug consumption so as to reduce the side-effect of the related drug. Associated with the photodynamic effect, it is evident that TiO(2) nanofibers could readily facilitate the potential application of the active compounds from natural products like celastrol. Turning to the advantages of nanotechnology, the combination of nanomaterials with the related monomer active compounds of promising Chinese medicine could play an important role to explore the relevant mechanism of the drug cellular interaction and promote the potential application of TiO(2) nanofibers in the clinical treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory), Southeast University, Nanjing, 210096, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Turkez H. The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. ACTA ACUST UNITED AC 2011; 63:453-7. [DOI: 10.1016/j.etp.2010.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/09/2010] [Accepted: 03/11/2010] [Indexed: 11/29/2022]
|
38
|
Thurber A, Wingett DG, Rasmussen JW, Layne J, Johnson L, Tenne DA, Zhang J, Hanna CB, Punnoose A. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping. Nanotoxicology 2011; 6:440-52. [DOI: 10.3109/17435390.2011.587031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Palaniappan PR, Pramod KS. The effect of titanium dioxide on the biochemical constituents of the brain of Zebrafish (Danio rerio): an FT-IR study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:206-12. [PMID: 21420897 DOI: 10.1016/j.saa.2011.02.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/02/2011] [Accepted: 02/16/2011] [Indexed: 05/25/2023]
Abstract
During recent years, the use of nanoparticles (NPs) in commercial products and industrial applications has increased greatly. One of the most widely used nanoparticles is titanium dioxide (nTiO(2)). It is a very versatile compound that has many uses, depending on its particle size. In the present paper an attempt is made to study the effect of TiO(2) nanoparticles and its bulk material on the biochemical constituents of the brain of Zebrafish (Danio rerio) by using FT-IR technique. FT-IR spectra reveals significant differences in absorbance intensities between the control and TiO(2) exposed brain tissues, reflecting alterations on the major biochemical constituents such as proteins, lipids and nucleic acids in the brain tissues of D. rerio due to TiO(2) exposure. The results further reveal that TiO(2) nanoparticles are more toxic than their bulk counterparts. The higher ratio of integrated area of carbonyl-to-CH(2) peaks (1743 cm(-1):1458 cm(-1)) observed in the present study in the nTiO(2) exposed brain tissues suggests that lipids are being oxidized. Since oxidation can cause an increase in carbonyls and a degradation of lipids, both of these changes could be contributed to the elevated ratio. Further, the observed decreasing ratio of integrated areas of both 1458 cm(-1):1542 cm(-1) and 1743 cm(-1):1542 cm(-1) in the TiO(2) exposed tissues suggests that lipid degradation predominates over carbonyl formation. The observed changes in the biochemical constituents in the brain tissues of D. rerio could be due to the overproduction of ROS.
Collapse
Affiliation(s)
- Pl Rm Palaniappan
- Department of Physics, Annamalai University, Annamalai Nagar, India.
| | | |
Collapse
|
40
|
Yu JX, Li TH. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci 2011; 1:19. [PMID: 21711940 PMCID: PMC3125209 DOI: 10.1186/2045-3701-1-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/19/2011] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metal oxides in nanoparticle form such as zinc oxide and titanium dioxide now appear on the ingredient lists of household products as common and diverse as cosmetics, sunscreens, toothpaste, and medicine. Previous studies of zinc oxide and titanium dioxide in non-nanoparticle format using animals have found few adverse effects. This has led the FDA to classify zinc oxide as GRAS (generally recognized as safe) for use as a food additive. However, there is no regulation specific for the use of these chemicals in nanoparticle format. Recent studies, however, have begun to raise concerns over the pervasive use of these compounds in nanoparticle forms. Unfortunately, there is a lack of easily-adaptable screening methods that would allow for the detection of their biological effects. RESULTS We adapted two image-based assays, a fluorescence resonance energy transfer-based caspase activation assay and a green fluorescent protein coupled-LC3 assay, to test for the biological effects of different nanoparticles in a high-throughput format. We show that zinc oxide nanoparticles are cytotoxic. We also show that titanium dioxide nanoparticles are highly effective in inducing autophagy, a cellular disposal mechanism that is often activated when the cell is under stress. CONCLUSION We suggest that these image-based assays provide a method of screening for the biological effects of similar compounds that is both efficient and sensitive as well as do not involve the use of animals.
Collapse
Affiliation(s)
- Julia X Yu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA.
| | | |
Collapse
|
41
|
Elvira G, Moreno B, Valle ID, Garcia-Sanz JA, Canillas M, Chinarro E, Jurado JR, Silva A. Targeting neural stem cells with titanium dioxide nanoparticles coupled to specific monoclonal antibodies. J Biomater Appl 2011; 26:1069-89. [PMID: 21586599 DOI: 10.1177/0885328210393294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aiming to characterize the use of biomaterials in cancer therapy, we took advantage of the n-type semiconductor properties, which upon irradiation excite their electrons into the conduction band to induce photoelectrochemical reactions generating oxygen reactive species (ROS). Indeed, photoactivated TiO(2) nanoparticles have been shown to kill in vitro either bacteria or tumor cells in culture following UV irradiation, as a consequence of the ROS levels generated; the killing was highly effective although devoid of specificity. In this report, we have directed the TiO(2) nanoparticles to particular targets by coupling them to the monoclonal antibody (mAb) Nilo1, recognizing a surface antigen in neural stem cells within a cell culture, to explore the possibility of making this process specific. TiO(2) nanoparticles generated with particular rutile/anatase ratios were coupled to Nilo1 antibody and the complexes formed were highly stable. The coupled antibody retained the ability to identify neural stem cells and upon UV irradiation, the TiO(2) nanoparticles were activated, inducing the selective photokilling of the antibody-targeted cells. Thus, these data indicate that antibody-TiO(2) complexes could be used to specifically remove target cell subpopulations, as demonstrated with neural stem cells. The possible applications in cancer therapy are discussed.
Collapse
Affiliation(s)
- Gema Elvira
- Cellular and Molecular Medicine Department, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Iavicoli I, Leso V, Fontana L, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2011; 15:481-508. [PMID: 21744743 DOI: 10.1155/2012/964381] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent rapid advances in nanotechnology raise concerns about development, production route, and diffusion in industrial and consumer products of titanium dioxide nanoparticles (TiO2-NPs). In fact, compared to recent increase in applications of this nanomaterial, the health effects of human exposure have not been systematically investigated. The aim of this review was to provide a comprehensive overview on the current knowledge regarding the effects of TiO2-NPs on mammalian cells. EVIDENCE AND INFORMATION SOURCES This review is based on an analysis of the current literature on this topic. STATE OF THE ART Fine TiO2 particles have been considered as safe and to pose little risk to humans, suggesting that exposure to this material is relatively harmless. However, available data in the literature showed that TiO2-NPs can cause several adverse effects on mammalian cells such as increase of reactive oxygen species (ROS) production and cytokines levels, reduction of cell viability and proliferation, induction of apoptosis and genotoxicity. PERSPECTIVES AND CONCLUSIONS Additional research is needed to obtain up-to-date knowledge on health effects of TiO2-NPs and to avoid any potential risk correlated to their exposure. Consequently, future studies need to: (1) use an homogeneous and rigorous exposure classification to clarify how the physicochemical properties of TiO2-NPs correlate with their toxicological effects; (2) assess the potential adverse effects of low level exposures to TiO2-NPs, as most of the information currently available originates from studies in which exposure levels were excessively and unrealistically high; (3) identify the possible roles of TiO2-NPs in genotoxicity and carcinogenicity (4) carry out epidemiologic studies of exposed workers to provide an assessment of possible risks correlated to the occupational exposure to TiO2-NPs.
Collapse
Affiliation(s)
- I Iavicoli
- Institute of Occupational Medicine, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | |
Collapse
|
43
|
PetkoviĆ J, Žegura B, StevanoviĆ M, Drnovšek N, UskokoviĆ D, Novak S, FilipiČ M. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2010; 5:341-53. [DOI: 10.3109/17435390.2010.507316] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Choi H, Shin DW, Kim W, Doh SJ, Lee SH, Noh M. Asian dust storm particles induce a broad toxicological transcriptional program in human epidermal keratinocytes. Toxicol Lett 2010; 200:92-9. [PMID: 21056094 DOI: 10.1016/j.toxlet.2010.10.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 12/15/2022]
Abstract
Exposure to airborne dust particles originated from seasonal Asian dust storms in Chinese and Mongolian deserts results in increased incidence of a range of diseases including asthma, contact dermatitis and conjunctivitis. The areas affected by Asian dust particles extend from East China to the west coast of North America. In order to study toxicological mechanisms in human skin, we evaluated the effects of dust particles collected during Asian dust storms (Asian dust particles) on gene expression in human epidermal keratinocytes (HEK). In HEK, exposure to Asian dust particles significantly increased gene expressions of cytochrome P450 1A1 (CYP1A1), CYP1A2, and CYP1B1, which is an indication of aryl hydrocarbon receptor (AHR) activation. In addition, Asian dust particles increased gene transcription of the cytokines IL-6, IL-8, and GM-CSF, which have broad pro-inflammatory and immunomodulatory properties. Asian dust particles significantly up-regulated expression of caspase 14 in HEK, suggesting that Asian dust particles directly affect keratinocyte differentiation. We also demonstrated that protein extract of pollen, a material frequently adsorbed onto Asian dust particles, potentially contributes to the increased transcription of IL-6, CYP1A1, CYP1A2, and CYP1B1. Taken together, these studies suggest that Asian dust particles can exert toxicological effects on human skin through the activation of the cellular detoxification system, the production of pro-inflammatory and immunomodulatory cytokines, and changes in the expression of proteins essential in normal epidermal differentiation.
Collapse
Affiliation(s)
- Hyun Choi
- Bioscience Institute, AmorePacific Corporation R&D Center, Yongin, Gyeounggi-do 446-729, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
Gao J, Liu B, Wang J, Jin X, Jiang R, Liu L, Wang B, Xu Y. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 77:895-901. [PMID: 20846902 DOI: 10.1016/j.saa.2010.08.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 08/12/2010] [Accepted: 08/26/2010] [Indexed: 05/16/2023]
Abstract
The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.
Collapse
Affiliation(s)
- Jingqun Gao
- Department of Chemistry, Liaoning University, Shenyang 110036, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dissette V, Bozzi P, Bignozzi CA, Dalpiaz A, Ferraro L, Beggiato S, Leo E, Vighi E, Pasti L. Particulate adducts based on sodium risedronate and titanium dioxide for the bioavailability enhancement of oral administered bisphosphonates. Eur J Pharm Sci 2010; 41:328-36. [DOI: 10.1016/j.ejps.2010.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/04/2010] [Accepted: 06/29/2010] [Indexed: 11/17/2022]
|
47
|
Thurn KT, Arora H, Paunesku T, Wu A, Brown EMB, Doty C, Kremer J, Woloschak G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:123-30. [PMID: 20887814 DOI: 10.1016/j.nano.2010.09.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/27/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
UNLABELLED Nanotechnology has introduced many exciting new tools for the treatment of human diseases. One of the obstacles in its application to that end is the lack of a fundamental understanding of the interaction that occurs between nanoparticles and living cells. This report describes the quantitative analysis of the kinetics and endocytic pathways involved in the uptake of anatase titanium dioxide (TiO(2)) nanoparticles into prostate cancer PC-3M cells. The experiments were performed with TiO(2) nanoconjugates: 6-nm nanoparticles with surface-conjugated fluorescent Alizarin Red S. Results obtained by flow cytometry, fluorescence microscopy, and inductively coupled plasma-mass spectrometry confirmed a complex nanoparticle-cell interaction involving a variety of endocytic mechanisms. The results demonstrated that a temperature, concentration, and time-dependent internalization of the TiO(2) nanoparticles and nanoconjugates occurred via clathrin-mediated endocytosis, caveolin-mediated endocytosis, and macropinocytosis. FROM THE CLINICAL EDITOR The interaction and uptake of TiO(2) nanoparticles (6-nm) with prostate PC-3M cells was investigated and found to undergo temperature, time, and concentration dependent intracellular transport that was mediated through clathrin pits, caveolae, and macropinocytosis. These results suggest that nanoparticles may widely permeate through tissues and enter almost any active cell through a variety of biological mechanisms, posing both interesting opportunity and possible challenges for systemic use.
Collapse
Affiliation(s)
- Kenneth T Thurn
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Simon M, Barberet P, Delville MH, Moretto P, Seznec H. Titanium dioxide nanoparticles induced intracellular calcium homeostasis modification in primary human keratinocytes. Towards anin vitroexplanation of titanium dioxide nanoparticles toxicity. Nanotoxicology 2010; 5:125-39. [DOI: 10.3109/17435390.2010.502979] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kubota Y, Terasaka S, Iwasaki Y. Novel Photodynamic Therapy Using Water-dispersed TiO2-Polyethylene Glycol Compound: Evaluation of Antitumor Effect on Glioma Cells and Spheroids In Vitro. Photochem Photobiol 2010; 86:964-71. [DOI: 10.1111/j.1751-1097.2010.00742.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Wong MS, Sun DS, Chang HH. Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures. PLoS One 2010; 5:e10394. [PMID: 20454454 PMCID: PMC2861596 DOI: 10.1371/journal.pone.0010394] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 04/06/2010] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Titania dioxide (TiO(2)) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2) photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved. METHODOLOGY/PRINCIPAL FINDINGS Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2) thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2), carbon-doped TiO(2) [TiO(2) (C)] and nitrogen-doped TiO(2) [TiO(2) (N)], TiO(2) (N) showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2) (N) substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials. CONCLUSION/SIGNIFICANCE Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.
Collapse
Affiliation(s)
- Ming-Show Wong
- Department of Materials Science and Engineering, National Dong-Hwa University, Hualien, Taiwan
- Nanotechnology Research Center, National Dong-Hwa University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Nanotechnology Research Center, National Dong-Hwa University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan, Republic of China
- Tzu-Chi University Center for Vascular Medicine, Tzu-Chi University, Hualien, Taiwan, Republic of China
| |
Collapse
|