1
|
Moazami TN, Jørgensen RB, Svendsen KVH, Teigen KA, Hegseth MN. Personal exposure to gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) and nanoparticles and lung deposited surface area (LDSA) for soot among Norwegian chimney sweepers. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:24-34. [PMID: 37756361 DOI: 10.1080/15459624.2023.2264349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) of high molecular weight from chimney soot can cause cancer among chimney sweepers. These sweepers may also be exposed to high concentrations of nanosized particles, which can cause significant inflammatory responses due to their relatively greater surface area per mass. In this study, the authors aimed to assess the exposure profiles of airborne personal exposure to gaseous and particulate PAHs, and real-time samples of the particle number concentrations (PNCs), particle sizes, and lung-deposited surface areas (LDSAs), for chimney sweepers in Norway. Additionally, the authors aimed to assess the task-based exposure concentrations of PNCs, sizes, and LDSAs while working on different tasks. The results are based on personal samples of particulate PAHs (n = 68), gaseous PAHs (n = 28), and real-time nanoparticles (n = 8) collected from 17 chimney sweepers. Samples were collected during a "typical work week" of chimney sweeping and fire safety inspections, then during a "massive soot" week, where larger sweeping missions took place. Significantly higher PAH concentrations were measured during the "massive soot" week compared to the "typical work week," however, the time-weighted average (TWA) (8-hr) of all gaseous and particulate PAHs ranged from 0.52 to 4.47 µg/m3 and 0.49 to 2.50 µg/m3, respectively, well below the Norwegian occupational exposure limit (OEL) of 40 µg/m3. The PNCs were high during certain activities, such as emptying the vacuum cleaner. Additionally, during 2 days of sweeping in a waste sorting facility, the TWAs of the PNCs were 3.6 × 104 and 7.1 × 104 particles/cm3 on the first and second days, respectively, which were near and above the proposed nano reference limit TWA value of 4.0 × 104 particles/cm3 proposed by the International Workshop on Nano Reference Values. The corresponding TWAs of the LDSAs were 49.5 and 54.5 µm2/cm3, respectively. The chimney sweepers seemed aware of the potential health risks associated with exposure, and suitable personal protective equipment was used. However, the PNCs reported for the activities show that when the activities change or increase, the PNCs' TWAs can become unacceptably high.
Collapse
Affiliation(s)
- Therese Nitter Moazami
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTennesseeU), Trondheim, Norway
| | - Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTennesseeU), Trondheim, Norway
| | - Kristin V Hirsch Svendsen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTennesseeU), Trondheim, Norway
| | - Krister Aune Teigen
- Department of Occupational and Environmental Medicine, University Hospital of North Norway (UiT), Tromsø, Norway
| | - Marit Nøst Hegseth
- Department of Occupational and Environmental Medicine, University Hospital of North Norway (UiT), Tromsø, Norway
| |
Collapse
|
2
|
Grytting VS, Chand P, Låg M, Øvrevik J, Refsnes M. The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:14. [PMID: 35189914 PMCID: PMC8862321 DOI: 10.1186/s12989-022-00455-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND People are exposed to ambient particulate matter (PM) from multiple sources simultaneously in both environmental and occupational settings. However, combinatory effects of particles from different sources have received little attention in experimental studies. In the present study, the pro-inflammatory effects of combined exposure to diesel exhaust particles (DEP) and mineral particles, two common PM constituents, were explored in human lung epithelial cells. METHODS Particle-induced secretion of pro-inflammatory cytokines (CXCL8 and IL-1β) and changes in expression of genes related to inflammation (CXCL8, IL-1α, IL-1β and COX-2), redox responses (HO-1) and xenobiotic metabolism (CYP1A1 and CYP1B1) were assessed in human bronchial epithelial cells (HBEC3-KT) after combined exposure to different samples of DEP and mineral particles. Combined exposure was also conducted using lipophilic organic extracts of DEP to assess the contribution of soluble organic chemicals. Moreover, the role of the aryl hydrocarbon receptor (AhR) pathway was assessed using an AhR-specific inhibitor (CH223191). RESULTS Combined exposure to DEP and mineral particles induced increases in pro-inflammatory cytokines and expression of genes related to inflammation and redox responses in HBEC3-KT cells that were greater than either particle sample alone. Moreover, robust increases in the expression of CYP1A1 and CYP1B1 were observed. The effects were most pronounced after combined exposure to α-quartz and DEP from an older fossil diesel, but enhanced responses were also observed using DEP generated from a modern biodiesel blend and several stone particle samples of mixed mineral composition. Moreover, the effect of combined exposure on cytokine secretion could also be induced by lipophilic organic extracts of DEP. Pre-incubation with an AhR-specific inhibitor reduced the particle-induced cytokine responses, suggesting that the effects were at least partially dependent on AhR. CONCLUSIONS Exposure to DEP and mineral particles in combination induces enhanced pro-inflammatory responses in human bronchial epithelial cells compared with exposure to the individual particle samples. The effects are partly mediated through an AhR-dependent pathway and lipophilic organic chemicals in DEP appear to play a central role. These possible combinatory effects between different sources and components of PM warrant further attention and should also be considered when assessing measures to reduce PM-induced health effects.
Collapse
Affiliation(s)
- Vegard Sæter Grytting
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Prem Chand
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| |
Collapse
|
3
|
Virji MA, Kurth L. Peak Inhalation Exposure Metrics Used in Occupational Epidemiologic and Exposure Studies. Front Public Health 2021; 8:611693. [PMID: 33490023 PMCID: PMC7820770 DOI: 10.3389/fpubh.2020.611693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Peak exposures are of concern because they can potentially overwhelm normal defense mechanisms and induce adverse health effects. Metrics of peak exposure have been used in epidemiologic and exposure studies, but consensus is lacking on its definition. The relevant characteristics of peak exposure are dependent upon exposure patterns, biokinetics of exposure, and disease mechanisms. The objective of this review was to summarize the use of peak metrics in epidemiologic and exposure studies. A comprehensive search of Medline, Embase, Web of Science, and NIOSHTIC-2 databases was conducted using keywords related to peak exposures. The retrieved references were reviewed and selected for indexing if they included a peak metric and met additional criteria. Information on health outcomes and peak exposure metrics was extracted from each reference. A total of 1,215 epidemiologic or exposure references were identified, of which 182 were indexed and summarized. For the 72 epidemiologic studies, the health outcomes most frequently evaluated were: chronic respiratory effects, cancer and acute respiratory symptoms. Exposures were frequently assessed using task-based and full-shift time-integrated methods, qualitative methods, and real-time instruments. Peak exposure summary metrics included the presence or absence of a peak event, highest exposure intensity and frequency greater than a target. Peak metrics in the 110 exposure studies most frequently included highest exposure intensity, average short-duration intensity, and graphical presentation of the real-time data (plots). This review provides a framework for considering biologically relevant peak exposure metrics for epidemiologic and exposure studies to help inform risk assessment and exposure mitigation.
Collapse
Affiliation(s)
- M Abbas Virji
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Laura Kurth
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
4
|
Comparison of four nanoparticle monitoring instruments relevant for occupational hygiene applications. J Occup Med Toxicol 2019; 14:28. [PMID: 31798666 PMCID: PMC6882232 DOI: 10.1186/s12995-019-0247-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study is to make a comparison of a new small sized nanoparticle monitoring instrument, Nanoscan SMPS, with more traditional large size instruments, known to be precise and accurate [Scanning Mobility Particle Sampler (SMPS) and Fast Mobility Particle Sizer (FMPS)], and with an older small size instrument with bulk measurements of 10-1000 nm particles (CPC3007). The comparisons are made during simulated exposure scenarios relevant to occupational hygiene studies. Methods Four scenarios were investigated: metal inert gas (MIG) welding, polyvinyl chloride (PVC) welding, cooking, and candle-burning. Ratios between results are compaed and Pearsson correlations analysis was performed. Results The highest correlation between the results is found between Nanoscan and SMPS, with Pearsson correlation coefficients above 0.9 for all scenarios. However, Nanoscan tended to overestimate the results from the SMPS; the ratio between the UFP concentrations vary between 1.44 and 2.01, and ratios of total concentrations between 1.18 and 2.33. CPC 3007 did not show comparable results with the remaining instruments. Conclusion Based on the results of this study, the choice of measurement equipment may be crucial when evaluating measurement results against a reference value or a limit value for nanoparticle exposure. This stresses the need for method development, standardisation, and harmonisation of particle sampling protocols before reference values are introduced. Until this is established, the SMPS instruments are the most reliable for quantification of the concentrations of UFP, but in a more practical occupational hygiene context, the Nanoscan SMPS should be further tested.
Collapse
|
5
|
Lung function in asphalt pavers: a longitudinal study. Int Arch Occup Environ Health 2016; 90:63-71. [PMID: 27722781 DOI: 10.1007/s00420-016-1173-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/02/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE To study longitudinal changes in lung function in asphalt pavers and a reference group of road maintenance workers, and to detect possible signs of lung disease by high-resolution computed tomography (HRCT) scans. METHODS Seventy-five asphalt pavers and 71 road maintenance workers were followed up with questionnaires and measurements of lung function. Not every worker was tested every year, but most of them had four or more measurement points. The 75 asphalt pavers were also invited to have HRCT scans of the lungs at the end of the follow-up period. RESULTS Mean annual decline in forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) of the asphalt pavers was 58 and 35 ml, respectively. Adjusted for age at baseline, packyears of smoking and BMI, the asphalt pavers had a significant excess annual decline in FVC and FEV1 compared to the references. The screedmen, the most exposed group of the asphalt pavers, showed a significantly larger decline in FVC than the other asphalt pavers (P = 0.029). Fine intralobular fibrosis without evident cysts was identified with HRCT in three subjects (4 %). CONCLUSION We conclude that our findings may indicate an excess annual decline in FVC and FEV1 related to exposure to asphalt fumes. The screedmen, who carry out their work behind and close to the paving machine, had the largest decline in lung function. The finding of adverse pulmonary effects in asphalt pavers calls for better technological solutions to prevent exposure.
Collapse
|
6
|
Weggeberg H, Føreland S, Buhagen M, Hilt B, Flaten TP. Multi-element analysis of airborne particulate matter from different work tasks during subsea tunnel rehabilitation work. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2016; 13:725-740. [PMID: 27078031 DOI: 10.1080/15459624.2016.1177645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tunnel rehabilitation work involves exposure to various air contaminants, including airborne particulate matter (APM). Little is known on the contents of different chemical components of APM generated during tunnel work. The objective of the present study was to characterize exposure to APM and various elements for different job categories in different size fractions of APM during a subsea tunnel rehabilitation project carried out in Western Norway. Personal as well as stationary samples of inhalable, thoracic and respirable dust were collected from workers divided into 11 different job categories based on work operations performed, and air concentrations of a range of elements were determined using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). Overall, APM concentrations were low, but with some measurements exceeding the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for inhalable particles, and considerable proportions of respirable and especially inhalable APM exceeding 10% of the TLVs. For most elements, air concentrations measured were quite low, in the ng/m(3) range, except for the major crustal elements Si, Fe, Al, and Mg, which were found to be in the µg/m(3) range. Asphalt millers overall had the highest exposure levels for APM and most measured elements; for instance, mean concentrations of V, Rb, and Mn were 380, 210, and 2000 ng/m(3) in inhalable and 33, 44, and 310 ng/m(3) in respirable APM. Mounting PVC membrane seemed to generate elevated levels of Cr, Zn, Sn, Pb, Sb, As, Mn, Fe, and Ni, whereas typical bedrock elements were elevated during drilling activities compared to the low exposed categories lead car drivers, foremen/surveyors, drivers of heavy-duty vehicles, and electricians. Overall, stationary samples contained lower amounts of dust and elemental constituents compared to personal samples. Elemental air concentrations were highly variable with occasional elevated values for APM and certain elements, particularly Cr and Zn.
Collapse
Affiliation(s)
- Hanne Weggeberg
- a Department of Chemistry , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| | - Solveig Føreland
- b Department of Occupational Medicine , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
- c Department of Geology and Mineral Resources Engineering , NTNU , Trondheim , Norway
| | - Morten Buhagen
- b Department of Occupational Medicine , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
- d Department of Public Health and General Practice , NTNU , Trondheim , Norway
| | - Bjørn Hilt
- b Department of Occupational Medicine , St. Olav's Hospital, Trondheim University Hospital , Trondheim , Norway
- d Department of Public Health and General Practice , NTNU , Trondheim , Norway
| | - Trond Peder Flaten
- a Department of Chemistry , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
| |
Collapse
|
7
|
Jørgensen RB, Buhagen M, Føreland S. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation. Occup Environ Med 2016; 73:467-73. [DOI: 10.1136/oemed-2015-103411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/07/2016] [Indexed: 11/03/2022]
|
8
|
Zhao G, Huang Y, Li G, Li S, Zhou Y, Lei Y, Chen X, Yang K, Chen Y, Yang K. [Subcellular distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 16:117-24. [PMID: 23514939 PMCID: PMC6015129 DOI: 10.3779/j.issn.1009-3419.2013.03.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
背景与目的 纳米二氧化硅广泛应用于社会生产生活中,肺部是吸入暴露纳米二氧化硅的主要靶器官,因此,二氧化硅对肺部的生物毒性作用引起人们的广泛关注。本研究旨在探讨纳米二氧化硅在人支气管上皮细胞内的亚细胞分布和遗传毒性。 方法 应用透射电子显微镜(transmission electron microscope, TEM)观察不同粒径二氧化硅在人支气管上皮细胞(immortalized human bronchial epithelium cells, BEAS-2B)内的亚细胞分布;应用单细胞凝胶电泳检测不同粒径二氧化硅处理BEAS-2B细胞24 h后的DNA损伤,了解不同粒径二氧化硅的遗传毒性作用。 结果 透射电镜观察到微米二氧化硅不能进入细胞,纳米二氧化硅赋存在细胞质,纳米二氧化硅导致线粒体、内质网等细胞器损伤。纳米二氧化硅导致比微米二氧化硅更严重的DNA损伤(P < 0.05)。 结论 二氧化硅的粒径决定二氧化硅颗粒物是否能进入细胞及在细胞内的分布,纳米二氧化硅对细胞遗传毒性比微米二氧化硅严重。
Collapse
Affiliation(s)
- Guangqiang Zhao
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University/The Tumor Hospital of Yunnan Province, Kunming 650118, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|