1
|
Frigoli GF, Quadreli DH, Santos DPD, Costa IRD, Ferreira ARO, Peres MNC, Ribeiro MVG, Ceravolo GS, Mathias PC, Palma-Rigo K, Fernandes GSA. Low protein uptake during peripuberty impairs the testis, epididymis, and spermatozoa in pubertal and adult Wistar rats. J Dev Orig Health Dis 2024; 15:e23. [PMID: 39444313 DOI: 10.1017/s2040174424000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Protein malnutrition during critical periods poses significant risks to reproductive health. Thus, this study aims to evaluate the immediate and delayed effects of a 30-day low-protein diet on the postnatal development of the male reproductive system. For so, male rats were fed a protein-deficient diet from postnatal day 30-60, followed by evaluations of testis, epididymis, and spermatozoa both at the end of the diet and after a 60-day recovery period. Testicular and epididymal weight was lowered in pubertal animals. Several histological alterations were found in the testis, such as acidophilic cells and vacuoles in the seminiferous epithelium, and sperm production was compromised. In the epididymis, the luminal compartment was diminished, and the stroma was enlarged both in the caput and cauda; in the cauda, the epithelial compartment was enlarged; the transit time of spermatozoa through this organ was diminished. Testosterone production was lowered. Spermatozoa's motility, mitochondrial activation, and acrosomal integrity were impaired, and several alterations in morphology were observed. After the recovery period, testicular and epididymal weight was restored. Tissue remodulation was observed in the epididymis, but the spermatozoa's transit time in this organ was not altered. Sperm and testosterone production, spermatozoa motility, mitochondrial activation, and acrosomal integrity were also restored. However, testicular histological alterations and spermatic morphological abnormalities were maintained in protein-restricted animals. Protein restriction during peripuberty impairs the reproductive maturation of pubertal Wistar rats, impairing testicular and epididymal function, with lasting effects even after dietary correction.
Collapse
Affiliation(s)
- Giovanna Fachetti Frigoli
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Débora Hipólito Quadreli
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Dayane Priscila Dos Santos
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ivana Regina da Costa
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Maria Natália Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Graziela Scalianti Ceravolo
- Laboratory of Vascular Pharmacology, Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Paulo Cezar Mathias
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Cell Biology and Genetics, Center of Biological Sciences, State University of Maringá, Maringá, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Laboratory of Toxicology and Metabolic Disturbs of Reproduction, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| |
Collapse
|
2
|
Kulibin AY, Malolina EA. Thyroid Hormone Regulates Postnatal Development of the Rete Testis in Mice. Endocrinology 2024; 165:bqae125. [PMID: 39279445 DOI: 10.1210/endocr/bqae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Thyroid hormone regulates the rate of testis maturation in mammals. Manipulations of thyroid hormone levels in neonatal animals affect various aspects of testis biology. However, there have been no studies examining the effects of thyroid hormone on the rete testis (RT). Here, we used animal models of neonatal hyperthyroidism (injections of triiodothyronine, or T3) and hypothyroidism (goitrogen 6-propyl-2-thiouracil [PTU] treatment) and found that higher levels of thyroid hormone accelerate RT development, while lower levels of thyroid hormone delay it. T3 and PTU treatments influence RT size, proliferation of RT cells, and expression of DMRT1 and androgen receptor in the RT. T3 supplementation accelerates RT development in an organ testicular culture, which indicates the local action of thyroid hormone. Additionally, it was found that follicle-stimulating hormone could be involved in the regulation both of RT proliferation and RT size. The fact that RT cells in a cell culture do not respond to T3 suggests indirect action of thyroid hormone on the RT in vivo or the loss of the responsiveness to the hormone in vitro.
Collapse
Affiliation(s)
- Andrey Yu Kulibin
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Ekaterina A Malolina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
3
|
Amarilla MS, Glienke L, Munduruca Pires T, Sobarzo CM, Oxilia HG, Fulco MF, Rodríguez Peña M, Maio MB, Ferrer Viñals D, Lustig L, Jacobo PV, Theas MS. Impaired Spermatogenesis in Infertile Patients with Orchitis and Experimental Autoimmune Orchitis in Rats. BIOLOGY 2024; 13:278. [PMID: 38666890 PMCID: PMC11048156 DOI: 10.3390/biology13040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Experimental autoimmune orchitis (EAO) is a well-established rodent model of organ-specific autoimmunity associated with infertility in which the testis immunohistopathology has been extensively studied. In contrast, analysis of testis biopsies from infertile patients associated with inflammation has been more limited. In this work, testicular biopsies from patients with idiopathic non-obstructive azoospermia diagnosed with hypospermatogenesis (HypoSp) [mild: n = 9, and severe: n = 11], with obstructive azoospermia and complete Sp (spermatogenesis) (control group, C, n = 9), and from Sertoli cell-only syndrome (SCOS, n = 9) were analyzed for the presence of immune cells, spermatogonia and Sertoli cell (SCs) alterations, and reproductive hormones levels. These parameters were compared with those obtained in rats with EAO. The presence of increased CD45+ cells in the seminiferous tubules (STs) wall and lumen in severe HypoSp is associated with increased numbers of apoptotic meiotic germ cells and decreased populations of undifferentiated and differentiated spermatogonia. The SCs showed an immature profile with the highest expression of AMH in patients with SCOS and severe HypoSp. In SCOS patients, the amount of SCs/ST and Ki67+ SCs/ST increased and correlated with high serum FSH levels and CD45+ cells. In the severe phase of EAO, immune cell infiltration and apoptosis of meiotic germ cells increased and the number of undifferentiated and differentiated spermatogonia was lowest, as previously reported. Here, we found that orchitis leads to reduced sperm number, viability, and motility. SCs were mature (AMH-) but increased in number, with Ki67+ observed in severely damaged STs and associated with the highest levels of FSH and inflammatory cells. Our findings demonstrate that in a scenario where a chronic inflammatory process is underway, FSH levels, immune cell infiltration, and immature phenotypes of SCs are associated with severe changes in spermatogenesis, leading to azoospermia. Furthermore, AMH and Ki67 expression in SCs is a distinctive marker of severe alterations of STs in human orchitis.
Collapse
Affiliation(s)
- María Sofía Amarilla
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Leilane Glienke
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Thaisy Munduruca Pires
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Hernán Gustavo Oxilia
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
- Anatomía Patológica, Hospital General de Agudos Parmenio Piñero, Varela 1301, Ciudad Autónoma de Buenos Aires C1406ELA, Argentina
| | - María Florencia Fulco
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - Marcelo Rodríguez Peña
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - María Belén Maio
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Denisse Ferrer Viñals
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| |
Collapse
|
4
|
Malolina EA, Galiakberova AA, Mun VV, Sabirov MS, Dashinimaev EB, Kulibin AY. A comparative analysis of genes differentially expressed between rete testis cells and Sertoli cells of the mouse testis. Sci Rep 2023; 13:20896. [PMID: 38017073 PMCID: PMC10684643 DOI: 10.1038/s41598-023-48149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
The rete testis (RT) is a region of the mammalian testis that plays an important role in testicular physiology. The RT epithelium consists of cells sharing some well-known gene markers with supporting Sertoli cells (SCs). However, little is known about the differences in gene expression between these two cell populations. Here, we used fluorescence-activated cell sorting (FACS) to obtain pure cultures of neonatal RT cells and SCs and identified differentially expressed genes (DEGs) between these cell types using RNA sequencing (RNA-seq). We then compared our data with the RNA-seq data of other studies that examined RT cells and SCs of mice of different ages and generated a list of DEGs permanently upregulated in RT cells throughout testis development and in culture, which included 86 genes, and a list of 79 DEGs permanently upregulated in SCs. The analysis of studies on DMRT1 function revealed that nearly half of the permanent DEGs could be regulated by this SC upregulated transcription factor. We suggest that useful cell lineage markers and candidate genes for the specification of both RT cells and SCs may be present among these permanent DEGs.
Collapse
Affiliation(s)
- Ekaterina A Malolina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
| | - Adelya A Galiakberova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Valery V Mun
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Marat S Sabirov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Institutskiy Per., 141701, Dolgoprudny, Russia
| | - Andrey Yu Kulibin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
5
|
Hüneke H, Langeheine M, Rode K, Jung K, Pilatz A, Fietz D, Kliesch S, Brehm R. Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells. Differentiation 2023; 134:31-51. [PMID: 37839230 DOI: 10.1016/j.diff.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Adult male Sertoli cell-specific Connexin43 knockout mice (SCCx43KO) exhibit higher Sertoli cell (SC) numbers per seminiferous tubule compared to their wild type (WT) littermates. Thus, deletion of this testicular gap junction protein seems to affect the proliferative potential and differentiation of "younger" SC. Although SC have so far mostly been characterised as postmitotic cells that cease to divide and become an adult, terminally differentiated cell population at around puberty, there is rising evidence that there exist exceptions from this for a very long time accepted paradigm. Aim of this study was to investigate postnatal SC development and to figure out underlying causes for observed higher SC numbers in adult KO mice. Therefore, the amount of SC mitotic figures was compared, resulting in slightly more and prolonged detection of SC mitotic figures in KO mice compared to WT. SC counting per tubular cross section revealed significantly different time curves, and comparing proliferation rates using Bromodesoxyuridine and Sox9 showed higher proliferation rates in 8-day old KO mice. SC proliferation was further investigated by Ki67 immunohistochemistry. SC in KO mice displayed a delayed initiation of cell-cycle-inhibitor p27Kip1 synthesis and prolonged synthesis of the phosphorylated tumour suppressor pRb and proliferation marker Ki67. Thus, the higher SC numbers in adult male SCCx43KO mice may arise due to two different reasons: Firstly, in prepubertal KO mice, the proliferation rate of SC was higher. Secondly, there were differences in their ability to cease proliferation as shown by the delayed initiation of p27Kip1 synthesis and the prolonged production of phosphorylated pRb and Ki67. Immunohistochemical results indicating a prolonged period of SC proliferation in SCCx43KO were confirmed by detection of proliferating SC in 17-days-old KO mice. In conclusion, deletion of the testicular gap junction protein Cx43 might prevent normal SC maturation and might even alter also the proliferation potential of adult SC.
Collapse
Affiliation(s)
- Hanna Hüneke
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Rode
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Kliesch
- Centre of Andrology and Reproductive Medicine, University of Muenster, Muenster, Germany
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
6
|
Zhu Y, Lin Y, Zheng X, Wang H, Li Z, Sun F. Col3a1 delivered via extracellular vesicles of Sertoli cells is essential for mice Sertoli cell proliferation. Mol Cell Endocrinol 2023; 577:112036. [PMID: 37532092 DOI: 10.1016/j.mce.2023.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
It is generally believed that Sertoli cells can proliferate only before sexual maturity. In this study, we found that extracellular vesicles of Sertoli cells derived from prepubertal mice (SEVs) have the ability to promote the proliferation of Sertoli cell population. In addition, via proteomic analysis, we compared the functional components of extracellular vesicles derived from Sertoli cells of mice at 12-14 days and 8 weeks. The functional profiling of SEVs suggested important developmental roles, and this was confirmed by analysis comparing the transcriptomic changes in Sertoli cells treated with DMSO and GW4869. The following analysis pointed to Col3a1 as a key factor in SEVs, which was further validated using primary Sertoli cells and TM4 cell line. The present study suggests a possible role for Col3a1 in promoting the proliferation of cultured Sertoli cells and provides a new perspective on the function of extracellular vesicles in Sertoli cell development.
Collapse
Affiliation(s)
- Yu Zhu
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoguo Zheng
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hanshu Wang
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhenhua Li
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
7
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Wang H, Liu Z, Larsen M, Hastings R, Gunewardena S, Kumar TR. Identification of follicle-stimulating hormone-responsive genes in Sertoli cells during early postnatal mouse testis development. Andrology 2023; 11:860-871. [PMID: 37208854 DOI: 10.1111/andr.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND In the mouse testis, Sertoli cells rapidly divide during a narrow window of time pre-pubertally and differentiate thereafter. The number of Sertoli cells determines the testis size and germ cell-carrying capacity. Follicle-stimulating hormone (FSH) binds its cognate FSH-receptors expressed on Sertoli cells and acts as a mitogen to regulate their proliferation. Fshb-/- mutant adult male mice have reduced Sertoli cell number and testis size and reduced sperm number and motility. However, FSH-responsive genes in early postnatal mouse Sertoli cells are unknown. OBJECTIVES To identify FSH-responsive genes in early postnatal mouse Sertoli cells. MATERIALS AND METHODS A fluorescence-activated cell sorting method was developed to rapidly purify Sertoli cells from control and Fshb-/- mice carrying a Sox9 GfpKI allele. These pure Sertoli cells were used for large-scale gene expression analyses. RESULTS We show that mouse Sertoli cells rarely divide beyond postnatal day 7. Our in vivo BrdU labeling studies indicate loss of FSH results in a 30% reduction in Sertoli cell proliferation in mice at 5 days of age. Flowsorted GFP+ Sertoli cells with maximal Fshr expression were 97%-98% pure and mostly devoid of Leydig and germ cells as assessed by Taqman qPCR quantification of gene expression and immunolabeling of the corresponding cell-specific markers. Large-scale gene expression analysis identified several differentially regulated genes in flow-sorted GFP+ Sertoli cells obtained from testis of control and Fshb-/- mice at 5 days of age. The top 25 networks identified by pathway analysis include those related to the cell cycle, cell survival and most importantly, carbohydrate and lipid metabolism and molecular transport. DISCUSSION Several of the FSH-responsive genes identified in this study could serve as useful markers for Sertoli cell proliferation in normal physiology, toxicant-induced Sertoli cell/testis injury, and other pathological conditions. CONCLUSION Our studies reveal that FSH-regulates macromolecular metabolism and molecular transport networks of genes in early postnatal Sertoli cells most likely in preparation for establishment of functional associations with germ cells to successfully coordinate spermatogenesis.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Hastings
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Sagaradze G, Monakova A, Efimenko A. Potency Assays for Mesenchymal Stromal Cell Secretome-Based Products for Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24119379. [PMID: 37298329 DOI: 10.3390/ijms24119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Adult stem cells maintaining tissue homeostasis and regeneration are tightly regulated by their specific microenvironments or stem cell niches. The dysfunction of niche components may alter the activity of stem cells and ultimately lead to intractable chronic or acute disorders. To overcome this dysfunction, niche-targeting regenerative medicine treatments such as gene, cell, and tissue therapy are actively investigated. Here, multipotent mesenchymal stromal cells (MSCs), and particularly their secretomes, are of high interest due to their potency to recover and reactivate damaged or lost stem cell niches. However, a workflow for the development of MSC secretome-based products is not fully covered by regulatory authorities, and and this issue significantly complicates their clinical translation and has possibly been expressed in a huge number of failed clinical trials. One of the most critical issues in this regard relates to the development of potency assays. In this review, guidelines for biologicals and cell therapies are considered to be applied for the development of potency assays for the MSC secretome-based products that aim for tissue regeneration. Specific attention is paid to their possible effects on stem cell niches and to a spermatogonial stem cell niche in particular.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anna Monakova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy av., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy av., 119192 Moscow, Russia
| |
Collapse
|
10
|
Whole Exome Sequencing and In Silico Analysis of Human Sertoli in Patients with Non-Obstructive Azoospermia. Int J Mol Sci 2022; 23:ijms232012570. [PMID: 36293429 PMCID: PMC9604420 DOI: 10.3390/ijms232012570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a serious cause of male infertility. The Sertoli cell responds to androgens and takes on roles supporting spermatogenesis, which may cause infertility. This work aims to enhance the genetic diagnosis of NOA via the discovery of new and hub genes implicated in human NOA and to better assess the odds of successful sperm extraction according to the individual’s genotype. Whole exome sequencing (WES) was done on three NOA patients to find key genes involved in NOA. We evaluated genome-wide transcripts (about 50,000 transcripts) by microarray between the Sertoli of non-obstructive azoospermia and normal cells. The microarray analysis of three human cases with different non-obstructive azoospermia revealed that 32 genes were upregulated, and the expressions of 113 genes were downregulated versus the normal case. For this purpose, Enrich Shiny GO, STRING, and Cytoscape online evaluations were applied to predict the functional and molecular interactions of proteins and then recognize the master pathways. The functional enrichment analysis demonstrated that the biological process (BP) terms “inositol lipid-mediated signaling”, “positive regulation of transcription by RNA polymerase II”, and “positive regulation of DNA-templated transcription” significantly changed in upregulated differentially expressed genes (DEGs). The BP investigation of downregulated DEGs highlighted “mitotic cytokinesis”, “regulation of protein-containing complex assembly”, “cytoskeleton-dependent cytokinesis”, and the “peptide metabolic process”. Overrepresented molecular function (MF) terms in upregulated DEGs included “ubiquitin-specific protease binding”, “protease binding”, “phosphatidylinositol trisphosphate phosphatase activity”, and “clathrin light chain binding”. Interestingly, the MF analysis of the downregulated DEGs revealed overexpression in “ATPase inhibitor activity”, “glutathione transferase activity”, and “ATPase regulator activity”. Our findings suggest that these genes and their interacting hub proteins could help determine the pathophysiologies of germ cell abnormalities and infertility.
Collapse
|
11
|
Chakraborty S, Chandran D, Mohapatra RK, Rabaan AA, Alhumaid S, Al Mutair A, Chakraborty C, Harapan H, Dhama K. Sexual transmission of recently re-emerged deadly Marburg virus (MARV) needs explorative studies and due attention for its prevention and feasible spread - Correspondence. Int J Surg 2022; 106:106884. [PMID: 36075554 DOI: 10.1016/j.ijsu.2022.106884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, 799008, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, 642109, Tamil Nadu, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India.
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, 36342, Saudi Arabia; College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran, 33048, Saudi Arabia
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia; Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh,23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India.
| |
Collapse
|
12
|
Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022; 12:11494. [PMID: 35798781 PMCID: PMC9263145 DOI: 10.1038/s41598-022-15358-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Prepubertal cancer treatment leads to irreversible infertility in half of the male patients. Current in vitro spermatogenesis protocols and cryopreservation techniques are inadequate to expand spermatogonial stem/progenitor cells (SSPC) from testicles. Bone marrow derived mesenchymal stem cells (BM-MSC) bearing a close resemblance to Sertoli cells, improved spermatogenesis in animal models. We asked if a co-culture setup supported by syngeneic BM-MSC that contributes to the air–liquid interphase (ALI) could lead to survival, expansion and differentiation of SSPCs in vitro. We generated an ALI platform able to provide a real-time cellular paracrine contribution consisting of syngeneic BM-MSCs to neonatal C57BL/6 mice testes. We aimed to evaluate the efficacy of this culture system on SSPC pool expansion and spermatogenesis throughout a complete spermatogenic cycle by measuring the number of total germ cells (GC), the undifferentiated and differentiating spermatogonia, the spermatocytes and the spermatids. Furthermore, we evaluated the testicular cell cycle phases, the tubular and luminal areas using histochemical, immunohistochemical and flow cytometric techniques. Cultures in present of BM-MSCs displayed survival of ID4(+) spermatogonial stem cells (SSC), expansion of SALL4(+) and OCT4(+) SSPCs, VASA(+) total GCs and Ki67(+) proliferative cells at 42 days and an increased number of SCP3(+) spermatocytes and Acrosin(+) spermatids at 28 days. BM-MSCs increased the percentage of mitotic cells within the G2-M phase of the total testicular cell cycle increased for 7 days, preserved the cell viability for 42 days and induced testicular maturation by enlargement of the tubular and luminal area for 42 days in comparison to the control. The percentage of PLZF(+) SSPCs increased within the first 28 days of culture, after which the pool started to get smaller while the number of spermatocytes and spermatids increased simultaneously. Our findings established the efficacy of syngeneic BM-MSCs on the survival and expansion of the SSPC pool and differentiation of spermatogonia to round spermatids during in vitro culture of prepubertal mice testes for 42 days. This method may be helpful in providing alternative cures for male fertility by supporting in vitro differentiated spermatids that can be used for round spermatid injection (ROSI) to female oocyte in animal models. These findings can be further exploited for personalized cellular therapy strategies to cure male infertility of prepubertal cancer survivors in clinics.
Collapse
|
13
|
Dibus N, Zobalova E, Monleon MAM, Korinek V, Filipp D, Petrusova J, Sedlacek R, Kasparek P, Cermak L. FBXO38 Ubiquitin Ligase Controls Sertoli Cell Maturation. Front Cell Dev Biol 2022; 10:914053. [PMID: 35769260 PMCID: PMC9234700 DOI: 10.3389/fcell.2022.914053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
The ubiquitin ligase SCFFBXO38 controls centromeric chromatin by promoting the degradation of the ZXDB protein. To determine the importance of this pathway during development, Fbxo38-deficient mice were generated. The loss of FBXO38 resulted in growth retardation affecting several organs, including the male reproductive system. A detailed analysis of the mutant testes revealed pathological changes in the seminiferous tubules, accompanied by a significant decrease in sperm production and reduced fertility. In adult testes, FBXO38 was specifically expressed in Sertoli cells, a somatic population essential for spermatogenesis initiation and progression. Sertoli cells lacking FBXO38 exhibited stabilized ZXDB protein and upregulated centromeric chromatin. Furthermore, the gene expression profile revealed that the absence of FBXO38 led to a defect in Sertoli cell maturation, specifically characterized by dysregulation in genes controlling retinoic acid metabolism and intercellular communication. Consequently, we documented significant changes in their ability to initiate spermatogonial differentiation. In conclusion, we show that FBXO38 acts as a Sertoli cell maturation factor, affecting the Sertoli cell transcription program, centromere integrity, and, subsequently, the ability to control spermatogenesis.
Collapse
Affiliation(s)
- Nikol Dibus
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Eliska Zobalova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Mario A. M. Monleon
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Petrusova
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Lukas Cermak,
| |
Collapse
|
14
|
Zhao T, Xiao T, Cao D, Xia W, Gao L, Cheng L, Zang M, Li X, Xu EY. Sertoli cell PUMILIO proteins modulate mouse testis size through translational control of cell cycle regulators. Biol Reprod 2022; 107:135-147. [PMID: 35678316 DOI: 10.1093/biolre/ioac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Testis size determination is an important question of reproductive biology. Sertoli cells are known to be a key determinant of mammalian testis size but the underlying molecular mechanisms remain incompletely understood. Previously we showed that highly conserved germ cell RNA binding proteins, PUMILIO1(PUM1) and PUMILIO2 (PUM2), control mouse organ and body size through translational regulation, but how different cell types of the organs contribute to their organ size regulation has not been established. Here we report a somatic role of PUM in gonad size determination. PUM1 is highly expressed in the Sertoli cells of the developing testis from embryonic and postnatal mice as well as in germ cells. Removal of Sertoli cell, but not germ cell, Pum1 gene, led to reduced testis size without significantly affecting sperm number or fertility. Knockout of PUM1 target, Cdkn1b, rescued the phenotype of reduced testis size, supporting a key role of Sertoli cell PUM1 mediated Cdkn1b repression in the testis size control. Furthermore, removal of Pum2 or both Pum1 and Pum2 in the Sertoli cells also only affected the testis size, not sperm development, with the biggest size reduction in Pum1/2 double knockout mice. We propose that PUM1 and PUM2 modulate the testis size through their synergistic translational regulation of cell cycle regulators in the Sertoli cell. Further investigation of the ovary or other organs could reveal if PUM-mediated translational control of cell proliferation of the supporting cell represents a general mechanism for organ size modulation.
Collapse
Affiliation(s)
- Tingting Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tianheng Xiao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dandan Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liuze Gao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liping Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurology, and Center for Reproductive Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
15
|
Abstract
The male reproductive system consists of testes, a series of ducts connecting the testes to the external urethral orifice, accessory sex glands, and the penis. Spermatogonial stem cells differentiate and mature in testes and epididymides, and spermatozoa are ejaculated with exocrine fluids secreted by accessory sex glands. Many studies have clarified the detailed structure and function of the male reproductive system, and have shown that various biologic controls, including genomics, epigenetics, and the neuroendocrine-immune system regulate proliferation, differentiation, and maturation of germ cells. In other words (1) genetic deletion or abnormalities, (2) aberration of DNA methylation and histone modifications, as well as small RNA dysfunction, and (3) neuroendocrine-immune disorders are involved in functional failure of the male reproductive system. In this article, we review these three factors for germ cell microcircumstance, especially focused on the immunoendocrine environment. In particular, the relation between factors protecting germ cells with strong auto-immunogenicity and opposite factors compromising this protection are discussed. Reductions in sperm count, concentration, and semen quality are serious problems in developed countries, although the causes are complex and remain unclear. The accumulation of basic knowledge regarding the structure, function, and regulation of the male reproductive system under various experimental conditions will be important to resolve these problems.
Collapse
|
16
|
Ruthig VA, Lamb DJ. Updates in Sertoli Cell-Mediated Signaling During Spermatogenesis and Advances in Restoring Sertoli Cell Function. Front Endocrinol (Lausanne) 2022; 13:897196. [PMID: 35600584 PMCID: PMC9114725 DOI: 10.3389/fendo.2022.897196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Since their initial description by Enrico Sertoli in 1865, Sertoli cells have continued to enchant testis biologists. Testis size and germ cell carrying capacity are intimately tied to Sertoli cell number and function. One critical Sertoli cell function is signaling from Sertoli cells to germ cells as part of regulation of the spermatogenic cycle. Sertoli cell signals can be endocrine or paracrine in nature. Here we review recent advances in understanding the interplay of Sertoli cell endocrine and paracrine signals that regulate germ cell state. Although these findings have long-term implications for treating male infertility, recent breakthroughs in Sertoli cell transplantation have more immediate implications. We summarize the surge of advances in Sertoli cell ablation and transplantation, both of which are wedded to a growing understanding of the unique Sertoli cell niche in the transitional zone of the testis.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
- Sexual Medicine Lab, Weill Cornell Medicine, New York, NY, United States
| | - Dolores J. Lamb
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
- Center for Reproductive Genomics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Dolores J. Lamb,
| |
Collapse
|
17
|
Kulibin AY, Malolina EA. The Rete Testis: Development and Role in Testis Function. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The rete testis connects seminiferous tubules in which germ cells develop to the efferent ducts and the epididymis, where gametes mature and gain mobility. Several recent studies have thoroughly explored the morphogenesis of this structure in mice during embryonic and postnatal periods. A part of the rete testis has been shown to derive from the precursors of gonad somatic cells before sex determination. The other part forms from embryonal Sertoli cells of testis cords adjacent to the mesonephros. The transformation of Sertoli cells into rete testis cells is apparently not limited to the embryonic stage of development and continues during postnatal testis development. Recently, it was found that the rete testis participates in the formation and maintenance of specialized Sertoli cells in terminal segments of seminiferous tubules, transitional zones. Current views suggest that the transitional zones of the seminiferous tubules may represent a niche for spermatogonial stem cells, the site of the prolonged proliferation of Sertoli cells in the pubertal and postpubertal periods of testis development, and also could be a generator of spermatogenic waves. To sum up, the rete testis transports gametes from the testis to the epididymis, maintains pressure within seminiferous tubules, regulates the composition of the testicular fluid, and impacts the spermatogenic process itself.
Collapse
|
18
|
Li Y, Wu Q, Li X, Von Tungeln LS, Beland FA, Petibone D, Guo L, Cournoyer P, Choudhuri S, Chen S. In vitro effects of cannabidiol and its main metabolites in mouse and human Sertoli cells. Food Chem Toxicol 2021; 159:112722. [PMID: 34871667 PMCID: PMC10123765 DOI: 10.1016/j.fct.2021.112722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022]
Abstract
Cannabidiol (CBD) is a major cannabinoid present in extracts of the plant Cannabis sativa (marijuana). While the therapeutic effects of CBD on epilepsy have been demonstrated, less is understood regarding its potential adverse effects. Recent studies revealed that CBD induced toxicity in the male reproductive system of animal models. In this study, we used TM4, an immortalized mouse Sertoli cell line, and primary human Sertoli cells to evaluate the toxicities of CBD and its main metabolites, 7-carboxy-CBD and 7-hydroxy-CBD. CBD induced concentration- and time-dependent cytotoxicity in mouse and human Sertoli cells, which mainly resulted from the inhibition of the G1/S-phase cell cycle transition. CBD also inhibited DNA synthesis and downregulated key cell cycle proteins. Moreover, CBD reduced the mRNA and protein levels of a functional marker, Wilms' tumor 1. Similar to CBD, 7-carboxy-CBD and 7-hydroxy-CBD inhibited cellular proliferation and decreased DNA synthesis. 7-Carboxy-CBD was less cytotoxic than CBD, while 7-hydroxy-CBD showed comparable cytotoxicity to CBD in both mouse and human Sertoli cells. Compared to mouse Sertoli cells, CBD, 7-hydroxy-CBD, and 7-carboxy-CBD were more cytotoxic in human Sertoli cells. Our results indicate that CBD and its main metabolites can inhibit cell proliferation in mouse and human Sertoli cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Patrick Cournoyer
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
19
|
Martínez-Hernández J, Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Serrano-Sánchez MI, Pastor LM. Proliferation, apoptosis, and number of Sertoli cells in the Syrian hamster during recrudescence after exposure to short photoperiod†‡. Biol Reprod 2021; 102:588-597. [PMID: 31621831 DOI: 10.1093/biolre/ioz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/17/2019] [Accepted: 10/07/2019] [Indexed: 11/14/2022] Open
Abstract
The Sertoli cell (Sc) has been described as a quiescent cell once the animal has reached sexual maturity. Syrian hamster is an animal that displays testicular regression due to short photoperiod, during which process germ cells and Sc are removed through apoptosis. The aim of this work was to investigate histochemically whether the spontaneous testicular recrudescence processes after exposure to a short photoperiod lead to an increase in Sc proliferative activity in order to restore the normal population. Three spontaneous recrudescence groups were established: initial (IR), advanced (AR), and total (TR) recrudescence, which were compared with animal undergoing the regression process (mild: MRg, strong: SRg, and total: TRg) and animals in long photoperiod (Controls). Histological sections were submitted to histochemical techniques for detecting apoptotic and proliferative Sc with bright-field and fluorescence microscopy. For each group, the proliferative Sc index (PScI) and apoptotic Sc index (AScI), and the total number of Sc were obtained. The results revealed the existence of Vimentin+/TUNEL+ as well as Vimentin+/PCNA+ cells. The PScI was significantly higher in TRg and IR than in the other groups. The AScI was only significantly higher in MRg and SRg with respect to the other groups. The total number of Sc increased among TRg, IR, and AR, reaching values similar to those of the Controls. In conclusion, the increase in Sc proliferation from final regression and recrudescence, accompanied by a similar rate of apoptosis to the Control group, is the cause of the restoration of the Sc population during spontaneous recrudescence.
Collapse
Affiliation(s)
- Jesús Martínez-Hernández
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Isabel Serrano-Sánchez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
20
|
Figueiredo AFA, Hess RA, Batlouni SR, Wnuk NT, Tavares AO, Abarikwu SO, Costa GMJ, França LR. Insights into differentiation and function of the transition region between the seminiferous tubule and rete testis. Differentiation 2021; 120:36-47. [PMID: 34229995 DOI: 10.1016/j.diff.2021.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023]
Abstract
Seminiferous tubules physically connect to the rete testis through short segments called the transition region (TR). During fetal development, this specialized junction is considered the initial site where testis cords begin to form and to grow in length well beyond birth and into adulthood and form convoluted tubular cores. Mitotic activity of the Sertoli cell, the somatic cell of the epithelium, ceases before puberty, but modified Sertoli cells in the TR remain immature and capable of proliferation. This review presents what is known about this specialized region of the testis, with an emphasis on the morphological, molecular and physiological features, which support the hypothesis that this short region of epithelial transition serves as a specialized niche for undifferentiated Sertoli cells and spermatogonial stem cells. Also, the region is populated by an elevated number of immune cells, suggesting an important activity in monitoring and responding to any leakage of autoantigens, as sperm enter the rete testis. Several structure/function characteristics of the transition region are discussed and compared across species.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - S R Batlouni
- Aquaculture Center (CAUNESP), São Paulo State University, São Paulo, SP, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - L R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Cao Y, Liu L, Lin J, Sun P, Guo K, Li S, Li X, Lan ZJ, Wang H, Lei Z. Dysregulation of Notch-FGF signaling axis in germ cells results in cystic dilation of the rete testis in mice. J Cell Commun Signal 2021; 16:75-92. [PMID: 34101112 PMCID: PMC8688682 DOI: 10.1007/s12079-021-00628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
Numb (Nb) and Numb-like (Nbl) are functionally redundant adaptor proteins that critically regulate cell fate and morphogenesis in a variety of organs. We selectively deleted Nb and Nbl in testicular germ cells by breeding Nb/Nbl floxed mice with a transgenic mouse line Tex101-Cre. The mutant mice developed unilateral or bilateral cystic dilation in the rete testis (RT). Dye trace indicated partial blockages in the testicular hilum. Morphological and immunohistochemical evaluations revealed that the lining epithelium of the cysts possessed similar characteristics of RT epithelium, suggesting that the cyst originated from dilation of the RT lumen. Spermatogenesis and the efferent ducts were unaffected. In comparisons of isolated germ cells from mutants to control mice, the Notch activity considerably increased and the expression of Notch target gene Hey1 significantly elevated. Further studies identified that germ cell Fgf4 expression negatively correlated the Notch activity and demonstrated that blockade of FGF receptors mediated FGF4 signaling induced enlargement of the RT lumen in vitro. The crucial role of the FGF4 signaling in modulation of RT development was verified by the selective germ cell Fgf4 ablation, which displayed a phenotype similar to that of germ cell Nb/Nbl null mutant males. These findings indicate that aberrant over-activation of the Notch signaling in germ cells due to Nb/Nbl abrogation impairs the RT development, which is through the suppressing germ cell Fgf4 expression. The present study uncovers the presence of a lumicrine signal pathway in which secreted/diffusible protein FGF4 produced by germ cells is essential for normal RT development.
Collapse
Affiliation(s)
- Yin Cao
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lingyun Liu
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Jing Lin
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Penghao Sun
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kaimin Guo
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shengqiang Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
- Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Xian Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Zi-Jian Lan
- Division of Life Sciences, Alltech, Nicholasville, KY, 40356, USA
| | - Hongliang Wang
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Zhenmin Lei
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA.
| |
Collapse
|
22
|
Major AT, Estermann MA, Smith CA. Anatomy, Endocrine Regulation, and Embryonic Development of the Rete Testis. Endocrinology 2021; 162:6154516. [PMID: 33661305 DOI: 10.1210/endocr/bqab046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/23/2022]
Abstract
Reproduction in males requires the transfer of spermatozoa from testis tubules via the rete system to the efferent ductules, epididymis, and vas deferens. The rete therefore forms an essential bridging system between the testis and excurrent ducts. Yet the embryonic origin and molecular regulation of rete testis development is poorly understood. This review examines the anatomy, endocrine control, and development of the mammalian rete testis, focusing on recent findings on its molecular regulation, identifying gaps in our knowledge, and identifying areas for future research. The rete testis develops in close association with Sertoli cells of the seminiferous cords, although unique molecular markers are sparce. Most recently, modern molecular approaches such as global RNA-seq have revealed the transcriptional signature of rete cell precursors, pointing to at least a partial common origin with Sertoli cells. In the mouse, genes involved in Sertoli cell development or maintenance, such as Sox9, Wt1, Sf1, and Dmrt1, are also expressed in cells of the rete system. Rete progenitor cells also express unique markers, such as Pax8, E-cadherin, and keratin 8. These must directly or indirectly regulate the physical joining of testis tubules to the efferent duct system and confer other physiological functions of the rete. The application of technologies such as single-cell RNA-seq will clarify the origin and developmental trajectory of this essential component of the male reproductive tract.
Collapse
Affiliation(s)
- Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedical Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
23
|
Pedrana G, Larrañaga C, Diaz A, Viotti H, Lombide P, Cavestany D, Vickers MH, Martin GB, Sloboda DM. Maternal undernutrition during pregnancy and lactation increases transcription factors, ETV5 and GDNF, and alters regulation of apoptosis and heat shock proteins in the testis of adult offspring in the rat. Reprod Fertil Dev 2021; 33:484-496. [PMID: 33883060 DOI: 10.1071/rd20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
We tested whether changes in Sertoli cell transcription factors and germ cell heat shock proteins (HSPs) are linked to the effects of maternal undernutrition on male offspring fertility. Rats were fed ad libitum with a standard diet (CONTROL) throughout pregnancy and lactation or with 50% of CONTROL intake throughout pregnancy (UNP) or lactation (UNL) or both periods (UNPL). After postnatal Day 21, 10 male pups per group were fed a standard diet ad libitum until postnatal Day 160 when testes were processed for histological, mRNA and immunohistochemical analyses. Compared with CONTROL: caspase-3 was increased in UNP and UNPL (P=0.001); Bax was increased in UNL (P=0.002); Bcl-2 (P<0.0001) was increased in all underfed groups; glial cell line-derived neurotrophic factor (P=0.002) was increased in UNP and UNL; E twenty-six transformation variant gene 5 and HSP70 were increased, and HSP90 was diminished in all underfed groups (P<0.0001). It appears that maternal undernutrition during pregnancy and lactation disrupts the balance between proliferation and apoptosis in germ cells, increasing germ cell production and perhaps exceeding the support capacity of the Sertoli cells. Moreover, fertility could be further compromised by changes in meiosis and spermiogenesis mediated by germ cell HSP90 and HSP70.
Collapse
Affiliation(s)
- Graciela Pedrana
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay; and Corresponding author.
| | - Camila Larrañaga
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Alejandra Diaz
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Helen Viotti
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Paula Lombide
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Daniel Cavestany
- Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, 1142, New Zealand
| | - Graeme B Martin
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, L8S 4L8, Canada; and Department of Pediatrics, McMaster University, Hamilton, L8S 4L8, Canada, and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, L8S 4L8, Canada
| |
Collapse
|
24
|
Roco ÁS, Ruiz-García A, Bullejos M. Testis Development and Differentiation in Amphibians. Genes (Basel) 2021; 12:578. [PMID: 33923451 PMCID: PMC8072878 DOI: 10.3390/genes12040578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Sex is determined genetically in amphibians; however, little is known about the sex chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class. Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes, the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder the design of experiments when studying how the gonads can differentiate. Even so, other features, like their external development or the possibility of inducing sex reversal by external treatments, can be helpful. This review summarizes the current knowledge on amphibian sex determination, gonadal development, and testis differentiation. The analysis of this information, compared with the information available for other vertebrate groups, allows us to identify the evolutionarily conserved and divergent pathways involved in testis differentiation. Overall, the data confirm the previous observations in other vertebrates-the morphology of the adult testis is similar across different groups; however, the male-determining signal and the genetic networks involved in testis differentiation are not evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Las Lagunillas S/N, Universidad de Jaén, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.)
| |
Collapse
|
25
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Djouahra N, Moudilou EN, Exbrayat JM, Hammouche S. Immunodistribution of RFamide-related peptide-3 (RFRP-3) during the seminiferous epithelium cycle in a desert rodent Psammomys obesus. Tissue Cell 2021; 69:101484. [PMID: 33450652 DOI: 10.1016/j.tice.2020.101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
The Sand rat, Psammomys obesus, living northwest of the Algerian Sahara, presents a seasonal reproductive cycle. The purposes of this study were firstly to determine the stages of seminiferous epithelium cycle (SEC) by histological and morphometric analysis and secondly to investigate, for the first time, the testicular expression of RFamide-related peptide-3 (RFRP-3) during the SEC by immunohistochemistry. The results showed that the SEC consists of 14 stages according to the tubular morphology method. RFRP-3 was observed in both testicular compartments: the tubular and the interstitial. Leydig cells exhibited the highest RFRP-3 signal (30.73 % ± 4.80) compared to Sertoli cells (13-15 %). In the germline, RFRP-3 was detected during the late prophase I of meiosis in late pachytene, diplotene and metaphasic spermatocytes I. In addition, only round and triangular spermatids were positive during spermiogenesis. Referring to the SEC, it was found that the increased staining of RFRP-3 in spermatocytes I coincided with late pachytene of XI and XII stages (16.90 % ± 0.69 and 16.61 % ± 0.28, respectively). In spermatids, the labeling decreased in the triangular ones at stage IX (8.04 % ± 0.42). These results suggest the involvement of RFRP-3 in the control of SEC in P. obesus.
Collapse
Affiliation(s)
- Nassima Djouahra
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria.
| | - Elara N Moudilou
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Jean-Marie Exbrayat
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Sadjia Hammouche
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria
| |
Collapse
|
27
|
Low retinoic acid levels mediate regionalization of the Sertoli valve in the terminal segment of mouse seminiferous tubules. Sci Rep 2021; 11:1110. [PMID: 33441739 PMCID: PMC7806815 DOI: 10.1038/s41598-020-79987-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
In mammalian testes, undifferentiated spermatogonia (Aundiff) undergo differentiation in response to retinoic acid (RA), while their progenitor states are partially maintained by fibroblast growth factors (FGFs). Sertoli valve (SV) is a region located at the terminal end of seminiferous tubule (ST) adjacent to the rete testis (RT), where the high density of Aundiff is constitutively maintained with the absence of active spermatogenesis. However, the molecular and cellular characteristics of SV epithelia still remain unclear. In this study, we first identified the region-specific AKT phosphorylation in the SV Sertoli cells and demonstrated non-cell autonomous specialization of Sertoli cells in the SV region by performing a Sertoli cell ablation/replacement experiment. The expression of Fgf9 was detected in the RT epithelia, while the exogenous administration of FGF9 caused ectopic AKT phosphorylation in the Sertoli cells of convoluted ST. Furthermore, we revealed the SV region-specific expression of Cyp26a1, which encodes an RA-degrading enzyme, and demonstrated that the increased RA levels in the SV region disrupt its pool of Aundiff by inducing their differentiation. Taken together, RT-derived FGFs and low levels of RA signaling contribute to the non-cell-autonomous regionalization of the SV epithelia and its local maintenance of Aundiff in the SV region.
Collapse
|
28
|
Yang X, Feng Y, Li Y, Chen D, Xia X, Li J, Li F. AR regulates porcine immature Sertoli cell growth via binding to RNF4 and miR-124a. Reprod Domest Anim 2020; 56:416-426. [PMID: 33305371 DOI: 10.1111/rda.13877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Sertoli cells are the only somatic cells in the seminiferous epithelium which directly contact with germ cells. Sertoli cells exhibit polarized alignment at the basal membrane of seminiferous tubules to maintain the microenvironment for growth and development of germ cells, and therefore play a crucial role in spermatogenesis. Androgens exert their action through androgen receptor (AR) and AR signalling in the testis is essential for maintenance of spermatogonial numbers, blood-testis barrier integrity, completion of meiosis, adhesion of spermatids and spermiation. In the present study, we demonstrated that AR gene could promote the proliferation of immature porcine Sertoli cells (ST cells) and the cell cycle procession, and accelerate the transition from G1 phase into S phase in ST cells. Meanwhile, miR-124a could affect the proliferation and cell cycle procession of ST cells by targeting 3'-UTR of AR gene. Furthermore, AR bound to the RNF4 via AR DNA-binding domain (DBD) and we verified that RNF4 was necessary for AR to regulate the growth of ST cells. Above all, this study suggests that AR regulates ST cell growth via binding to RNF4 and miR-124a, which may help us to further understand the function of AR in spermatogenesis.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yue Feng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yang Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Dake Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Xuanyan Xia
- College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Jialian Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
29
|
Lara NLM, Silva VA, Chiarini-Garcia H, Garcia SK, Debeljuk L, Hess RA, França LR. Hypothyroidism induced by postnatal PTU (6-n-propyl-2-thiouracil) treatment decreases Sertoli cell number and spermatogenic efficiency in sexually mature pigs. Gen Comp Endocrinol 2020; 299:113593. [PMID: 32828810 DOI: 10.1016/j.ygcen.2020.113593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023]
Abstract
Studies with 6-n-propyl-2-thiouracil (PTU) in laboratory rodents have shown that transient neonatal hypothyroidism leads to increased Sertoli cell (SC) number, testis size and sperm production. However, scarce and inconclusive data are available for farm animals. In the present study, Piau pigs received PTU in a gel capsule containing 8 mg/kg of body weight for 14 weeks starting from the first week of age, whereas control animals received only the vehicle. Blood samples were collected during the experimental period for hormonal evaluation in the serum. The animals were orchiectomized at adulthood and had their testes used for histomorphometric analysis. Indicating that the PTU concentration used was effective in promoting hypothyroidism, PTU-treated pigs showed a 30% lower body weight and reduced thyroxine levels (p < 0.05) during the treatment period. At adulthood, the body weight was similar in both groups but, surprisingly, PTU-treated pigs showed 30% lower testis weight (p < 0.05). In general, treated pigs presented increased follicle-stimulating hormone levels, whereas testosterone levels tended to be lower from 9 to 23 weeks of age. No significant differences were observed for estradiol, Leydig cell volume and number, tubular diameter, SC number per gram of testis, SC efficiency and meiotic index. However, seminiferous tubule occupancy, total tubular length, SC number per testis, and daily sperm production per testis and per gram of testis (DSP/g/T) were significantly lower (p < 0.05) in PTU-treated pigs. Therefore, in contrast to laboratory rodents, our results showed that SC proliferation and DSP/g/T (spermatogenic efficiency) in Piau pigs is diminished by postnatal PTU treatment.
Collapse
Affiliation(s)
- Nathalia L M Lara
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valdemiro A Silva
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Hélio Chiarini-Garcia
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone K Garcia
- Department of Zootechny, School of Veterinary at Federal University of Minas Gerais, Brazil
| | | | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Luiz R França
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Sagaradze GD, Basalova NA, Efimenko AY, Tkachuk VA. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front Cell Dev Biol 2020; 8:576176. [PMID: 33102483 PMCID: PMC7546871 DOI: 10.3389/fcell.2020.576176] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells that are tightly regulated by the specific microenvironment, or the stem cell niche, function to maintain tissue homeostasis and regeneration after damage. This demands the existence of specific niche components that can preserve the stem cell pool in injured tissues and restore the microenvironment for their subsequent appropriate functioning. This role may belong to mesenchymal stromal cells (MSCs) due to their resistance to damage signals and potency to be specifically activated in response to tissue injury and promote regeneration by different mechanisms. Increased amount of data indicate that activated MSCs are able to produce factors such as extracellular matrix components, growth factors, extracellular vesicles and organelles, which transiently substitute the regulatory signals from missing niche cells and restrict the injury-induced responses of them. MSCs may recruit functional cells into a niche or differentiate into missing cell components to endow a niche with ability to regulate stem cell fates. They may also promote the dedifferentiation of committed cells to re-establish a pool of functional stem cells after injury. Accumulated evidence indicates the therapeutic promise of MSCs for stimulating tissue regeneration, but the benefits of administered MSCs demonstrated in many injury models are less than expected in clinical studies. This emphasizes the importance of considering the mechanisms of endogenous MSC functioning for the development of effective approaches to their pharmacological activation or mimicking their effects. To achieve this goal, we integrate the current ideas on the contribution of MSCs in restoring the stem cell niches after damage and thereby tissue regeneration.
Collapse
Affiliation(s)
- Georgy D Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya A Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Yu Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
31
|
Jung H, Lee G, Kim J, Lee JW, Yoon M. Effects of Hemicastration on Testes and Testosterone Concentration in Stallions. J Equine Vet Sci 2020; 92:103166. [PMID: 32797789 DOI: 10.1016/j.jevs.2020.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022]
Abstract
The endocrine system is critical to the maintenance of testicular function. The homeostasis of sex hormone levels is orchestrated by positive and negative feedback systems controlled by the hypothalamic-pituitary-gonadal axis. This study investigated the long-term effects of hemicastration on testicular size and function in stallions. Four Thoroughbred stallions, 4-6 years of age, were included in this study. Several parameters, including testicular weight and volume, plasma testosterone concentrations, VASA-positive germ cell populations and cross-sectional areas of the seminiferous tubules were compared in stallions that underwent two hemicastrations, approximately 11 months apart. The weights and volumes of testes harvested at the second hemicastration were significantly higher than those of testes collected at the first hemicastration. However, VASA-positive germ cell populations and the cross-sectional areas of seminiferous tubules were not significantly different between testes harvested at the first and second hemicastrations. Similarly, plasma testosterone concentrations measured weekly for 3 weeks before the first hemicastration, 3 weeks after the first hemicastration, and 3 weeks before the second hemicastration were not significantly different. Our results suggest that hemicastration results in compensatory enlargement of the remaining testis and compensatory steroidogenesis to maintain normal reproductive function in stallions.
Collapse
Affiliation(s)
- Heejun Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
| | - Geumhui Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
| | - Junyoung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea
| | - Jang-Won Lee
- Department of Integrated Bio-Industry, Sejong University, Seoul, Republic of Korea.
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju, Republic of Korea.
| |
Collapse
|
32
|
He L, He Q, Qiao L, Huang S, Dai Z, Yang T, Liu L, Zhao Z. LncWNT3‐IT affects the proliferation of Sertoli cells by regulating the expression of the WNT3 gene in goat testis. Reprod Domest Anim 2020; 55:1061-1071. [DOI: 10.1111/rda.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/28/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Lina He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Qijie He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lei Qiao
- College of Animal Science and Technology Southwest University Chongqing China
| | - Siyi Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zinuo Dai
- College of Animal Science and Technology Southwest University Chongqing China
| | - Tianyuan Yang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lingbin Liu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhongquan Zhao
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|
33
|
Lara NDLEM, Costa GMJ, Figueiredo AFA, de França LR. The Sertoli cell: what can we learn from different vertebrate models? Anim Reprod 2020; 16:81-92. [PMID: 33299481 PMCID: PMC7720927 DOI: 10.21451/1984-3143-ar2018-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Besides having medical applications, comparative studies on reproductive biology are very useful, providing, for instance, essential knowledge for basic, conservation and biotechnological research. In order to maintain the reproductive potential and the survival of all vertebrate species, both sperm and steroid production need to occur inside the testis. From the approximately fifty thousand vertebrate species still alive, very few species are already investigated; however, our knowledge regarding Sertoli cell biology is quite good. In this regard, it is already known that since testis differentiation the Sertoli cells are the somatic cells in charge of supporting and orchestrating germ cells during development and full spermatogenesis in adult animals. In the present review, we highlight key aspects related to Sertoli cell biology in vertebrates and show that this key testis somatic cell presents huge and intrinsic plasticity, particularly when cystic (fish and amphibians) and non-cystic (reptiles, birds and mammals) spermatogenesis is compared. In particular, we briefly discuss the main aspects related to Sertoli cells functions, interactions with germ cells, Sertoli cells proliferation and efficiency, as well as those regarding spermatogonial stem cell niche regulation, which are crucial aspects responsible for the magnitude of sperm production. Most importantly, we show that we could greatly benefit from investigations using different vertebrate experimental models, mainly now that there is a big concern regarding the decline in human sperm counts caused by a multitude of factors.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
34
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
35
|
Sagaradze G, Basalova N, Kirpatovsky V, Ohobotov D, Nimiritsky P, Grigorieva O, Popov V, Kamalov A, Tkachuk V, Efimenko A. A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Res Ther 2019; 10:342. [PMID: 31753023 PMCID: PMC6873442 DOI: 10.1186/s13287-019-1479-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/24/2023] Open
Abstract
Background Injury of stem cell niches may disturb tissue homeostasis and regeneration coordinated by specific niche components. Yet, the mechanisms of stem cell niche restoration remain poorly understood. Herein, we examined the role of mesenchymal stromal cells (MSCs) as pivotal regulators of stem cell niche recovery focusing on the effects of their secretome. Methods The spermatogonial stem cell (SSC) niche was selected as a model. SSC niches were injured by inducing abdominal cryptorchidism in rats. Briefly, testes of anesthetized rats were elevated into the abdominal cavity through the inguinal canal for 14 days. After descent of testes, MSC or MSC secretome treatment was applied to the animals by local subtunical injections. Results Local administration of MSC or MSC secretome was sufficient to recover spermatogenesis and production of functional germ cells. The effects of MSC and their secreted components were comparable, leading to restoration of Sertoli cell pools and recovery of Leydig cell secretory functions. Conclusion Our data suggest that MSCs mimic the functions of lost supportive cells within the stem cell niche, transiently providing paracrine stimuli for target cells and triggering tissue regenerative processes after damage.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nataliya Basalova
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir Kirpatovsky
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Research Institute of Urology and Interventional Radiology named N.A. Lopatkin - branch FSBI National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Dmitry Ohobotov
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Peter Nimiritsky
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Grigorieva
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Armais Kamalov
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vsevolod Tkachuk
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anastasia Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation. .,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
36
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
37
|
Elsayed HYA, Borroto ET, Pliego AB, Dibarrat JA, Ramirez FR, Chagoyán JCV, Salas NP, Diaz-Albiter H. Sperm Quality in Mouse After Exposure to Low Doses of TCDD. Curr Top Med Chem 2019; 19:931-943. [DOI: 10.2174/1568026619666190520090132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/05/2018] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Background:
In the last decade, the harmful use of dioxin has been demonstrated in human
health and in the whole environment. It is well known among scientists that 2, 3, 7, 8-tetrachloro
dibenzo-p-dioxin (TCDD) is an environmental pollutant that causes endocrine disruption, which causes
male reproductive toxicity.
Objective:
The objective of the present study was to evaluate the toxicity effect of low doses of TCDD
in male CD1 mice.
Materials and Methods:
Three concentrations of TCDD (0.375, 0.75, 1.5 mg / kg) were analyzed and
the effects on spermatozoa were evaluated 10 days after oral administration of the product. As
bioindicators of TCDD toxicity, an exhaustive analysis of several spermatic parameters including
motility, vitality, count, morphology and viability, flow cytometry was used to determine the affected
sperm population by cytotoxicity and apoptosis. In addition, a morphometric analysis of testicles was
performed.
Results:
The results show that the body weight of the treated animals was reduced in medium and high
doses (0.75, 1.5 mg / kg) with respect to the control groups. In the groups treated with TCDD, the
abnormal head of the sperm increased by 52.5% more than the control group. Significant differences in
apoptosis were observed between the negative control and vehicle control, including the median dose
(0.75 mg / kg).
Conclusion:
It is concluded that at these low doses there was an impact on the quality of the mouse
sperm, adding an effect on apoptosis and cytotoxicity of sperm exposed to these doses of TCDD.
Collapse
Affiliation(s)
- Heba Yehia Anwar Elsayed
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Esvieta Tenorio Borroto
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Alberto Barbabosa Pliego
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Jorge Acosta Dibarrat
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | | | - Juan Carlos Vázquez Chagoyán
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Nazario Pescador Salas
- Centro de Investigacion y Estudios Avanzados de Salud Animal, Facultad de Medicina Veterinaria y Zootecnia Universidad Autonoma del Estado de Mexico, Toluca, Mexico
| | - Hector Diaz-Albiter
- Universidad Tecnologica del Valla de Toluca, Estado de Mexico, Toluca, Mexico
| |
Collapse
|
38
|
Wang H, Wang G, Dai Y, Li Z, Zhu Y, Sun F. Functional role of GKAP1 in the regulation of male germ cell spontaneous apoptosis and sperm number. Mol Reprod Dev 2019; 86:1199-1209. [PMID: 31318116 DOI: 10.1002/mrd.23236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/27/2019] [Indexed: 01/18/2023]
Abstract
G kinase-anchoring protein 1 (GKAP1) is a G kinase-associated protein that is conserved in many eutherians and is mainly expressed in the testis, especially in spermatocytes and round spermatids. The function of GKAP1 in the testis is largely unknown. Here, we revealed that deletion of GKAP1 led to an increase in sperm production with swollen epididymis, and germ cell apoptosis was found to decrease in GKAP1 knock-out mice. Further investigations showed that a deficiency of GKAP1 could partly change the cellular location of cGK-Iα and increase the amount of active cAMP response element-binding protein (CREB) in the nucleus. Therefore, the expression of a particular inhibitor of apoptosis proteins (IAPs) was upregulated because of the activation of CREB, and this increase in IAPs was associated with a decrease in the level of activated caspase-3. These results suggest that a deficiency of GKAP1 in mouse testis could increase sperm production through a reduction of the spontaneous apoptosis of germ cells in the testis, possibly because of a change in the activity of the cGK-Iα pathway.
Collapse
Affiliation(s)
- Hanshu Wang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yubing Dai
- Qingdao University Medical College, School of Medicine, Qingdao University, Qingdao, China
| | - Zhenhua Li
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Embryo-Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
39
|
Lara NDLEM, Costa GMJ, Avelar GF, Guimarães DA, França LR. Postnatal testis development in the collared peccary (Tayassu tajacu), with emphasis on spermatogonial stem cells markers and niche. Gen Comp Endocrinol 2019; 273:98-107. [PMID: 29763586 DOI: 10.1016/j.ygcen.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 11/21/2022]
Abstract
Collared peccaries (Tayassu tajacu) present a unique testis cytoarchitecture, where Leydig cells (LC) are mainly located in cords around the seminiferous tubules (ST) lobes. This peculiar arrangement is very useful to better investigate and understand the role of LC in spermatogonial stem cells (SSCs) biology and niche. Recent studies from our laboratory using adult peccaries have shown that the undifferentiated type A spermatogonia (Aund or SSCs) are preferentially located in ST regions adjacent to the intertubular compartment without LC. Following these studies, our aims were to investigate the collared peccary postnatal testis development, from birth to adulthood, with emphasis on the establishment of LC cytoarchitecture and the SSCs niche. Our findings demonstrated that the unique LC cytoarchitecture is already present in the neonate peccary's testis, indicating that this arrangement is established during fetal development. Based on the most advanced germ cell type present at each time period evaluated, puberty (the first sperm release in the ST lumen) in this species was reached at around one year of age, being preceded by high levels of estradiol and testosterone and the end of Sertoli cell proliferation. Almost all gonocytes and SSCs expressed Nanos1, Nanos2 and GFRA1. The analysis of SSCs preferential location indicated that the establishment of SSCs niche is coincident with the occurrence of puberty. Taken together, our findings reinforced and extended the importance of the collared peccary as an animal model to investigate testis function in mammals, particularly the aspects related to testis organogenesis and the SSCs biology and niche.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gleide Fernandes Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diva Anelie Guimarães
- Laboratory of Animal Reproduction, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil
| | - Luiz Renato França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; National Institute for Amazonian Research, Manaus, AM, Brazil.
| |
Collapse
|
40
|
Siervo GEML, Ogo FM, Staurengo-Ferrari L, Anselmo-Franci JA, Cunha FQ, Cecchini R, Guarnier FA, Verri WA, Fernandes GSA. Sleep restriction during peripuberty unbalances sexual hormones and testicular cytokines in rats. Biol Reprod 2019; 100:112-122. [PMID: 30010983 DOI: 10.1093/biolre/ioy161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Spermatogenesis and steroidogenesis are not fully established during puberty. Especially during this period, children and adolescents may be chronically sleep deprived due to early school hours and constant exposure to artificial light and interactive activities. We have previously shown that sleep restriction (SR) during peripuberty impairs sperm motility and has consequences on epididymal development in rats. Thus, this study aimed to evaluate the effect of SR during peripuberty on sexual hormones and its impact on testicular tissue. Rats were subjected to 18 h of SR per day for 21 days or were maintained as controls (C) in the same room. The circulating luteinizing hormone levels were decreased in SR rats without changes in the follicle stimulating hormone levels. Plasma and intratesticular testosterone and corticosterone in the SR group were increased in relation to C group. These alterations impair testicular tissue, with decreased IL-1β, IL-6, and TNFα levels in the testis and diminished seminiferous epithelium height and Sertoli cell number. SR also increased testicular lipid peroxidation with no alteration in antioxidant profiles. There were no significant changes in sperm parameters, seminiferous tubule diameter, histopathology, spermatogenesis kinetics, neutrophil and macrophage recruitment, and IL-10 concentration. Our results show that SR unbalances sexual hormones and testicular cytokines at a critical period of sexual maturation. These changes lead to lipid peroxidation in the testes and negatively influence the testicular tissue, as evidenced by diminished seminiferous epithelium height-with apoptosis of germinative cell-and Sertoli cell number.
Collapse
Affiliation(s)
- Gláucia E M L Siervo
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.,Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda M Ogo
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil.,Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Cecchini
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Flávia A Guarnier
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Glaura S A Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
41
|
Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, Nichols DK, Bearss JJ, Schellhase CW, Retterer CJ, Weidner JM, Radoshitzky SR, Brannan JM, Cardile AP, Dye JM, Palacios G, Sun MG, Kuhn JH, Bavari S, Zeng X. Persistent Marburg Virus Infection in the Testes of Nonhuman Primate Survivors. Cell Host Microbe 2018; 24:405-416.e3. [PMID: 30173956 DOI: 10.1016/j.chom.2018.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.
Collapse
Affiliation(s)
- Kayla M Coffin
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jun Liu
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Travis K Warren
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Candace D Blancett
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Kathleen A Kuehl
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Donald K Nichols
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jeremy J Bearss
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher W Schellhase
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Cary J Retterer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jessica M Weidner
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jennifer M Brannan
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Anthony P Cardile
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Mei G Sun
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
42
|
Nagasawa K, Imura-Kishi K, Uchida A, Hiramatsu R, Kurohmaru M, Kanai Y. Regionally distinct patterns of STAT3 phosphorylation in the seminiferous epithelia of mouse testes. Mol Reprod Dev 2018; 85:262-270. [PMID: 29393534 DOI: 10.1002/mrd.22962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 12/30/2022]
Abstract
In mouse testes, Sertoli cells support the continuous process of spermatogenesis, which is dependent on seminiferous epithelial cycles along the longitudinal axis of the seminiferous tubule. Sertoli cell function is modulated partly by local cytokines and/or growth factors derived from adjacent tissues such as blood vessels, macrophages, rete testis, etc. However, the spatial activation patterns by local signals in vivo remain unclear. In this study, we focused on Signal Transducers and Activators of Transcription (STAT) signaling in Sertoli cells, because STAT is a major crucial cytokine transducer for somatic cyst cell regulation in Drosophila testis niches. In mouse testes, STAT3 was ubiquitously expressed in Sertoli cells throughout the seminiferous tubules. Phosphorylated STAT3 (p-STAT3) was predominantly observed in the Sertoli cells within the valve-like structure adjacent to the rete testis (i.e., the Sertoli valve [SV]) in the terminal segment of the proximal seminiferous tubules. In the distal seminiferous tubules with active spermatogenesis, most Sertoli cells were negative for anti-p-STAT3 staining. Albeit rarely, a small patch of several p-STAT3-positive Sertoli cells was detected frequently in seminiferous epithelial cycle stages I-VI. Such p-STAT3-positive ratios in the convoluted seminiferous epithelia were significantly increased in germ cell-less testes than in the wild-type testes, but with considerably lower ratios than in the SV region. These findings imply that regionally distinct patterns of STAT3 phosphorylation in the Sertoli cells depend on either location or spermatogenic activity in normal healthy testes in vivo, highlighting a novel entry point to understanding STAT signaling in mammalian spermatogenesis.
Collapse
Affiliation(s)
- Keiya Nagasawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Kasane Imura-Kishi
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi, Tokyo, Japan
| |
Collapse
|
43
|
Malolina EA, Kulibin AY. Rete testis and the adjacent seminiferous tubules during postembryonic development in mice. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417060029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
MicroRNAs in Sertoli cells: implications for spermatogenesis and fertility. Cell Tissue Res 2017; 370:335-346. [DOI: 10.1007/s00441-017-2667-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022]
|