1
|
Kumar P, Tiwari S, Uguz S, Li Z, Gonzalez J, Wei L, Samuel RS, Zhang Y, Yang X. Bioaerosols downwind from animal feeding operations: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135825. [PMID: 39326148 DOI: 10.1016/j.jhazmat.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Bioaerosols originating from animal feeding operations (AFOs) may carry pathogens, allergens, and other hazardous biocomponents, such as endotoxins, posing a potential risk to community health and the environment when dispersed downwind. This review summarizes and synthesizes existing literature data on bioaerosols downwind from three major types of AFOs (swine, poultry, and cattle), covering their composition, concentration, dispersion patterns, measurement methodologies, potential health effects, and mitigation strategies. While many of these bioaerosols are typically detected only near AFOs, evidence indicates that certain bioaerosols, particularly viruses, can travel up to tens of kilometers downwind and remain infectious. Despite the critical importance of these bioaerosols, a refined modeling framework to simulate their transport and fate in downwind air has not yet been developed, nor have source attribution methods been established to track their origins in complex agricultural environments where multiple bioaerosols could co-exist. Therefore, it is imperative to further research downwind bioaerosols from AFOs, including their assessment, modeling, source attribution, and mitigation, to address the public health and environmental challenges associated with animal agriculture.
Collapse
Affiliation(s)
- Pradeep Kumar
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Shalini Tiwari
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Seyit Uguz
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA; Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16240, Turkey
| | - Zonggang Li
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jose Gonzalez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lin Wei
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Yuanhui Zhang
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xufei Yang
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
2
|
KC B, Mahapatra PS, Thakker D, Henry AP, Billington CK, Sayers I, Puppala SP, Hall IP. Proinflammatory Effects in Ex Vivo Human Lung Tissue of Respirable Smoke Extracts from Indoor Cooking in Nepal. Ann Am Thorac Soc 2020; 17:688-698. [PMID: 32079410 PMCID: PMC7258415 DOI: 10.1513/annalsats.201911-827oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/05/2020] [Indexed: 11/20/2022] Open
Abstract
Rationale: Exposure to biomass smoke is believed to increase the risk of developing chronic obstructive pulmonary disease. However, little is known about the mechanisms underlying responses to biomass smoke in human lungs.Objectives: This study had two objectives: first, to quantify "real-life" exposures to particulate matter <2 μm in diameter (PM2.5) and carbon monoxide (CO) measured during cooking on stoves in rural areas of Nepal in different geographical settings; and second, to assess the effect of biomass smoke extracts on inflammatory responses in ex vivo human lung tissue.Methods: Personal exposures to PM2.5 and indoor near-stove CO concentrations were measured during cooking on a range of stoves in 103 households in 4 different Nepalese villages situated at altitudes between ∼100 and 4,000 m above sea level. Inflammatory profiles to smoke extracts collected in the field were assessed by incubating extracts with human lung tissue fragments and subsequent Luminex analysis.Results: In households using traditional cooking stoves, the overall mean personal exposure to PM2.5 during cooking was 276.1 μg/m3 (standard deviation [SD], 265 μg/m3), and indoor CO concentration was 16.3 ppm (SD, 19.65 ppm). The overall mean PM2.5 exposure was reduced by 51% (P = 0.04) in households using biomass fuel in improved cook stoves, and 80% (P < 0.0001) in households using liquefied petroleum gas. Similarly, the indoor CO concentration was reduced by 72% (P < 0.001) and 86% (P < 0.0001) in households using improved cook stoves and liquefied petroleum gas, respectively. Significant increases occurred in 7 of the 17 analytes measured after biomass smoke extract stimulation of human lung tissue (IL-8 [interleukin-8], IL-6, TNF-α [tumor necrosis factor-α], IL-1β, CCL2, CCL3, and CCL13).Conclusions: High levels of real-life exposures to PM2.5 and CO occur during cooking events in rural Nepal. These exposures induce lung inflammation ex vivo, which may partially explain the increased risk of chronic obstructive pulmonary disease in these communities.
Collapse
Affiliation(s)
- Binaya KC
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Parth Sarathi Mahapatra
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Dhruma Thakker
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Amanda P. Henry
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Charlotte K. Billington
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| | - Siva Praveen Puppala
- Water and Air Theme, Atmosphere Initiative, International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Ian P. Hall
- Division of Respiratory Medicine, National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; and
| |
Collapse
|
3
|
Marchand G, Gardette M, Nguyen K, Amano V, Neesham-Grenon E, Debia M. Assessment of Workers' Exposure to Grain Dust and Bioaerosols During the Loading of Vessels' Hold: An Example at a Port in the Province of Québec. Ann Work Expo Health 2018. [PMID: 28637341 DOI: 10.1093/annweh/wxx045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure.
Collapse
Affiliation(s)
- Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), 505 Boul de Maisonneuve Ouest, Montréal, QC H3A 3C2, Canada.,Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Marie Gardette
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Kiet Nguyen
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Valérie Amano
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Eve Neesham-Grenon
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Maximilien Debia
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| |
Collapse
|
4
|
Viegas S, Caetano LA, Korkalainen M, Faria T, Pacífico C, Carolino E, Quintal Gomes A, Viegas C. Cytotoxic and Inflammatory Potential of Air Samples from Occupational Settings with Exposure to Organic Dust. TOXICS 2017; 5:E8. [PMID: 29051440 PMCID: PMC5606674 DOI: 10.3390/toxics5010008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Abstract
Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-1β), were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers.
Collapse
Affiliation(s)
- Susana Viegas
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Liliana Aranha Caetano
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 649-003 Lisbon, Portugal.
| | - Merja Korkalainen
- National Institute for Health and Welfare (THL), Department of Health Security, Chemicals and Health Unit, P.O. Box 95, FIN-70701 Kuopio, Finland.
| | - Tiago Faria
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Cátia Pacífico
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Elisabete Carolino
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
| | - Anita Quintal Gomes
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Institute of Molecular Medicine, Faculty of Medicine. University of Lisbon, 649-028 Lisbon, Portugal.
| | - Carla Viegas
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa, ESTeSL, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| |
Collapse
|
5
|
Freitas AS, Simoneti CS, Ferraz E, Bagatin E, Brandão IT, Silva CL, Borges MC, Vianna EO. Exposure to high endotoxin concentration increases wheezing prevalence among laboratory animal workers: a cross-sectional study. BMC Pulm Med 2016; 16:69. [PMID: 27153990 PMCID: PMC4859959 DOI: 10.1186/s12890-016-0233-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/27/2016] [Indexed: 12/04/2022] Open
Abstract
Background Endotoxin from Gram-negative bacteria are found in different concentrations in dust and on the ground of laboratories dealing with small animals and animal houses. Methods Cross-sectional study performed in workplaces of two universities. Dust samples were collected from laboratories and animal facilities housing rats, mice, guinea pigs, rabbits or hamsters and analyzed by the “Limulus amebocyte lysate” (LAL) method. We also sampled workplaces without animals. The concentrations of endotoxin detected in the workplaces were tested for association with wheezing in the last 12 months, asthma defined by self-reported diagnosis and asthma confirmed by bronchial hyperresponsiveness (BHR) to mannitol. Results Dust samples were obtained at 145 workplaces, 92 with exposure to animals and 53 with no exposure. Exposed group comprised 412 subjects and non-exposed group comprised 339 subjects. Animal-exposed workplaces had higher concentrations of endotoxin, median of 34.2 endotoxin units (EU) per mg of dust (interquartile range, 12.6–65.4), as compared to the non-exposed group, median of 10.2 EU/mg of dust (interquartile range, 2.6–22.2) (p < 0.001). The high concentration of endotoxin (above whole sample median, 20.4 EU/mg) was associated with increased wheezing prevalence (p < 0.001), i.e., 61 % of workers exposed to high endotoxin concentration reported wheezing in the last 12 months compared to 29 % of workers exposed to low endotoxin concentration. The concentration of endotoxin was not associated with asthma report or with BHR confirmed asthma. Conclusion Exposure to endotoxin is associated with a higher prevalence of wheezing, but not with asthma as defined by the mannitol bronchial challenge test or by self-reported asthma. Preventive measures are necessary for these workers.
Collapse
Affiliation(s)
- Amanda Souza Freitas
- Department of Social Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Christian Silva Simoneti
- Department of Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Erica Ferraz
- Department of Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ericson Bagatin
- Department of Preventive and Social Medicine, State University of Campinas, Campinas, Brazil
| | - Izaira Tincani Brandão
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Celio Lopes Silva
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcos Carvalho Borges
- Department of Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elcio Oliveira Vianna
- Department of Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
6
|
Moore MN. Do airborne biogenic chemicals interact with the PI3K/Akt/mTOR cell signalling pathway to benefit human health and wellbeing in rural and coastal environments? ENVIRONMENTAL RESEARCH 2015; 140:65-75. [PMID: 25825132 DOI: 10.1016/j.envres.2015.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Living and taking recreation in rural and coastal environments promote health and wellbeing, although the causal factors involved are unclear. It has been proposed that such environments provide a counter to the stresses of everyday living, leading to enhanced mental and physical health. Living in natural environments will result in airborne exposure to a wide range of biogenic chemicals through inhalation and ingestion of airborne microbiota and particles. The "biogenics" hypothesis formulated here is that regular exposure to low concentrations of mixtures of natural compounds and toxins in natural environments confers pleiotropic health benefits by inhibiting the activities of interconnected cell signalling systems, particularly PI3K/Akt/mTORC1. When overactive, Akt and mTOR (mTORC1) can lead to many pathological processes including cancers, diabetes, inflammation, immunosuppression, and neurodegenerative diseases. There is a substantial body of evidence that many natural products (i.e., from bacteria, algae, fungi and higher plants) inhibit the activities of these protein kinases. Other mTOR-related interconnected metabolic control "switches" (e.g., PTEN & NF-κB), autophagy and other cytoprotective processes are also affected by natural products. The "biogenics" hypothesis formulated here is that regular intermittent exposure to a mixture of airborne biogenic compounds in natural environments confers pleiotropic health benefits by inhibiting activities of the highly interconnected PI3K/Akt/mTORC1 system. It is proposed that future experimental exposures to biogenic aerosols in animal models coupled with epidemiology, should target the activities of the various kinases in the PI3K/Akt/mTORC1 systems and related physiological processes for selected urban, rural and coastal populations in order to test this hypothesis.
Collapse
Affiliation(s)
- Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; Department of Science and Innovative Technology (DSIT), University of Eastern Piedmont, Alessandria, Italy; Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth PL1 3DH, UK; School of Biological Sciences, University of Plymouth, Drake's Circus, Plymouth PL4 8DD, UK.
| |
Collapse
|
7
|
Whitehead GS, Thomas SY, Cook DN. Modulation of distinct asthmatic phenotypes in mice by dose-dependent inhalation of microbial products. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:34-42. [PMID: 24168764 PMCID: PMC3888577 DOI: 10.1289/ehp.1307280] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/25/2013] [Indexed: 05/30/2023]
Abstract
BACKGROUND Humans with asthma display considerable heterogeneity with regard to T helper (Th) 2-associated eosinophilic and Th17-associated neutrophilic inflammation, but the impact of the environment on these different forms of asthma is poorly understood. OBJECTIVE We studied the nature and longevity of asthma-like responses triggered by inhalation of allergen together with environmentally relevant doses of inhaled lipopolysaccharide (LPS). METHODS Ovalbumin (OVA) was instilled into the airways of mice together with a wide range of LPS doses. Following a single OVA challenge, or multiple challenges, animals were assessed for pulmonary cytokine production, airway inflammation, and airway hyperresponsiveness (AHR). RESULTS Mice instilled with OVA together with very low doses (≤10⁻³ μg) of LPS displayed modest amounts of Th2 cytokines, with associated airway eosinophilia and AHR after a single challenge, and these responses were sustained after multiple OVA challenges. When the higher but still environmentally relevant dose of 10⁻¹ μg LPS was used, mice initially displayed similar Th2 responses, as well as Th17-associated neutrophilia. After multiple OVA challenges, however, the 10⁻¹ μg LPS animals also accumulated large numbers of allergen-specific T regulatory (Treg) cells with high levels of inducible co-stimulatory molecule (ICOS). As a result, asthma-like features in these mice were shorter-lived than in mice sensitized using lower doses of LPS. CONCLUSIONS The nature and longevity of Th2, Th17, and Treg immune responses to inhaled allergen are dependent on the quantity of LPS inhaled at the time of allergic sensitization. These findings might account in part for the heterogeneity of inflammatory infiltrates seen in lungs of asthmatics.
Collapse
Affiliation(s)
- Gregory S Whitehead
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | | |
Collapse
|
8
|
Bláhová L, Adamovský O, Kubala L, Švihálková Šindlerová L, Zounková R, Bláha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon 2013; 76:187-96. [PMID: 24140921 DOI: 10.1016/j.toxicon.2013.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 02/05/2023]
Abstract
Massive toxic blooms of cyanobacteria represent a major threat to water supplies worldwide, yet serious gaps exist in understanding their complex toxic effects, including the role of lipopolysaccharides (LPS). The present comparative study focused on the levels and biological activities of LPS isolated from Microcystis aeruginosa, which is one of the most globally distributed toxic species. Using hot phenol extraction, LPS was isolated from 3 laboratory cultures and 11 natural water blooms. It formed 0.2-0.7% of the original dry biomass of the cyanobacteria, based on gravimetry. Additional analyses by commercial anti-LPS ELISA were correlated with gravimetry but showed concentrations that were about 7-times lower, which indicated either impurities in isolated LPS or the poor cross-reactivity of the antibodies used. LPS isolates from M. aeruginosa were potent pyrogens in the traditional Limulus amebocyte lysate (LAL)-test, but comparison with the PyroGene test demonstrated the limited selectivity of LAL with several interferences. The determined pyrogenicity (endotoxin units, EU) ranged from very low values in laboratory cultures (less than 0.003 up to 0.008-EU per 100 pg LPS) to higher values in complex bloom samples (0.01-0.078 EU per 100 pg of LPS), which suggested the role of bloom-associated bacteria in the overall effects. Potent pro-inflammatory effects of the studied LPS from both cultures and bloom samples were observed in a highly-relevant ex vivo human blood model by studying reactive oxygen species production in phagocytes as well as increased productions of interleukin 8, IL-8, and tumor necrosis factor α, TNF-α. LPS from M. aeruginosa seem to modulate several pathways involved in the regulation of both innate immunity and specific responses. In comparison to the standard pathogenic bacterial LPS (World Health Organization Escherichia coli O113:10 endotoxin; activity 1 EU per 100 pg), the studied cyanobacterial samples had pyrogenicity potencies that were at least 12-times lower. However, the health risks associated with LPS from M. aeruginosa should not be underestimated, especially with respect to diverse biological effects observed ex vivo and in the case of massive blooms in drinking water reservoirs, where the estimated pyrogenicity can reach up to 46,000 EU per mL of water.
Collapse
Affiliation(s)
- Lucie Bláhová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
9
|
Duquenne P, Marchand G, Duchaine C. Measurement of endotoxins in bioaerosols at workplace: a critical review of literature and a standardization issue. ACTA ACUST UNITED AC 2012; 57:137-72. [PMID: 23002277 DOI: 10.1093/annhyg/mes051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endotoxins are lipopolysaccharides found in the outer membrane of most Gram-negative bacteria and cyanobacteria. Worker exposure to endotoxins has been shown in a number of work situations and is associated with both respiratory and systemic pathologies. The lack of an occupational exposure limit is mainly due to the absence of a standard protocol at the international level for sampling and analyzing airborne endotoxins. The bibliographic review in this article takes an exhaustive look at the current knowledge on measuring airborne endotoxins. It shows that, despite several reference documents at the international level, the methods used to measure endotoxin exposure differ considerably from one laboratory to another. Standardization is necessary to reduce interlaboratory variability and, ultimately, to improve the use of interstudy data. The bibliographic review presents the current status of standardization for airborne endotoxin measurement methods in the workplace and summarizes areas for further research. This article is both a reference document for all operators wishing to use such methods and a working document to build international consensus around the measurement of airborne endotoxins.
Collapse
Affiliation(s)
- Philippe Duquenne
- Laboratoire de Métrologie des Aérosols, Institut National de Recherche et de Sécurité, Vandoeuvre-Les-Nancy, France.
| | | | | |
Collapse
|
10
|
O'Shaughnessy P, Peters T, Donham K, Taylor C, Altmaier R, Kelly K. Assessment of swine worker exposures to dust and endotoxin during hog load-out and power washing. THE ANNALS OF OCCUPATIONAL HYGIENE 2012; 56:843-51. [PMID: 22425653 PMCID: PMC3415068 DOI: 10.1093/annhyg/mes013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/09/2012] [Indexed: 11/13/2022]
Abstract
Field measurements of personal and area dust and endotoxin concentrations were obtained while agricultural workers performed two work tasks that have been previously unreported: hog load-out and swine building power washing. Hog load-out involves moving hogs from their pens in finishing buildings into a truck for transport to a meat processor. High pressure power washing is conducted for sanitation purposes after a building has been emptied of hogs to remove surface and floor debris. This debris consists of feed, feces, and hog dander as dust or an encrusted form. The hog load-out process necessarily increases pig activity which is known to increase airborne dust concentrations. An unintended consequence of power washing is that the material covering surfaces is forcibly ejected into the atmosphere, creating the potential for a highly concentrated aerosol exposure to workers. The load-out process resulted in a median personal inhalable mass concentration of 7.14 mg m(-) (3) and median endotoxin concentration of 12 150 endotoxin units (EU) m(-) (3). When converted to an 8-h time-weighted average for a 'total' sampler, one of the 19 samples exceeded a regulatory limit of 15 mg m(-) (3). An impinger was used to sample power washing endotoxin concentrations, which resulted in a median personal concentration of 40 350 EU m(-) (3). These concentrations were among the highest found in the literature for any occupation. With the lack of engineering controls present to reduce airborne contaminant concentrations in swine buildings, either respirator use or a reduction in exposure time is recommended while performing these tasks.
Collapse
Affiliation(s)
- Patrick O'Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa College of Public Health, 105 River Street, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
11
|
McKenzie JH, Alwis KU, Sordillo JE, Kalluri KS, Milton DK. Evaluation of lot-to-lot repeatability and effect of assay media choice in the recombinant Factor C assay. ACTA ACUST UNITED AC 2011; 13:1739-45. [PMID: 21552635 DOI: 10.1039/c1em10035a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurement of environmental endotoxin exposures is complicated by variability encountered using current biological assay methods arising in part from lot-to-lot variability of the Limulus-amebocyte lysate (LAL) reagents. Therefore, we investigated the lot-to-lot repeatability of commercially available recombinant Factor C (rFC) kits as an alternative to LAL. Specifically, we compared endotoxin estimates obtained from rFC assay of twenty indoor dust samples, using four different extraction and assay media, to endotoxin estimates previously obtained by Limulus amebocyte lysate (LAL) assay and amounts of 3-hydroxy fatty acids (3-OHFA) in lipopolysaccharide (LPS) using gas-chromatography mass spectroscopy (GC-MS). We found that lot-to-lot variability of the rFC assay kits does not significantly alter endotoxin estimates in house dust samples when performed using three of the four assay media tested and that choice of assay media significantly altered endotoxin estimates obtained by rFC assay of house dust samples. Our findings demonstrate lot-to-lot reproducibility of rFC assay of environmental samples and suggest that use of rFC assay performed with Tris buffer or water as the extraction and assay medium for measurement of endotoxin in dust samples may be a suitable choice for developing a standardized methodology.
Collapse
Affiliation(s)
- Jennifer Helen McKenzie
- Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA, USA
| | | | | | | | | |
Collapse
|
12
|
Dungan RS, Leytem AB. Ambient endotoxin concentrations and assessment of offsite transport at open-lot and open-freestall dairies. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:462-467. [PMID: 21520753 DOI: 10.2134/jeq2010.0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Endotoxins are derived from gram-negative bacteria and are a potent inducer of inflammatory reactions in the respiratory tract when inhaled. To assess daily fluctuations of airborne endotoxin and their potential for transport from dairies, endotoxin concentrations were monitored over an 8-h period at upwind (background) and downwind (5 m from edge of dairy) locations on three separate days at two dairies. The dairies consisted of an open-lot or an open-freestall production system, both of which were stocked with 10,000 milking cows. Upwind concentrations were stable throughout the sampling period, averaging between 1.2 and 36.8 endotoxin units (EU) m(-3), whereas downwind concentration averages ranged from 179 to 989 EU(-3). Downwind endotoxin concentrations increased with wind speed, animal activity, and lot management practices, resulting in concentrations up to 136-fold hi gher than upwind concentrations. An area-source model was used to predict downwind ground-level endotoxin concentrations at distances up to 2000 m from the production facilities. Predicted concentrations decreased with distance and reached background levels within 500 to 2000 m, depending on the source emision rate and meteorological conditions.
Collapse
Affiliation(s)
- Robert S Dungan
- USDA-ARS, Northwest Irrigation and Soils Research Lab., 3793 North 3600 East, Kimberly, ID 83341, USA.
| | | |
Collapse
|