1
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
2
|
Li C, Li J. Dysregulation of systemic immunity in colorectal cancer and its clinical applications as biomarkers and therapeutics. Crit Rev Oncol Hematol 2024; 204:104543. [PMID: 39454739 DOI: 10.1016/j.critrevonc.2024.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The immune system plays critical roles in the initiation and progression of colorectal cancer (CRC), and the majority of studies have focused on immune perturbations within the tumor microenvironment. In recent years, systemic immunity, which mainly occurs in the periphery, has attracted much attention. In CRC, both the tumor itself and treatments have extensive effects on systemic immunity, characterized by alterations in circulating cytokines and immune cells. In addition, intact systemic immunity is critical for the efficacy of therapies for CRC, especially immunotherapy. Therefore, various strategies aimed at alleviating the detrimental effects of traditional therapies or directly harnessing the components of systemic immunity for CRC treatment have been developed. However, whether these improvements can translate to survival benefits requires further study. This review aims to comprehensively outline the current knowledge of systemic immunity in CRC.
Collapse
Affiliation(s)
- Changqin Li
- Department of Clinical Laboratory, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Jian Li
- Department of General Surgery, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China.
| |
Collapse
|
3
|
Chen R, Liu L, Chen H, Xing C, Zhang T, Pang Y, Yang X. Evaluation of the clinical application value of cytokine expression profiles in the differential diagnosis of prostate cancer. Cancer Immunol Immunother 2024; 73:139. [PMID: 38833027 PMCID: PMC11150366 DOI: 10.1007/s00262-024-03723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The significance of tumor-secreted cytokines in tumor development has gained substantial attention. Nevertheless, the precise role of tumor-related inflammatory cytokines in prostate cancer (PCa) remains ambiguous. OBJECTIVES To gain deeper insights into the inflammatory response in the process of PCa. METHODS A total of 233 cases were collected, including 80 cases of prostate hyperplasia as disease control, 65 cases of postoperative prostate cancer and 36 cases of prostate cancer as PCa group. Additionally, 52 patients undergoing physical examinations during the same period were collected as the healthy control. The levels of 12 inflammatory cytokines in peripheral blood samples were analyzed using flow cytometric bead array technology. The levels of total prostate-specific antigen (TPSA) and free prostate-specific antigen (FPSA) in peripheral blood samples were analyzed using electrochemiluminescence technology. RESULTS Our findings revealed significant increases in serum IL-8 levels in PCa group compared to the healthy control group. Additionally, IL-6, IL-10, IFN-γ and IL-12p70 levels were markedly elevated in the PCa group compared to the disease control group (all p < 0.05). Conversely, the level of IL-4, TNF-α, IL-1β, IL-17A and IFN-α were lower in the PCa group compared to those in control group. Following surgery, the concentration of IL-6 decreased; whereas, the concentrations of IL-4, TNF-α, IL-17A, IL-1β, IL-12p70, and IFN-α increased, demonstrating significant differences (p < 0.05). The differential upregulation of IL-6 or downregulation of IL-17A in peripheral blood exhibited diagnostic efficacy in PCa patients. Moreover, we observed a significant increase in IL-17A levels, accompanied by decreased of IL-2, IL-4, IL-10, TNF-a, IFN-γ, IL-1β, and IL-12P70 in patients with distant metastasis. CONCLUSION The peripheral blood cytokines are closely associated with the occurrence and development of prostate cancer, especially the serum levels of IL-6 and IL-17A may be useful as potential predictors of PCa diagnosis.
Collapse
Affiliation(s)
- Rongfa Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Linna Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hui Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chao Xing
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Tingting Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
4
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect colorectal cancer development and associated inflammation. Front Oncol 2023; 13:1158261. [PMID: 37228491 PMCID: PMC10203952 DOI: 10.3389/fonc.2023.1158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few μL of plasma sample. Results Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Qianru Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowicz
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | | | | | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Li W, Chen F, Gao H, Xu Z, Zhou Y, Wang S, Lv Z, Zhang Y, Xu Z, Huo J, Zhao J, Zong Y, Feng W, Shen X, Wu Z, Lu A. Cytokine concentration in peripheral blood of patients with colorectal cancer. Front Immunol 2023; 14:1175513. [PMID: 37063892 PMCID: PMC10098211 DOI: 10.3389/fimmu.2023.1175513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The role of tumour secretory cytokines and peripheral circulatory cytokines in tumour progression has received increasing attention; however, the role of tumour-related inflammatory cytokines in colorectal cancer (CRC) remains unclear. In this study, the concentrations of various cytokines in the peripheral blood of healthy controls and patients with CRC at different stages were compared. Methods Peripheral blood samples from 4 healthy participants and 22 colorectal cancer patients were examined. Luminex beads were used to evaluate concentration levels of 40 inflammatory cytokines in peripheral blood samples. Results In peripheral blood, compared with healthy controls and early stage (I + II) CRC patients, advanced CRC (III + IV) patients had increased concentrations of mononuclear/macrophage chemotactic-related proteins (CCL7, CCL8, CCL15, CCL2, and MIF), M2 polarization-related factors (IL-1β, IL-4), neutrophil chemotactic and N2 polarization-related cytokines (CXCL2, CXCL5, CXCL6, IL-8), dendritic cells (DCs) chemotactic-related proteins (CCL19, CCL20, and CCL21), Natural killer (NK) cell related cytokines (CXCL9, CXCL10), Th2 cell-related cytokines (CCL1, CCL11, CCL26), CXCL12, IL-2, CCL25, and CCL27, and decreased IFN-γ and CX3CL1 concentrations. The differential upregulation of cytokines in peripheral blood was mainly concentrated in CRC patients with distant metastasis and was related to the size of the primary tumour; however, there was no significant correlation between cytokine levels in peripheral blood and the propensity and mechanism of lymph node metastasis. Discussion Different types of immune cells may share the same chemokine receptors and can co-localise in response to the same chemokines and exert synergistic pro-tumour or anti-tumour functions in the tumour microenvironment. Chemokines and cytokines affect tumour metastasis and prognosis and may be potential targets for treatment.
Collapse
Affiliation(s)
- Wenchang Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Han Gao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shenjie Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohui Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaohui Shen, ; Zhiyuan Wu, ; Aiguo Lu,
| |
Collapse
|
6
|
The Cytokine Network in Colorectal Cancer: Implications for New Treatment Strategies. Cells 2022; 12:cells12010138. [PMID: 36611932 PMCID: PMC9818504 DOI: 10.3390/cells12010138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.
Collapse
|
7
|
Noble A, Pring ET, Durant L, Man R, Dilke SM, Hoyles L, James SA, Carding SR, Jenkins JT, Knight SC. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol Immunother 2022. [PMID: 35316367 DOI: 10.1007/s00262-021-03135-8/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Edward T Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella M Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Steve A James
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John T Jenkins
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK.
| |
Collapse
|
8
|
Noble A, Pring ET, Durant L, Man R, Dilke SM, Hoyles L, James SA, Carding SR, Jenkins JT, Knight SC. Altered immunity to microbiota, B cell activation and depleted γδ/resident memory T cells in colorectal cancer. Cancer Immunol Immunother 2022; 71:2619-2629. [PMID: 35316367 PMCID: PMC9519644 DOI: 10.1007/s00262-021-03135-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
The role of microbiota:immune system dysregulation in the etiology of colorectal cancer (CRC) is poorly understood. CRC develops in gut epithelium, accompanied by low level inflammatory signaling, intestinal microbial dysbiosis and immune dysfunction. We examined populations of intraepithelial lymphocytes in non-affected colonic mucosa of CRC and healthy donors and circulating immune memory to commensal bacterial species and yeasts. γδ T cells and resident memory T cells, populations with a regulatory CD39-expressing phenotype, were found at lower frequencies in the colonic tissue of CRC donors compared to healthy controls. Patterns of T cell proliferative responses to a panel of commensal bacteria were distinct in CRC, while B cell memory responses to several bacteria/yeast were significantly increased, accompanied by increased proportions of effector memory B cells, transitional B cells and plasmablasts in blood. IgA responses to mucosal microbes were unchanged. Our data describe a novel immune signature with similarities to and differences from that of inflammatory bowel disease. They implicate B cell dysregulation as a potential contributor to parainflammation and identify pathways of weakened barrier function and tumor surveillance in CRC-susceptible individuals.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Edward T Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella M Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Steve A James
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
| | - Simon R Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John T Jenkins
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK.
- St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, UK.
| |
Collapse
|
9
|
Evaluation of the Effects of Genistein In Vitro as a Chemopreventive Agent for Colorectal Cancer—Strategy to Improve Its Efficiency When Administered Orally. Molecules 2022; 27:molecules27207042. [PMID: 36296636 PMCID: PMC9612062 DOI: 10.3390/molecules27207042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal Cancer (CRC) ranks third in terms of incidence and second in terms of mortality and prevalence worldwide. In relation to chemotherapy treatment, the most used drug is 5-fluorouracil (5-FU); however, the use of this drug generates various toxic effects at the systemic level. For this reason, new therapeutic strategies are currently being sought that can be used as neoadjuvant or adjuvant treatments. Recent research has shown that natural compounds, such as genistein, have chemotherapeutic and anticancer effects, but the mechanisms of action of genistein and its molecular targets in human colon cells have not been fully elucidated. The results reported in relation to non-malignant cell lines are also unclear, which does not allow evidence of the selectivity that this compound may have. Therefore, in this work, genistein was evaluated in vitro in both cancer cell lines SW480 and SW620 and in the non-malignant cell line HaCaT. The results obtained show that genistein has selectivity for the SW480 and SW620 cell lines. In addition, it inhibits cell viability and has an antiproliferative effect in a dose-dependent manner. Increased production of reactive oxygen species (ROS) was also found, suggesting an association with the cell death process through various mechanisms. Finally, the encapsulation strategy that was proposed made it possible to demonstrate that bacterial nanocellulose (BNC) is capable of protecting genistein from the acidic conditions of gastric fluid and also allows the release of the compound in the colonic fluid. This would allow genistein to act locally in the mucosa of the colon where the first stages of CRC occur.
Collapse
|
10
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
11
|
Noble A, Durant L, Dilke SM, Man R, Martin I, Patel R, Hoyles L, Pring ET, Latchford A, Clark SK, Carding SR, Knight SC. Altered Mucosal Immune-Microbiota Interactions in Familial Adenomatous Polyposis. Clin Transl Gastroenterol 2022; 13:e00428. [PMID: 35297393 PMCID: PMC10476795 DOI: 10.14309/ctg.0000000000000428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Familial adenomatous polyposis (FAP) is a condition caused by a constitutional pathogenic variant of the adenomatous polyposis coli gene that results in intestinal adenoma formation and colorectal cancer, necessitating pre-emptive colectomy. We sought to examine interaction between the mucosal immune system and commensal bacteria in FAP to test for immune dysfunction that might accelerate tumorigenesis. METHODS Colonic biopsies were obtained from macroscopically normal mucosal tissue from 14 healthy donors and 13 patients with FAP during endoscopy or from surgical specimens. Intraepithelial and lamina propria lymphocytes were phenotyped. Intraepithelial microbes were labeled with anti-IgA/IgG and analyzed by flow cytometry. RESULTS Proportions of resident memory CD103-expressing CD8 + and γδ T-cell receptor + intraepithelial lymphocytes were dramatically reduced in both the left and right colon of patients with FAP compared with healthy controls. In lamina propria, T cells expressed less CD103, and CD4 + CD103 + cells expressed less CD73 ectonucleotidase. IgA coating of epithelia-associated bacteria, IgA + peripheral B cells, and CD4 T-cell memory responses to commensal bacteria were increased in FAP. DISCUSSION Loss of resident memory T cells and γδ T cells in mucosal tissue of patients with FAP accompanies intestinal microbial dysbiosis previously reported in this precancerous state and suggests impaired cellular immunity and tumor surveillance. This may lead to barrier dysfunction, possible loss of regulatory T-cell function, and excess IgA antibody secretion. Our data are the first to implicate mucosal immune dysfunction as a contributing factor in this genetically driven disease and identify potentially critical pathways in the etiology of CRC.
Collapse
Affiliation(s)
- Alistair Noble
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, United Kingdom;
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Stella M. Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Ripple Man
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
| | - Isabel Martin
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
| | - Roshani Patel
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom;
| | - Edward T. Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| | - Andrew Latchford
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
- Department of Surgery and Cancer, Imperial College London, United Kingdom;
| | - Susan K. Clark
- The Polyposis Registry, St. Mark's Hospital, London North West University Healthcare NHS Trust, Harrow, United Kingdom;
- Department of Surgery and Cancer, Imperial College London, United Kingdom;
| | - Simon R. Carding
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, United Kingdom;
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Stella C. Knight
- Gut Microbes and Health Program, Quadram Institute Bioscience, Norwich, United Kingdom;
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, United Kingdom;
| |
Collapse
|
12
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
13
|
Wang CZ, Wan C, Luo Y, Zhang CF, Zhang QH, Chen L, Park CW, Kim SH, Liu Z, Lager M, Xu M, Hou L, Yuan CS. Ginseng berry concentrate prevents colon cancer via cell cycle, apoptosis regulation, and inflammation-linked Th17 cell differentiation. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2021; 72. [PMID: 34374659 DOI: 10.26402/jpp.2021.2.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
The Asian ginseng root (Panax ginseng C.A. Meyer) is a very commonly used herbal medicine worldwide. Ginseng fruit, including the berry (or pulp) and seed, is also valuable for several health conditions including immunostimulation and cancer chemoprevention. In this study, the anticancer and anti-proliferative effects of the extracts of ginseng berry and seed were evaluated. The ginsenosides in the ginseng berry concentrate (GBC) and ginseng seed extract (GSE) were analyzed. We then evaluated their anti-colorectal cancer potentials, including antiproliferation, cell cycle arrest, and apoptotic induction. Further investigation consisted of the berry's adaptive immune responses, such as the actions on the differentiation of T helper cells Treg, Th1, and Th17. The major constituents in GBC were ginsenosides Re and Rd, which can be compared to those in the root. The GBC significantly inhibited colon cancer cell growth, and its anti-proliferative effect involved mechanisms including G2/M cell cycle arrest via upregulation of cyclin A and induction of apoptosis via regulation of apoptotic related gene expressions. GBC also downregulated the expressions of pro-inflammatory cytokine genes. For the adaptive immune responses, GBC did not influence Th1 and Treg cell differentiation but significantly inhibited Th17 cell differentiation and thus regulated the balance of Th17/Treg for adaptive immunity. Although no ginsenoside was detected in the GSE, interestingly, it obviously enhanced colon cancer cell proliferation with the underlined details to be determined. Our results suggested that GBC is a promising dietary supplement for cancer chemoprevention and immunomodulation.
Collapse
Affiliation(s)
- C-Z Wang
- Central Laboratory, No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China.,Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - C Wan
- Central Laboratory, No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China.,Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - Y Luo
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - C-F Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Q-H Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - L Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - C W Park
- Health Care Research Institute Research and Development Center, AmorePacific Corporetion, Yongin, Republic of Korea
| | - S H Kim
- Health Care Research Institute Research and Development Center, AmorePacific Corporetion, Yongin, Republic of Korea
| | - Z Liu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - M Lager
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - M Xu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | - L Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - C-S Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA. .,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Takemori Y, Sasayama D, Toida Y, Kotagiri M, Sugiyama N, Yamaguchi M, Washizuka S, Honda H. Possible utilization of salivary IFN-γ/IL-4 ratio as a marker of chronic stress in healthy individuals. Neuropsychopharmacol Rep 2021; 41:65-72. [PMID: 33465301 PMCID: PMC8182956 DOI: 10.1002/npr2.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Several studies show that psychological stress reduces Th1/Th2 ratio in blood samples. However, evidence is scarce regarding the cytokine alterations during stress in saliva. We investigated the influence of chronic stress on Th1/Th2 ratio and cytokine profiles in the saliva of healthy individuals. Further, we examined the associations of the salivary cytokine levels with sleep and attention problems, which are closely related with psychological stress. Methods Salivary levels of 27 cytokines were measured by multiplex bead array assays in 31 healthy young individuals (health science students and hospital staff consisting of 11 men and 20 women, mean age [standard deviation] =21.5 [0.8] years). The Kessler Psychological Distress scale (K10) and Athens Insomnia Scale (AIS) were administered to assess subjective chronic psychological stress and sleep problems. Further, participants were asked to wear Actigraph GT3X accelerometers for 3 days to assess the total sleep time. Attention problems were assessed by administering the Integrated Visual and Auditory Continuous Performance Test (IVA‐CPT). Results Thirteen cytokines with >80% detectable results were included in the main analyses. The IFN‐γ/IL‐4 ratio, which is a commonly used index for Th1/Th2 ratio, showed significant negative correlations with the K10 and AIS scores. None of the cytokines were significantly associated with sex, body mass index, sleep index measured by Actigraph, or IVA‐CPT scores. Conclusion Chronic stress may be associated with alterations of the Th1/Th2 balance in salivary cytokine production. IFN‐γ/IL‐4 ratio in saliva may serve as a potential biomarker of chronic stress in healthy individuals. The present study investigated the influence of chronic stress on Th1/Th2 ratio and cytokine profiles in the saliva of healthy individuals. The IFN‐γ/IL‐4 ratio showed a significant negative correlation with chronic stress, assessed by the Kessler Psychological Distress scale. IFN‐γ/IL‐4 ratio in saliva may serve as a potential biomarker of chronic stress in healthy individuals.![]()
Collapse
Affiliation(s)
- Yuika Takemori
- Department of Health Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Mental Health Clinic for Children, Shinshu University Hospital, Matsumoto, Japan
| | - Daimei Sasayama
- Mental Health Clinic for Children, Shinshu University Hospital, Matsumoto, Japan.,Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.,Department of Child and Adolescent Developmental Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukiyo Toida
- Department of Health Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Minori Kotagiri
- Department of Applied Occupational Therapy, Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Nobuhiro Sugiyama
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.,Department of Applied Occupational Therapy, Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Masaki Yamaguchi
- Department of Mechanical Engineering & Robotics, Shinshu University Graduate School of Science & Technology, Ueda, Japan
| | - Shinsuke Washizuka
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hideo Honda
- Mental Health Clinic for Children, Shinshu University Hospital, Matsumoto, Japan.,Department of Child and Adolescent Developmental Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
15
|
Novel Model to Predict the Prognosis of Patients with Stage II-III Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8812974. [PMID: 33299880 PMCID: PMC7704148 DOI: 10.1155/2020/8812974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Different opinions exist on the relationship between the C-reactive protein-to-albumin ratio (CAR) and the prognosis of colon cancer. This study is aimed at evaluating the relationship between CAR and prognosis of stage II–III colon cancer and establishing a clinical prognosis model. Patients were randomised to a training set (566 cases) and validation set (110 cases). The relationship between CAR and clinicopathological variables was calculated, and the Kaplan-Meier method was used to analyse the overall survival (OS) rate of colon cancer. In the training set, colon cancer independent risk factors were included in the prognosis model and then tested in the validation set. The accuracy and discrimination of the model were assessed using the C-index and calibration curves. Compared with patients with low CAR, patients with high CAR showed significantly poorer survival (P = 0.020). In the multivariate analysis, CAR, carcinoembryonic antigen (CEA), lymph node metastasis, operation mode, and perineural invasion were identified as independent prognostic indicators and adopted to establish the prediction model. The C-index of the nomogram for predicting OS reached 0.751 in the training set and 0.719 in the validation set. The calibration curve exhibited good consistency. In the present study, the CAR may be an independent prognostic factor for stage II–III colon cancer, and the nomogram has a certain predictive value. However, further prospective large-sample research needs to be conducted to validate our findings.
Collapse
|
16
|
Song H, Tang X, Li X, Wang Y, Deng A, Wang W, Zhang H, Qin H, Wu L. HLJ2 Effectively Ameliorates Colitis-Associated Cancer via Inhibition of NF-κB and Epithelial-Mesenchymal Transition. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4291-4302. [PMID: 33116416 PMCID: PMC7573331 DOI: 10.2147/dddt.s262806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023]
Abstract
Introduction Colitis-associated cancer (CAC) accounts for approximately 15% of IBD patient mortalities. However, currently available anti-CAC drugs possess many disadvantages including safety, specificity and side effects. Therefore, the development of novel anti-CAC compounds is imperative. HLJ2 was a monomeric compound synthesized by our institute and reported to have an effect on ulcer colitis. Methods In vivo the AOM/DSS-induced CAC model was used to evaluate the effects of HLJ2 on ameliorating CAC symptoms, immunohistochemical analysis was used to analyze the pathological damage to colons and epithelial–mesenchymal transition was for changes of cytokines. In vitro, flow cytometric analysis, immunofluorescence and Western blot were used to detect the inhibition effect of HLJ2 on nuclear factor-κB and epithelial–mesenchymal transition in TGF-β1-stimulated SW480 cells. Results In the AOM/DSS animal model, HLJ2 was demonstrated to inhibit the secretion of inflammatory cytokines and nuclear factor-κB, levels of tumorigenesis-related proteins including snail, and finally inhibited a key step in metastasis, epithelial–mesenchymal transition. In vitro, HLJ2 was also shown to inhibit nuclear factor-κB and epithelial–mesenchymal transition in TGF-β1-stimulated SW480 cells in accordance with in vivo results. Meanwhile, the nuclear factor-κB inhibitor could interrupt the effect of HLJ2 on epithelial–mesenchymal transition. Discussion HLJ2 may ameliorate CAC through inhibiting nuclear factor-κB and then downstream epithelial–mesenchymal transition. The combination of the obvious improvement in effects on CAC without obvious side effects suggests that HLJ2 could be developed as a potential CAC therapeutic candidate.
Collapse
Affiliation(s)
- Huachen Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiaonan Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yufei Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Anjun Deng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wenjie Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Haijing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Hailin Qin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - LianQiu Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
17
|
Vecchio R, Cacciola E, Cacciola RR, Marchese S, Troina G, Intagliata E, Basile F. Hemocoagulative post-operative changes after laparoscopic surgery compared to open surgery: the role of lupus anticoagulant. Updates Surg 2020; 72:1223-1227. [PMID: 32170631 DOI: 10.1007/s13304-020-00724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Although still debated, post-operative modification of hemostasis seems to be less pronounced after laparoscopy compared to open surgery. Antiphospholipid antibodies might play a role in the post-operative thromboembolic risk, although their evaluation in surgical patients has never been performed. Post-operative modification of antiphospholipid antibodies could be related to the surgical approach (laparoscopic or open). In this prospective study, the authors statistically compared the pre-operative values and post-operative modification of antiphospholipid antibodies in two homogeneous groups of patients operated on by laparoscopic and open surgery. No statistical differences within each group and between the two groups were shown comparing mean values of pre-operative and post-operative antiphospholipid antibodies. In the open group, there was a significant difference between pre-operative and post-operative LAC means (P < 0.01). In the laparoscopic group, on the contrary, no significant change in LAC values between pre- and post-operative tests (P = 0.55) was observed. Since LAC could be related to coagulation disorders, this study seems to support that laparoscopic surgery might induce a less risk of post-operative thromboembolic disease.
Collapse
Affiliation(s)
- Rosario Vecchio
- Department of Surgery, University of Catania, Catania, Italy
| | - Emma Cacciola
- Department of Medical Sciences, Surgical Sciences and Advanced Technologies, Hemostasis Unit, University of Catania, Catania, Italy
| | | | | | - Graziano Troina
- Department of Clinic and Specialist Medicine, University of Palermo, Palermo, Italy
| | - Eva Intagliata
- Department of Surgery, University of Catania, Catania, Italy.
| | | |
Collapse
|
18
|
Abstract
Resistance to cancer therapy remains a major challenge in clinical oncology. Although the initial treatment phase is often successful, eventual resistance, characterized by tumour relapse or spread, is discouraging. The majority of studies devoted to investigating the basis of resistance have focused on tumour-related changes that contribute to therapy resistance and tumour aggressiveness. However, over the last decade, the diverse roles of various host cells in promoting therapy resistance have become more appreciated. A growing body of evidence demonstrates that cancer therapy can induce host-mediated local and systemic responses, many of which shift the delicate balance within the tumour microenvironment, ultimately facilitating or supporting tumour progression. In this Review, recent advances in understanding how the host response to different cancer therapies may promote therapy resistance are discussed, with a focus on therapy-induced immunological, angiogenic and metastatic effects. Also summarized is the potential of evaluating the host response to cancer therapy in an era of precision medicine in oncology.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
19
|
Guner A, Kim HI. Biomarkers for Evaluating the Inflammation Status in Patients with Cancer. J Gastric Cancer 2019; 19:254-277. [PMID: 31598370 PMCID: PMC6769371 DOI: 10.5230/jgc.2019.19.e29] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation can be a causative factor for carcinogenesis or can result from a consequence of cancer progression. Moreover, cancer therapeutic interventions can also induce an inflammatory response. Various inflammatory parameters are used to assess the inflammatory status during cancer treatment. It is important to select the most optimal biomarker among these parameters. Additionally, suitable biomarkers must be examined if there are no known parameters. We briefly reviewed the published literature for the use of inflammatory parameters in the treatment of patients with cancer. Most studies on inflammation evaluated the correlation between host characteristics, effect of interventions, and clinical outcomes. Additionally, the levels of C-reactive protein, albumin, lymphocytes, and platelets were the most commonly used laboratory parameters, either independently or in combination with other laboratory parameters and clinical characteristics. Furthermore, the immune parameters are classically examined using flow cytometry, immunohistochemical staining, and enzyme-linked immunosorbent assay techniques. However, gene expression profiling can aid in assessing the overall peri-interventional immune status. The checklists of guidelines, such as STAndards for Reporting of Diagnostic accuracy and REporting recommendations for tumor MARKer prognostic studies should be considered when designing studies to investigate the inflammatory parameters. Finally, the data should be interpreted after adjusting for clinically important variables, such as age and cancer stage.
Collapse
Affiliation(s)
- Ali Guner
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Department of General Surgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.,Department of Biostatistics and Medical Informatics, Institute of Medical Science, Karadeniz Technical University, Trabzon, Turkey
| | - Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei University Health System, Seoul, Korea.,Gastric Cancer Center, Yonsei Cancer Hospital; Seoul, Korea
| |
Collapse
|
20
|
Bednarz-Misa I, Diakowska D, Krzystek-Korpacka M. Local and Systemic IL-7 Concentration in Gastrointestinal-Tract Cancers. ACTA ACUST UNITED AC 2019; 55:medicina55060262. [PMID: 31185636 PMCID: PMC6630562 DOI: 10.3390/medicina55060262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/17/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Background and objectives: Interleukin-7 (IL-7) is exploited in cancer immunotherapies although its status in solid tumors is largely unknown. We aimed to determine its systemic and local concentrations in esophageal (EC), gastric (GC), and colorectal (CRC) cancers. Materials and Methods: IL-7 was immunoenzymatically measured in paired surgical specimens of tumors and tumor-adjacent tissue (n = 48), and in the sera of 170 individuals (54 controls and 116 cancer patients). Results: IL-7 was higher in tumors as compared to noncancerous tissue in all cancers (mean difference: 29.5 pg/g). The expression ratio (tumor to normal) was 4.4-fold in GC, 2.2-fold in EC, and 1.7-fold in CRC. However, when absolute concentrations were compared, the highest IL-7 concentrations were in CRC, both when tumor and noncancerous tissue were analyzed. In CRC tumors, IL-7 was 2 and 1.5 times higher than in EC and GC tumors. In noncancerous CRC tissue, IL-7 was 2.3- and 2.8-fold higher than in EC and GC. IL-7 overexpression was more pronounced in Stage 3/4 and N1 cancers as a result of decreased cytokine expression in noncancerous tissue. Tumor location was a key factor in determining both local and systemic IL-7 concentrations. Serum IL-7 in CRC and EC was higher than in controls, GC, and patients with adenocarcinoma of gastric cardia (CC), but no significant correlation with the disease advancement could be observed. Conclusions: IL-7 protein is overexpressed in EC, GC, and CRC, but concentrations differ both in tumor and tumor-adjacent tissue with respect to tumor location. More advanced cancers have lower IL-7 concentrations in the immediate environment of the tumor. At the systemic level, IL-7 is elevated in CRC and EC, but not CC or GC. IL-7 dependence on the location of the primary tumor should be taken into account in future IL-7-based immunotherapies. Functional studies explaining a role of IL-7 in gastrointestinal cancers are needed.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Dorota Diakowska
- Department of Gastrointestinal and General Surgery, Wroclaw Medical University, 50-368 Wroclaw, Poland.
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland.
| | | |
Collapse
|
21
|
Yamaguchi M, Okamura S, Yamaji T, Iwasaki M, Tsugane S, Shetty V, Koizumi T. Plasma cytokine levels and the presence of colorectal cancer. PLoS One 2019; 14:e0213602. [PMID: 30883594 PMCID: PMC6422333 DOI: 10.1371/journal.pone.0213602] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Cancer-related activation of cytokine networks are central aspects of tumor development. The goal of the study was to examine the possibility of plasma cytokines for the screening of colorectal cancer (CRC). Methods We carried out a multicenter, hospital-based case-control study in 66 adult Japanese patients with CRC and 87 healthy adult Japanese. A multiplex bead array immunoassay was used to examine 27 different plasma cytokines. Their association with the presence of CRC was evaluated by logistic regression analysis after adjusting for potential confounding factors. Results Thirteen plasma cytokines were notably associated with the presence of CRC (p< 0.05). Receiver operating characteristic analysis revealed that the combinatorial assessment of some of these plasma cytokines showed “good” capability for discriminating between CRC patients and control subjects (area under the curve (AUC): 0.819 for the combination of IL-9, Eotaxin, G-CSF, and TNF-α; 0.832 for the combination of IL-4, IL-8, Eotaxin, IP-10, and TNF-α). Individual cytokine assessments presented lower AUCs (0.657–0.755) than the combinatorial cytokine assessments. Conclusions The levels of several plasma cytokines varied significantly between CRC patients and control subjects, suggesting the possibility of differentially expressed plasma cytokines as potential biomarkers for detecting the presence of CRC. Our results should be validated in other populations.
Collapse
Affiliation(s)
- Masaki Yamaguchi
- Shinshu University, Graduate School of Science & Technology, Department of Mechanical Engineering & Robotics, Ueda, Nagano, Japan
- * E-mail:
| | - Shin Okamura
- Shinshu University, Graduate School of Science & Technology, Department of Mechanical Engineering & Robotics, Ueda, Nagano, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Vivek Shetty
- Section of Oral & Maxillofacial Surgery, UCLA Health Sciences Center, Los Angeles, CA, United States of America
| | - Tomonobu Koizumi
- Shinshu University School of Medicine, Department of Comprehensive Cancer Therapy, Matsumoto, Nagano, Japan
| |
Collapse
|
22
|
Modulation of CCL2 Expression by Laparoscopic Versus Open Surgery for Colorectal Cancer Surgery. Surg Laparosc Endosc Percutan Tech 2019; 29:101-108. [PMID: 30601429 DOI: 10.1097/sle.0000000000000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is well known that surgery provokes an inflammatory response. However, the induced inflammatory response to laparoscopic compared with open surgery under combined anesthesia has never been compared following colorectal cancer surgery. We hypothesize that laparoscopic technique under general anesthesia results in a decreased proinflammatory state. We compared cytokines plasma secretion after laparoscopic technique under general anesthesia (LG), open surgery under combined anesthesia (thoracic epidural and general anesthesia) (OGE), and open surgery under general anesthesia as the control group (OG). Proinflammatory cytokines measured postoperatively were significantly increased in the OG group (n=19), compared with the LG (n=18) and OGE (n=20) groups. Post hoc analysis showed that CCL2 levels were significantly lower in LG at all times postoperatively (P<0.01), while interleukin-4, an anti-inflammatory cytokine, was increased in the OGE group (P<0.01). Laparoscopic technique blunts the postoperative proinflammatory response from the very early stages of the inflammatory cascade, whereas combined anesthesia is a more anti-inflammatory approach.
Collapse
|
23
|
Maeda H, Okada KI, Fujii T, Oba MS, Kawai M, Hirono S, Kodera Y, Sho M, Akahori T, Shimizu Y, Ambo Y, Kondo N, Murakami Y, Ohuchida J, Eguchi H, Nagano H, Sakamoto J, Yamaue H. Transition of serum cytokines following pancreaticoduodenectomy: A subsidiary study of JAPAN-PD. Oncol Lett 2018; 16:6847-6853. [PMID: 30333892 DOI: 10.3892/ol.2018.9422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/22/2018] [Indexed: 02/04/2023] Open
Abstract
Our previous study aimed to examine the effect of TJ-100, a widely used herbal medicine, on intestinal function following pancreaticoduodenectomy (PD) in a multicenter, randomized, double-blinded, placebo-controlled manner (JAPAN-PD study). This concomitant study investigated the effect of TJ-100 on serum cytokine levels in patients who underwent PD. Due to the fact that several clinical variables can affect the absolute values of baseline serum cytokine levels, the ratios of the cytokine levels on postoperative day (POD)3 to those on POD1 were also used for analysis. The present study enrolled 180/224 randomized patients, of whom 91 received TJ-100 and 89 received placebo. As the main findings of the analysis, Wilcoxon signed-rank test revealed no significant difference in the levels of serum cytokines between the groups; however, patients in the TJ-100 group without severe inflammatory complications exhibited significantly higher ratios of interleukin (IL)-4 (n=123), IL-9 (n=72), IL-10 (n=97), PDGF-BB (n=143) and tumor necrosis factor-α (n=135), compared with patients in the Placebo Group (P<0.05). According to the results of the present study, TJ-100 has an effect on the change in serum cytokine levels from POD1 to POD3 following PD. However, the role of different transition pattern of cytokines in postoperative recovery following PD has to be investigated by further mechanical studies focusing on these extracted cytokines (ClinicalTrials.gov; no. NCT01607307; May 30, 2012).
Collapse
Affiliation(s)
- Hiromichi Maeda
- Cancer Treatment Center, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Mari S Oba
- Department of Medical Statistics Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Manabu Kawai
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| | - Seiko Hirono
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takahiro Akahori
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Yoshiyasu Ambo
- Department of Surgery, Teine-Keijinkai Hospital, Sapporo, Hokkaido 006-8555, Japan
| | - Naru Kondo
- Department of Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan
| | - Yoshiaki Murakami
- Department of Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan
| | - Jiro Ohuchida
- Department of Surgery, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Miyazaki 880-8510, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Wakayama 641-8510, Japan
| |
Collapse
|
24
|
Ðerek L, Servis D, Unić A. Soluble Triggering Receptor Expressed on Myeloid Cells-1 and Inflammatory Markers in Colorectal Cancer Surgery: A Prospective Cohort Study. Chin Med J (Engl) 2017; 130:2691-2696. [PMID: 29133757 PMCID: PMC5695054 DOI: 10.4103/0366-6999.218022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Major abdominal surgery, including colorectal cancer (CRC) surgery, leads to systemic inflammatory response syndrome that can be detected and monitored with inflammatory markers testing. The aims of the study were to evaluate the usefulness of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), interleukin-6 (IL-6), procalcitonin (PCT), and C-reactive protein (CRP) in following the inflammatory response in CRC surgery and postoperative period, as well as to determine if duration of the surgery and the time that the colon has been opened during the surgery (open colon time [OCT]) reflect a larger surgical stress through inflammatory markers rise. Methods: The study included 20 patients who underwent CRC surgery and 19 healthy volunteers from June 2011 to September 2012. We determined inflammatory markers 1 day before surgery (T0), 24 h (T1), 48 h (T2), and 7 days after the surgery (T3). All statistical analyses were calculated using MedCalc Statistical Software version 14.8.1 (MedCalc Software bvba, Ostend, Belgium). Results: Concentrations of CRP, PCT, and IL-6 in all measurement times were statistically different and sTREM-1 did not yield statistical significance. A weak positive correlation was found between IL-6 in T1 and T2 with the duration of the surgery (T1: r = 0.4060, P < 0.0001; T2: r = 0.3430, P < 0.0001) and OCT (T1: r = 0.3640, P < 0.0001, T2: r = 0.3430, P < 0.0001). A weak positive correlation between CRP in T2 and OCT (r = 0.4210, P < 0.0001) was also found. The interconnectivity of tested parameters showed a weak positive correlation between CRP and IL-6 in T1 (r = 0.3680; P < 0.0001), moderate positive correlation in T2 (r = 0.6770; P < 0.0001), and a strong positive correlation in T3 (r = 0.8651; P < 0.0001). Conclusions: CRP, IL-6, and PCT were shown to be reliable for postoperative monitoring. Simultaneous determination of CRP and IL-6 might not be useful as they follow similar kinetics. sTREM-1 might not be useful in CRC postoperative monitoring. Trial Registration: www.ClinicalTrials.gov, NCT01244022;https://www.clinicaltrials.gov/ct2/show/NCT01244022?term=01244022&rank=1.
Collapse
Affiliation(s)
- Lovorka Ðerek
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb 10000, Croatia
| | - Dražen Servis
- Department of General and Abdominal Surgery, St. Anna Hospital, Sulzbach-Rosenberg 92237, Germany
| | - Adriana Unić
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb 10000, Croatia
| |
Collapse
|
25
|
Relationship of inflammatory profile of elderly patients serum and senescence-associated secretory phenotype with human breast cancer cells proliferation: Role of IL6/IL8 ratio. Cytokine 2017; 91:13-29. [DOI: 10.1016/j.cyto.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/15/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022]
|
26
|
Elevated systemic interleukin-7 in patients with colorectal cancer and individuals at high risk of cancer: association with lymph node involvement and tumor location in the right colon. Cancer Immunol Immunother 2016; 66:171-179. [PMID: 27866242 PMCID: PMC5281653 DOI: 10.1007/s00262-016-1933-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-7 is a cytokine essential for protective immunity, and it is considered as a promising agent for cancer immunotherapy. Recent studies, however, appear to associate IL-7 with aggressiveness of solid tumors. The IL-7 has been less studied in colorectal cancer (CRC) and conditions associated with increased risk of CRC development. To explore IL-7 status in bowel diseases, it was measured immunofluorometrically in 431 individuals (110 with CRC) by using Luminex platform. A level of IL-7 in CRC patients was significantly higher than in controls, did not differ from those with adenomas, but was lower than in both active and inactive inflammatory bowel disease (IBD) cases. In CRC, IL-7 was higher in patients with lymph node and distant metastases and with tumors located in right colon. In adenomas, IL-7 elevation was associated exclusively with villous growth pattern, while in IBD, circulating IL-7 reflected clinical activity of Crohn’s disease and ulcerative colitis. Systemic TNFα, IL-10, and PDGF-BB were independent predictors of circulating IL-7. In summary, our study is the first to demonstrate IL-7 elevation in CRC in association with metastatic disease and tumor location. Both associations should be considered when designing IL-7-based immunotherapies for CRC. Further studies on IL-7 functionality in CRC are necessary.
Collapse
|
27
|
Hu J, Zhao G, Zhang L, Qiao C, Di A, Gao H, Xu H. Safety and therapeutic effect of mesenchymal stem cell infusion on moderate to severe ulcerative colitis. Exp Ther Med 2016; 12:2983-2989. [PMID: 27882104 PMCID: PMC5103734 DOI: 10.3892/etm.2016.3724] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
One of the primary targets of the clinical treatment of ulcerative colitis (UC) is to repair the damaged colonic mucosa. Mesenchymal stem cells (MSCs) have therapeutic potential in regenerative medicine due to their differentiation capacity and their secretion of numerous bioactive molecules. The present study describes a clinical trial (trial registration no. NCT01221428) investigating the safety and therapeutic effect of MSCs derived from human umbilical cord on moderate to severe UC. Thirty-four patients with UC were included in group I and treated with MSC infusion in addition to the base treatment, and thirty-six patients were in group II and treated with normal saline in addition to the base treatment. One month after therapy, 30/36 patients in group I showed good response, and diffuse and deep ulcer formation and severe inflammatory mucosa were improved markedly. During the follow up, the median Mayo score and histology score in group I were decreased while IBDQ scores were significantly improved compared with before treatment and group II (P<0.05). Compared with group II, there were no evident adverse reactions after MSC infusion in any of the patients in group I, and no chronic side effects or lingering effects appeared during the follow-up period. In conclusion, MSC infusion might be a useful and safe therapy for treating UC.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Gang Zhao
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lize Zhang
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Cuixia Qiao
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aiping Di
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hong Gao
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hong Xu
- Endoscopy Center, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
28
|
Shaked Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Oncol 2016; 13:611-26. [PMID: 27118493 DOI: 10.1038/nrclinonc.2016.57] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Local and systemic treatments for cancer include surgery, radiation, chemotherapy, hormonal therapy, molecularly targeted therapies, antiangiogenic therapy, and immunotherapy. Many of these therapies can be curative in patients with early stage disease, but much less frequently is this the case when they are used to treat advanced-stage metastatic disease. In the latter setting, innate and/or acquired resistance are among the reasons for reduced responsiveness or nonresponsiveness to therapy, or for tumour relapse after an initial response. Most studies of resistance or reduced responsiveness focus on 'driver' genetic (or epigenetic) changes in the tumour-cell population. Several studies have highlighted the contribution of therapy-induced physiological changes in host tissues and cells that can reduce or even nullify the desired antitumour effects of therapy. These unwanted host effects can promote tumour-cell proliferation (repopulation) and even malignant aggressiveness. These effects occur as a result of systemic release of numerous cytokines, and mobilization of various host accessory cells, which can invade the treated tumour microenvironment. In short, the desired tumour-targeting effects of therapy (the 'yin') can be offset by a reactive host response (the 'yang'); proactively preventing or actively suppressing the latter represents a possible new approach to improving the efficacy of both local and systemic cancer therapies.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, Haifa 31096, Israel
| |
Collapse
|