1
|
Xu YR, Zhao J, Huang HY, Lin YCD, Lee TY, Huang HD, Yang Y, Wang YF. Recent insights into breast milk microRNA: their role as functional regulators. Front Nutr 2024; 11:1366435. [PMID: 38689935 PMCID: PMC11058965 DOI: 10.3389/fnut.2024.1366435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Breast milk (BM) is a primary biofluid that plays a crucial role in infant development and the regulation of the immune system. As a class of rich biomolecules in BM, microRNAs (miRNAs) are regarded as active factors contributing to infant growth and development. Surprisingly, these molecules exhibit resilience in harsh conditions, providing an opportunity for infants to absorb them. In addition, many studies have shown that miRNAs in breast milk, when absorbed into the gastrointestinal system, can act as a class of functional regulators to effectively regulate gene expression. Understanding the absorption pattern of BM miRNA may facilitate the creation of formula with a more optimal miRNA balance and pave the way for novel drug delivery techniques. In this review, we initially present evidence of BM miRNA absorption. Subsequently, we compile studies that integrate both in vivo and in vitro findings to illustrate the bioavailability and biodistribution of BM miRNAs post-absorption. In addition, we evaluate the strengths and weaknesses of previous studies and discuss potential variables contributing to discrepancies in their outcomes. This literature review indicates that miRNAs can be absorbed and act as regulatory agents.
Collapse
Affiliation(s)
- Yi-Ran Xu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinglu Zhao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hsi-Yuan Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yang-Chi-Dung Lin
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, China
| | - Yong-Fei Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Kaeffer B. Human Breast Milk miRNAs: Their Diversity and Potential for Preventive Strategies in Nutritional Therapy. Int J Mol Sci 2023; 24:16106. [PMID: 38003296 PMCID: PMC10671413 DOI: 10.3390/ijms242216106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The endogenous miRNAs of breast milk are the products of more than 1000 nonprotein-coding genes, giving rise to mature small regulatory molecules of 19-25 nucleotides. They are incorporated in macromolecular complexes, loaded on Argonaute proteins, sequestrated in exosomes and lipid complexes, or present in exfoliated cells of epithelial, endothelial, or immune origins. Their expression is dependent on the stage of lactation; however, their detection depends on progress in RNA sequencing and the reappraisal of the definition of small RNAs. Some miRNAs from plants are detected in breast milk, opening the possibility of the stimulation of immune cells from the allergy repertoire. Each miRNA harbors a seeding sequence, which targets mRNAs, gene promoters, or long noncoding RNAs. Their activities depend on their bioavailability. Efficient doses of miRNAs are estimated to be roughly 100 molecules in the cytoplasm of target cells from in vitro and in vivo experiments. Each miRNA is included in networks of stimulation/inhibition/sequestration, driving the expression of cellular phenotypes. Three types of stress applied during lactation to manipulate miRNA supply were explored using rodent offspring: a foster mother, a cafeteria diet, and early weaning. This review presents the main mature miRNAs described from current mothers' cohorts and their bioavailability in experimental models as well as studies assessing the potential of miR-26 or miR-320 miRNA families to alter offspring phenotypes.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
| |
Collapse
|
3
|
Le Guillou S, Ciobotaru C, Laubier J, Castille J, Aujean E, Hue-Beauvais C, Cherbuy C, Liuu S, Henry C, David A, Jaffrezic F, Laloë D, Charlier M, Alexandre-Gouabau MC, Le Provost F. Specific Milk Composition of miR-30b Transgenic Mice Associated with Early Duodenum Maturation in Offspring with Lasting Consequences for Growth. J Nutr 2023; 153:2808-2826. [PMID: 37543213 DOI: 10.1016/j.tjnut.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Milk composition is complex and includes numerous components essential for offspring growth and development. In addition to the high abundance of miR-30b microRNA, milk produced by the transgenic mouse model of miR-30b-mammary deregulation displays a significantly altered fatty acid profile. Moreover, wild-type adopted pups fed miR-30b milk present an early growth defect. OBJECTIVE This study aimed to investigate the consequences of miR-30b milk feeding on the duodenal development of wild-type neonates, a prime target of suckled milk, along with comprehensive milk phenotyping. METHODS The duodenums of wild-type pups fed miR-30b milk were extensively characterized at postnatal day (PND)-5, PND-6, and PND-15 using histological, transcriptomic, proteomic, and duodenal permeability analyses and compared with those of pups fed wild-type milk. Milk of miR-30b foster dams collected at mid-lactation was extensively analyzed using proteomic, metabolomic, and lipidomic approaches and hormonal immunoassays. RESULTS At PND-5, wild-type pups fed miR-30b milk showed maturation of their duodenum with 1.5-fold (P < 0.05) and 1.3-fold (P < 0.10) increased expression of Claudin-3 and Claudin-4, respectively, and changes in 8 duodenal proteins (P < 0.10), with an earlier reduction in paracellular and transcellular permeability (183 ng/mL fluorescein sulfonic acid [FSA] and 12 ng/mL horseradish peroxidase [HRP], respectively, compared with 5700 ng/mL FSA and 90 ng/mL HRP in wild-type; P < 0.001). Compared with wild-type milk, miR-30b milk displayed an increase in total lipid (219 g/L compared with 151 g/L; P < 0.05), ceramide (17.6 μM compared with 6.9 μM; P < 0.05), and sphingomyelin concentrations (163.7 μM compared with 76.3 μM; P < 0.05); overexpression of 9 proteins involved in the gut barrier (P < 0.1); and higher insulin and leptin concentrations (1.88 ng/mL and 2.04 ng/mL, respectively, compared with 0.79 ng/mL and 1.06 ng/mL; P < 0.01). CONCLUSIONS miR-30b milk displays significant changes in bioactive components associated with neonatal duodenal integrity and maturation, which could be involved in the earlier intestinal closure phenotype of the wild-type pups associated with a lower growth rate.
Collapse
Affiliation(s)
| | - Céline Ciobotaru
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johann Laubier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Etienne Aujean
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Cathy Hue-Beauvais
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claire Cherbuy
- Université Paris-Saclay, INRAE, MICALIS Institute, Jouy-en-Josas, France
| | - Sophie Liuu
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, PAPPSO, Jouy-en-Josas, France
| | - Agnès David
- Nantes Université, CRNH-OUEST, INRAE, UMR 1280, PhAN, Nantes, France
| | - Florence Jaffrezic
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Denis Laloë
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Madia Charlier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | |
Collapse
|
4
|
Abstract
Exosomes are natural nanoparticles that originate in the endocytic system. Exosomes play an important role in cell-to-cell communication by transferring RNAs, lipids, and proteins from donor cells to recipient cells or by binding to receptors on the recipient cell surface. The concentration of exosomes and the diversity of cargos are high in milk. Exosomes and their cargos resist degradation in the gastrointestinal tract and during processing of milk in dairy plants. They are absorbed and accumulate in tissues following oral administrations, cross the blood-brain barrier, and dietary depletion and supplementation elicit phenotypes. These features have sparked the interest of the nutrition and pharmacology communities for exploring milk exosomes as novel bioactive food compounds and for delivering drugs to diseased tissues. This review discusses the current knowledgebase, uncertainties, and controversies in these lines of scholarly endeavor and health research.
Collapse
Affiliation(s)
- Alice Ngu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Afsana Khanam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
5
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
6
|
López de Las Hazas MC, Del Pozo-Acebo L, Dávalos A. Response to: Letter to the editor regarding "Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression". Eur J Nutr 2022; 61:1697-1698. [PMID: 35192028 DOI: 10.1007/s00394-022-02816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 11/04/2022]
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Myrzabekova M, Labeit S, Niyazova R, Akimniyazova A, Ivashchenko A. Identification of Bovine miRNAs with the Potential to Affect Human Gene Expression. Front Genet 2022; 12:705350. [PMID: 35087564 PMCID: PMC8787201 DOI: 10.3389/fgene.2021.705350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Milk and other products from large mammals have emerged during human evolution as an important source of nutrition. Recently, it has been recognized that exogenous miRNAs (mRNA inhibited RNA) contained in milk and other tissues of the mammalian body can enter the human body, which in turn have the ability to potentially regulate human metabolism by affecting gene expression. We studied for exogenous miRNAs from Bos taurus that are potentially contain miRNAs from milk and that could act postprandially as regulators of human gene expression. The interaction of 17,508 human genes with 1025 bta-miRNAs, including 245 raw milk miRNAs was studied. The milk bta-miR-151-5p, bta-miR-151-3p, bta-miRNA-320 each have 11 BSs (binding sites), and bta-miRNA-345-5p, bta-miRNA-614, bta-miRNA-1296b and bta-miRNA-149 has 12, 14, 15 and 26 BSs, respectively. The bta-miR-574-5p from cow’s milk had 209 human genes in mRNAs from one to 25 repeating BSs. We found 15 bta-miRNAs that have 100% complementarity to the mRNA of 13 human target genes. Another 12 miRNAs have BSs in the mRNA of 19 human genes with 98% complementarity. The bta-miR-11975, bta-miR-11976, and bta-miR-2885 BSs are located with the overlap of nucleotide sequences in the mRNA of human genes. Nucleotide sequences of BSs of these miRNAs in 5′UTR mRNA of human genes consisted of GCC repeats with a total length of 18 nucleotides (nt) in 18 genes, 21 nt in 11 genes, 24 nt in 14 genes, and 27–48 nt in nine genes. Nucleotide sequences of BSs of bta-miR-11975, bta-miR-11976, and bta-miR-2885 in CDS mRNA of human genes consisted of GCC repeats with a total length of 18 nt in 33 genes, 21 nt in 13 genes, 24 nt in nine genes, and 27–36 nt in 11 genes. These BSs encoded polyA or polyP peptides. In only one case, the polyR (SLC24A3 gene) was encoded. The possibility of regulating the expression of human genes by exogenous bovine miRNAs is discussed.
Collapse
Affiliation(s)
- Moldir Myrzabekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemuend, Germany
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
8
|
Leroux C, Chervet ML, German JB. Perspective: Milk microRNAs as Important Players in Infant Physiology and Development. Adv Nutr 2021; 12:1625-1635. [PMID: 34022770 PMCID: PMC8483967 DOI: 10.1093/advances/nmab059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Evolutionary selective pressure on lactation has resulted in milk that provides far more than simply essential nutrients, delivering a complex repertoire of agents from hormones to intact cells. Human infants are born with low barrier integrity of their gut, which means that many of the complex biopolymer components of milk enter and circulate in lymph and blood, reaching organs throughout the body. Due to this state of gut maturation, all components of milk are potentially part of the crosstalk between mother and infants. This article highlights the functions of milk's complex biopolymers, more specifically the potential role of microRNAs (miRNAs) contained in extracellular vesicles in human milk. miRNAs are key effectors in the regulation of many biological processes during early-age development, and consequently milk-sourced miRNAs must be considered to provide unique biological assets to the infant during breastfeeding. This article interprets the evidence of the potential action of human milk miRNAs on infant development, taking into account their abundance in milk based on the literature and current knowledge. Human milk miRNAs appear to influence lipid and glucose metabolism, gut maturation, neurogenesis, and immunity. We also show growing evidence that human milk miRNAs are epigenetic modulators that play a pivotal role in the regulation of tissue-specific gene expression throughout life. Furthermore, this article addresses the ongoing debate regarding the potential influence of human milk miRNAs on viral infection as a new research area. This article highlights that these bioactive molecules are now being incorporated into our overall understanding of nutrient needs for healthy infant development, preparing each individual infant to succeed as a healthy and protected adult throughout its life. In essence, miRNAs are a new language in the Rosetta stone of health that is mammalian lactation.
Collapse
Affiliation(s)
| | - Mathilde Lea Chervet
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
9
|
Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front Immunol 2021; 12:683022. [PMID: 34054875 PMCID: PMC8158941 DOI: 10.3389/fimmu.2021.683022] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the oldest protection strategy that is conserved across all organisms. Although having an unspecific action, it is the first and fastest defense mechanism against pathogens. Development of predominantly the adaptive immune system takes place after birth. However, some key components of the innate immune system evolve during the prenatal period of life, which endows the newborn with the ability to mount an immune response against pathogenic invaders directly after birth. Undoubtedly, the crosstalk between maternal immune cells, antibodies, dietary antigens, and microbial metabolites originating from the maternal microbiota are the key players in preparing the neonate’s immunity to the outer world. Birth represents the biggest substantial environmental change in life, where the newborn leaves the protective amniotic sac and is exposed for the first time to a countless variety of microbes. Colonization of all body surfaces commences, including skin, lung, and gastrointestinal tract, leading to the establishment of the commensal microbiota and the maturation of the newborn immune system, and hence lifelong health. Pregnancy, birth, and the consumption of breast milk shape the immune development in coordination with maternal and newborn microbiota. Discrepancies in these fine-tuned microbiota interactions during each developmental stage can have long-term effects on disease susceptibility, such as metabolic syndrome, childhood asthma, or autoimmune type 1 diabetes. In this review, we will give an overview of the recent studies by discussing the multifaceted emergence of the newborn innate immune development in line with the importance of maternal and early life microbiota exposure and breast milk intake.
Collapse
Affiliation(s)
- Cristina Kalbermatter
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sandro Christensen
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Sanwlani R, Fonseka P, Mathivanan S. Are Dietary Extracellular Vesicles Bioavailable and Functional in Consuming Organisms? Subcell Biochem 2021; 97:509-521. [PMID: 33779931 DOI: 10.1007/978-3-030-67171-6_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been well established that diet influences the health status of the consuming organism. Recently, extracellular vesicles (EVs) present in dietary sources are proposed to be involved in cross-species and kingdom communication. As EVs contain a lipid bilayer and carry bioactive cargo of proteins and nucleic acids, they are proposed to survive harsh degrading conditions of the gut and enter systemic circulation. Following the bioavailability, several studies have supported the functional role of dietary EVs in various tissues of the consuming organism. Simultaneously, multiple studies have refuted the possibility that dietary EVs mediate cross-species communication and hence the topic is controversial. The feasibility of the concept remains under scrutiny primarily owing to the lack of significant in vivo evidence to complement the in vitro speculations. Concerns surrounding EV stability in the harsh degrading gut environment, lack of mechanism explaining intestinal uptake and bioavailability in systemic circulation have impeded the acceptance of their functional role. This chapter discusses the current evidences that support dietary EV-based cross species communication and enlists several issues that need to be addressed in this field.
Collapse
Affiliation(s)
- Rahul Sanwlani
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pamali Fonseka
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Del Pozo-Acebo L, López de Las Hazas MC, Margollés A, Dávalos A, García-Ruiz A. Eating microRNAs: pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. Br J Pharmacol 2021; 178:2218-2245. [PMID: 33644849 DOI: 10.1111/bph.15421] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cross-kingdom communication via non-coding RNAs is a recent discovery. Exogenous microRNAs (exog-miRNAs) mainly enter the host via the diet. Generally considered unstable in the gastrointestinal tract, some exogenous RNAs may resist these conditions, especially if transported in extracellular vesicles. They could then reach the intestines and more probably exert a regulatory effect. We give an overview of recent discoveries concerning dietary miRNAs, possible ways of enhancing their resistance to food processing and gut conditions, their transport in extracellular vesicles (animal- and plant-origin) and possible biological effects on recipient cells after ingestion. We critically focus on what we believe are the most relevant data for future pharmacological development of dietary miRNAs as therapeutic agents. Finally, we discuss the miRNA-mediated cross-kingdom regulation between diet, host and the gut microbiota. We conclude that, despite many obstacles and challenges, extracellular miRNAs are serious candidates to be targeted pharmacologically for development of new therapeutic agents.
Collapse
Affiliation(s)
- Lorena Del Pozo-Acebo
- Madrid Institute for Advanced Studies (IMDEA)-Food, Laboratory of Epigenetics of Lipid Metabolism, Madrid, Spain
| | | | - Abelardo Margollés
- Institute of Dairy Products of Asturias (IPLA-CSIC), Villaviciosa, Spain.,Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Alberto Dávalos
- Madrid Institute for Advanced Studies (IMDEA)-Food, Laboratory of Epigenetics of Lipid Metabolism, Madrid, Spain
| | - Almudena García-Ruiz
- Madrid Institute for Advanced Studies (IMDEA)-Food, Laboratory of Epigenetics of Lipid Metabolism, Madrid, Spain.,Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
12
|
Carrillo-Lozano E, Sebastián-Valles F, Knott-Torcal C. Circulating microRNAs in Breast Milk and Their Potential Impact on the Infant. Nutrients 2020; 12:E3066. [PMID: 33049923 PMCID: PMC7601398 DOI: 10.3390/nu12103066] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (MiRNAs) are small RNA molecules that can exert regulatory functions in gene expression. MiRNAs have been identified in diverse tissues and biological fluids, both in the context of health and disease. Breastfeeding has been widely recognized for its superior nutritional benefits; however, a number of bioactive compounds have been found to transcend these well-documented nutritional contributions. Breast milk was identified as a rich source of miRNAs. There has been increasing interest about their potential ability to transfer to the offspring as well as what their specific involvement is within the benefits of breast milk in the infant. In comparison to breast milk, formula milk lacks many of the benefits of breastfeeding, which is thought to be a result of the absence of some of these bioactive compounds. In recent years, the miRNA profile of breast milk has been widely studied, along with the possible transfer mechanisms throughout the infant's digestive tract and the role of miRNA-modulated genes and their potential protective and regulatory functions. Nonetheless, to date, the current evidence is not consistent, as many methodological limitations have been identified; hence, discrepancies exits about the biological functions of miRNAs. Further research is needed to provide thorough knowledge in this field.
Collapse
|
13
|
Mar-Aguilar F, Arreola-Triana A, Mata-Cardona D, Gonzalez-Villasana V, Rodríguez-Padilla C, Reséndez-Pérez D. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. PeerJ 2020; 8:e9567. [PMID: 32995073 PMCID: PMC7502231 DOI: 10.7717/peerj.9567] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding, single-strand RNA molecules that act as regulators of gene expression in plants and animals. In 2012, the first evidence was found that plant miRNAs could enter the bloodstream through the digestive tract. Since then, there has been an ongoing discussion about whether miRNAs from the diet are transferred to blood, accumulate in tissues, and regulate gene expression. Different research groups have tried to replicate these findings, using both plant and animal sources. Here, we review the evidence for and against the transfer of diet-derived miRNAs from plants, meat, milk and exosome and their assimilation and putative molecular regulation role in the consuming organism. Some groups using both miRNAs from plant and animal sources have claimed success, whereas others have not shown transfer. In spite of the biological barriers that may limit miRNA transference, several diet-derived miRNAs can transfer into the circulating system and targets genes for transcription regulation, which adds arguments that miRNAs can be absorbed from the diet and target specific genes by regulating their expression. However, many other studies show that cross-kingdom transfer of exogenous miRNAs appears to be insignificant and not biologically relevant. The main source of controversy in plant studies is the lack of reproducibility of the findings. For meat-derived miRNAs, studies concluded that the miRNAs can survive the cooking process; nevertheless, our evidence shows that the bovine miRNAs are not transferred to human bloodstream. The most important contributions and promising evidence in this controversial field is the transference of milk miRNAs in exosomes and the finding that plant miRNAs in beebread regulate honeybee caste development, and cause similar changes when fed to Drosophila. MiRNAs encapsulated in exosomes ensure their stability and resistance in the harsh conditions presented in milk, bloodstream, and gastrointestinaltract to reinforce the idea of transference. Regardless of the model organism, the idea of source of miRNAs, or the approach-bioinformatics or in vivo-the issue of transfer of miRNAs from the diet remains in doubt. Our understanding of the cross-kingdom talk of miRNAs needs more research to study the transfer of "xenomiRs" from different food sources to complement and expand what we know so far regarding the interspecies transfer of miRNAs.
Collapse
Affiliation(s)
- Fermín Mar-Aguilar
- Facultad de Ciencias Biológicas, Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Alejandra Arreola-Triana
- Facultad de Ciencias Biológicas, Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Daniela Mata-Cardona
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Vianey Gonzalez-Villasana
- Facultad de Ciencias Biológicas, Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Biología Celular y Genética, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
14
|
Huff K, Suárez-Trujillo A, Kuang S, Plaut K, Casey T. One-to-one relationships between milk miRNA content and protein abundance in neonate duodenum support the potential for milk miRNAs regulating neonate development. Funct Integr Genomics 2020; 20:645-656. [PMID: 32458191 DOI: 10.1007/s10142-020-00743-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Breast milk plays an essential role for offspring development; however, there lacks evidence of how specific milk components like nucleic acids mechanistically function to regulate neonate development. Previously, we found that maternal high-fat diet (HFD) not only significantly affected mRNA and miRNA content of the secreted milk transcriptome in mice but also affected the duodenal proteome of suckling pups. Here, we hypothesized that nucleic acids differentially expressed in milk of HFD fed dams are related to differentially abundant proteins in offspring duodenum nursed by HFD dams. We tested this hypothesis by analyzing one-to-one relationships in RNA-seq data of milk transcriptomes from control (10% kcal fat) and HFD (60% kcal fat) fed mice and liquid chromatography-tandem mass spectrometry (LC-MS/MS) duodenal proteome data from pups exposed to milk. Ten percent of differentially abundant duodenal proteins between controls and HFD-exposed pups had predicted upregulation or downregulation based on differential milk RNA content. Of these, 76% were targets of upregulated miRNA, and linear regression analysis indicated relationships (p < 0.05) between multiple milk miRNA counts and duodenal protein abundance. Duodenal proteins that were potential targets of milk miRNA enriched Gene Ontology (GO) terms and KEGG pathways related to cytoskeletal structure and neural development, suggesting potential regulation of pup enteric nervous system. One-to-one relationships between milk miRNA content and protein abundance in neonate duodenum support the potential for milk miRNAs regulating neonate development. Identification of milk miRNAs that changed in response to maternal diet will enable design of mechanistic studies that test effects on neonate.
Collapse
Affiliation(s)
- Katelyn Huff
- Biological & Biomedical Sciences Program, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Aridany Suárez-Trujillo
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, 175 South University Street, West Lafayette, IN, 47907-2063, USA.
| |
Collapse
|
15
|
Lin D, Chen T, Xie M, Li M, Zeng B, Sun R, Zhu Y, Ye D, Wu J, Sun J, Xi Q, Jiang Q, Zhang Y. Oral Administration of Bovine and Porcine Milk Exosome Alter miRNAs Profiles in Piglet Serum. Sci Rep 2020; 10:6983. [PMID: 32332796 PMCID: PMC7181743 DOI: 10.1038/s41598-020-63485-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast milk is the most important nutrient source for newborn mammals. Studies have reported that milk contains microRNAs (miRNAs), which are potential regulatory components. Currently, existing functional and nutritional two competing hypotheses in milk field though little date have been provided for nutritional hypothesis. In this study, we used the qRT-PCR method to evaluated whether milk miRNAs can be absorbed by newborn piglets by feeding them porcine or bovine milk. The result showed that miRNA levels (miR-2284×, 2291, 7134, 1343, 500, 223) were significantly different between bovine and porcine milk. Four miRNAs (miR-2284×, 2291, 7134, 1343) were significantly different in piglet serum after feeding porcine or bovine milk. After separated milk exosomes by ultracentrifugation, the results showed the selected milk miRNAs (miR-2284×, 2291, 7134, 1343) were present in both exosomes and supernatants, and the miRNAs showed the coincidental expression in IPEC-J2 cells. All our founding suggested that the milk miRNAs can be absorbed both in vivo and in vitro, which will building the foundation for understanding whether these sort of miRNAs exert physiological functions after being absorbed and provided additional evidence for the nutritional hypotheses.
Collapse
Affiliation(s)
- Delin Lin
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meiying Xie
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meng Li
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Bin Zeng
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanling Zhu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Dingze Ye
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiahan Wu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qingyan Jiang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Le Guillou S, Leduc A, Laubier J, Barbey S, Rossignol MN, Lefebvre R, Marthey S, Laloë D, Le Provost F. Characterization of Holstein and Normande whole milk miRNomes highlights breed specificities. Sci Rep 2019; 9:20345. [PMID: 31889100 PMCID: PMC6937266 DOI: 10.1038/s41598-019-56690-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
The concept of milk as a healthy food has opened the way for studies on milk components, from nutrients to microRNAs, molecules with broad regulatory properties present in large quantities in milk. Characterization of these components has been performed in several species, such as humans and bovine, depending on the stages of lactation. Here, we have studied the variation in milk microRNA composition according to genetic background. Using high throughput sequencing, we have characterized and compared the milk miRNomes of Holstein and Normande cattle, dairy breeds with distinct milk production features, in order to highlight microRNAs that are essential for regulation of the lactation process. In Holstein and Normande milk, 2,038 and 2,030 microRNAs were identified, respectively, with 1,771 common microRNAs, of which 1,049 were annotated and 722 were predicted. The comparison of the milk miRNomes of two breeds allowed to highlight 182 microRNAs displaying significant differences in the abundance. They are involved in the regulation of lipid metabolism and mammary morphogenesis and development, which affects lactation. Our results provide new insights into the regulation of molecular mechanisms involved in milk production.
Collapse
Affiliation(s)
- S Le Guillou
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - A Leduc
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - J Laubier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Barbey
- INRA, UE0326, Domaine expérimental du Pin-au-Haras, Exmes, France
| | - M-N Rossignol
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - R Lefebvre
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Marthey
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - D Laloë
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - F Le Provost
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
17
|
Li J, Lei L, Ye F, Zhou Y, Chang H, Zhao G. Nutritive implications of dietary microRNAs: facts, controversies, and perspectives. Food Funct 2019; 10:3044-3056. [PMID: 31066412 DOI: 10.1039/c9fo00216b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As a group of non-coding RNA molecules, microRNAs have recently become more well-known due to their pivotal role in gene regulation. A large number of endogenous microRNAs naturally occur in the human body, and some of them act as regulatory targets of diet and its components. The wide presence of microRNAs in various food materials has inspired food scientists and nutritionists to explore their nutritive and bioactive significance. This article comprehensively reports updated insights into the accessibility, stability, absorbability, and bioactivity of dietary microRNAs by combining the current knowledge into figures and tables for reader's convenience. As one frontier in food science and nutrition, the research platform on dietary microRNAs is imperfect and even defective as indicated by the inconsistent and even contradictory results concluded by different investigations. The pros and cons as well as the limitations of current investigations have been critically discussed with attention chiefly paid to experimental designs and protocols. Moreover, future research directions have been recommended. Thus, this paper may not only provide a quick glance at the state-of-the-art of dietary microRNAs but also guide further research to clarify the present controversies and make the results more credible and persuasive.
Collapse
Affiliation(s)
- Jianting Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
18
|
Wu D, Kittana H, Shu J, Kachman SD, Cui J, Ramer-Tait AE, Zempleni J. Dietary Depletion of Milk Exosomes and Their MicroRNA Cargos Elicits a Depletion of miR-200a-3p and Elevated Intestinal Inflammation and Chemokine (C-X-C Motif) Ligand 9 Expression in Mdr1a-/- Mice. Curr Dev Nutr 2019; 3:nzz122. [PMID: 32154493 PMCID: PMC7053579 DOI: 10.1093/cdn/nzz122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Exosomes transfer regulatory microRNAs (miRs) from donor cells to recipient cells. Exosomes and miRs originate from both endogenous synthesis and dietary sources such as milk. miR-200a-3p is a negative regulator of the proinflammatory chemokine (C-X-C motif) ligand 9 (CXCL9). Male Mdr1a-/- mice spontaneously develop clinical signs of inflammatory bowel disease (IBD). OBJECTIVES We assessed whether dietary depletion of exosomes and miRs alters the severity of IBD in Mdr1a-/- mice owing to aberrant regulation of proinflammatory cytokines. METHODS Starting at 5 wk of age, 16 male Mdr1a-/- mice were fed either milk exosome- and RNA-sufficient (ERS) or milk exosome- and RNA-depleted (ERD) diets. The ERD diet is characterized by a near-complete depletion of miRs and a 60% loss of exosome bioavailability compared with ERS. Mice were killed when their weight loss exceeded 15% of peak body weight. Severity of IBD was assessed by histopathological evaluation of cecum. Serum cytokine and chemokine concentrations and mRNA and miR tissue expression were analyzed by multiplex ELISAs, RNA-sequencing analysis, and qRT-PCR, respectively. RESULTS Stromal collapse, gland hyperplasia, and additive microscopic disease scores were (mean ± SD) 56.7% ± 23.3%, 23.5% ± 11.8%, and 29.6% ± 8.2% lower, respectively, in ceca of ERS mice than of ERD mice (P < 0.05). The serum concentration of CXCL9 was 35.0% ± 31.0% lower in ERS mice than in ERD mice (P < 0.05). Eighty-seven mRNAs were differentially expressed in the ceca from ERS and ERD mice; 16 of these mRNAs are implicated in immune function. The concentrations of 4 and 1 out of 5 miRs assessed (including miR-200a-3p) were ≤63% lower in livers and ceca, respectively, from ERD mice than from ERS mice. CONCLUSIONS Milk exosome and miR depletion exacerbates cecal inflammation in Mdr1a-/- mice.
Collapse
Affiliation(s)
- Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiang Shu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stephen D Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
19
|
Zhou F, Paz HA, Sadri M, Cui J, Kachman SD, Fernando SC, Zempleni J. Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol 2019; 317:G618-G624. [PMID: 31509432 PMCID: PMC6879888 DOI: 10.1152/ajpgi.00160.2019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exosomes and exosome-like vesicles participate in cell-to-cell communication in animals, plant, and bacteria. Dietary exosomes in bovine milk are bioavailable in nonbovine species, but a fraction of milk exosomes reaches the large intestine. We hypothesized that milk exosomes alter the composition of the gut microbiome in mice. C57BL/6 mice were fed AIN-93G diets, defined by their content of bovine milk exosomes and RNA cargos: exosome/RNA-depleted (ERD) versus exosome/RNA-sufficient (ERS) diets. Feeding was initiated at age 3 wk, and cecum content was collected at ages 7, 15, and 47 wk. Microbial communities were identified by 16S rRNA gene sequencing. Milk exosomes altered bacterial communities in the murine cecum. The abundance of three phyla, seven families, and 52 operational taxonomic units (OTUs) was different in the ceca from mice fed ERD and ERS (P < 0.05). For example, at the phylum level, Tenericutes had more than threefold abundance in ERS mice at ages 15 and 47 wk compared with ERD mice (P < 0.05). At the family level, Verrucomicrobiaceae were much less abundant in ERS mice compared with ERD mice age 47 wk (P < 0.05). At the OTU level, four OTUs from the family of Lachnospiraceae were more than two times more abundant in ERS mice compared with ERD at age 7 and 47 wk (P < 0.05). We conclude that exosomes in bovine milk alter microbial communities in nonbovine species, suggesting that exosomes and their cargos participate in the crosstalk between bacterial and animal kingdoms.NEW & NOTEWORTHY This is the first report that exosomes from bovine milk alter microbial communities in mice. This report suggests that the gut microbiome facilitates cell-to-cell communication by milk exosomes across species boundaries, and milk exosomes facilitate communication across animal and bacteria kingdoms.
Collapse
Affiliation(s)
- Fang Zhou
- 1Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Henry A. Paz
- 2Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Mahrou Sadri
- 1Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Juan Cui
- 3Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Stephen D. Kachman
- 4Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Samodha C. Fernando
- 2Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Janos Zempleni
- 1Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
20
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
21
|
Boquien CY. Le lait maternel : un aliment idéal pour la nutrition du nouveau-né (En lien avec sa croissance et son devenir neuro-moteur). CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2018. [DOI: 10.1016/j.cnd.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Aguilar-Lozano A, Baier S, Grove R, Shu J, Giraud D, Leiferman A, Mercer KE, Cui J, Badger TM, Adamec J, Andres A, Zempleni J. Concentrations of Purine Metabolites Are Elevated in Fluids from Adults and Infants and in Livers from Mice Fed Diets Depleted of Bovine Milk Exosomes and their RNA Cargos. J Nutr 2018; 148:1886-1894. [PMID: 30517726 PMCID: PMC6280001 DOI: 10.1093/jn/nxy223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Background Humans and mice absorb bovine milk exosomes and their RNA cargos. Objectives The objectives of this study were to determine whether milk exosome- and RNA-depleted (ERD) and exosome- and RNA-sufficient (ERS) diets alter the concentrations of purine metabolites in mouse livers, and to determine whether diets depleted of bovine milk alter the plasma concentration and urine excretion of purine metabolites in adults and infants, respectively. Methods C57BL/6 mice were fed ERD (providing 2% of the microRNA cargos compared with ERS) and ERS diets starting at age 3 wk; livers were collected at age 7 wk. Plasma and 24-h urine samples were collected from healthy adults who consumed (DCs) or avoided (DAs) dairy products. Spot urine samples were collected from healthy infants fed human milk (HM), milk formula (MF), or soy formula (SF) at age 3 mo. Purine metabolites were analyzed in liver, plasma, and urine; mRNAs and microRNAs were analyzed in the livers of female mice. Results We found that 9 hepatic purine metabolites in ERD-fed mice were 1.76 ± 0.43 times the concentrations in ERS-fed mice (P < 0.05). Plasma concentrations and urine excretion of purine metabolites in DAs was ≤1.62 ± 0.45 times the concentrations in DCs (P < 0.05). The excretion of 13 purine metabolites in urine from SF infants was ≤175 ± 39 times the excretion in HM and MF infants (P < 0.05). mRNA expression of 5'-nucleotidase, cytosolic IIIB, and adenosine deaminase in mice fed ERD was 0.64 ± 0.52 and 0.60 ± 0.28 times the expression in mice fed ERS, respectively. Conclusion Diets depleted of bovine-milk exosomes and RNA cargos caused increases in hepatic purine metabolites in mice, and in plasma and urine from human adults and infants, compared with exosome-sufficient controls. These findings are important, because purines play a role in intermediary metabolism and cell signaling.
Collapse
Affiliation(s)
- Ana Aguilar-Lozano
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Scott Baier
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ryan Grove
- Departments of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE
| | - Jiang Shu
- Departments of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE
| | - David Giraud
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Amy Leiferman
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Juan Cui
- Departments of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE
| | - Thomas M Badger
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Jiri Adamec
- Departments of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Janos Zempleni
- Departments of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE,Address correspondence to JZ (e-mail: )
| |
Collapse
|
23
|
Abstract
Human milk is the best food for newborn nutrition. There is no ideal composition of human milk and also no easy way to control the complexity of its nutritional quality and the quantity received by breastfed infants. Pediatricians and nutritionists use charts of infant growth (weight, size, head circumference) and neurodevelopment criteria that reflect the food that these infants receive. These charts reflect first the infant physiology and likely reflect the composition of human milk when infants are breastfed. In a situation of preterm birth, mother physiology impacts partly breast milk composition and this explains how this is more difficult to correlate infant growth or neurodevelopment with milk composition. Some biomarkers (lipids, oligosaccharides) have been identified in breast milk but their function is not always yet known. A better knowledge on how human milk could act on infant development to the mid- and long-term participating thus to nutritional programming is a challenging question for a better management of infants' nutrition, especially for preterm infants who are most fragile.
Collapse
Affiliation(s)
- Clair-Yves Boquien
- INRA, Université Nantes, Centre de Recherche en Nutrition Humaine–Ouest, IMAD, Physiopathologie des Adaptations Nutritionnelles (UMR PHAN), Nantes, France
- EMBA (European Milk Bank Association), Milan, Italy
| |
Collapse
|
24
|
Abstract
Exosomes are natural nanoparticles that play an important role in cell-to-cell communication. Communication is achieved through the transfer of cargos, such as microRNAs, from donor to recipient cells and binding of exosomes to cell surface receptors. Exosomes and their cargos are also obtained from dietary sources, such as milk. Exosome and cell glycoproteins are crucial for intestinal uptake. A large fraction of milk exosomes accumulates in the brain, whereas the tissue distribution of microRNA cargos varies among distinct species of microRNA. The fraction of milk exosomes that escapes absorption elicits changes in microbial communities in the gut. Dietary depletion of exosomes and their cargos causes a loss of circulating microRNAs and elicits phenotypes such as loss of cognitive performance, increase in purine metabolites, loss of fecundity, and changes in the immune response. Milk exosomes meet the definition of bioactive food compounds.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0806, USA; , , , ,
| |
Collapse
|
25
|
High degradation and no bioavailability of artichoke miRNAs assessed using an in vitro digestion/Caco-2 cell model. Nutr Res 2018; 60:68-76. [PMID: 30527261 DOI: 10.1016/j.nutres.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 01/21/2023]
Abstract
Although the cross-kingdom transfer of vegetable miRNAs (miRNAs) in mammalian species, including humans, is still controversial, recent studies have rejected this theory. Based on these recent studies, we hypothesized that artichoke-derived miRNAs (cca-miRNAs) are not adsorbed into human intestinal cells after cooking and in vitro digestion. In order to test this hypothesis, we evaluated miRNA (cca-miRNAs) in the edible part of globe artichokes (head portion), after cooking and digestion by an in vitro digestion system. The cca-miRNA levels were analyzed by real-time PCR (RT-qPCR), and those that withstood cooking and digestion conditions were further analyzed for their bioavailability using an in vitro system (Caco-2/TC7 cell clone). We detected 20 cca-miRNAs after cooking, 5 of which were statistically down-regulated in comparison with uncooked samples. Only 4 cca-miRNAs were found after in vitro digestion. By using scanning electron microscopy (SEM), we also evaluated the extracellular vesicles (EVs) in homogenized artichoke as possible miRNA transporters. However, approximately 81% were degraded after cooking, while the remaining EVs had changed shape from round to elliptical. Finally, we detected no cell-free cca-miRNAs, miRNAs bound to protein complex, and no cca-miRNAs encapsulated in EVs inside Caco-2 cells or in basolateral medium after bioavailability experiments. In conclusion, the data from the present study agrees with recent findings that the human small intestine does not uptake dietary miRNAs from raw or cooked artichoke heads.
Collapse
|
26
|
Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, Zempleni J. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep 2018; 8:11321. [PMID: 30054561 PMCID: PMC6063888 DOI: 10.1038/s41598-018-29780-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes participate in cell-to-cell communication, facilitated by the transfer of RNAs, proteins and lipids from donor to recipient cells. Exosomes and their RNA cargos do not exclusively originate from endogenous synthesis but may also be obtained from dietary sources such as the inter-species transfer of exosomes and RNAs in bovine milk to humans. Here, we assessed the bioavailability and distribution of exosomes and their microRNA cargos from bovine, porcine and murine milk within and across species boundaries. Milk exosomes labeled with fluorophores or fluorescent fusion proteins accumulated in liver, spleen and brain following suckling, oral gavage and intravenous administration in mice and pigs. When synthetic, fluorophore-labeled microRNAs were transfected into bovine milk exosomes and administered to mice, distinct species of microRNAs demonstrated unique distribution profiles and accumulated in intestinal mucosa, spleen, liver, heart or brain. Administration of bovine milk exosomes failed to rescue Drosha homozygous knockout mice, presumably due to low bioavailability or lack of essential microRNAs.
Collapse
Affiliation(s)
- Sonia Manca
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Bijaya Upadhyaya
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Amy T Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Rebecca A Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Brett R White
- Department of Animal Science, University of Nebraska-Lincoln, A224j Animal Science Building, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316 Leverton Hall, Lincoln, NE, 68583-0806, USA.
| |
Collapse
|
27
|
Tomé-Carneiro J, Fernández-Alonso N, Tomás-Zapico C, Visioli F, Iglesias-Gutierrez E, Dávalos A. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacol Res 2018; 132:21-32. [PMID: 29627443 DOI: 10.1016/j.phrs.2018.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
The possibility that diet-derived miRNAs survive the gastrointestinal tract and exert biological effects in target cells is triggering considerable research in the potential abilities of alimentary preventive and therapeutic approaches. Many validation attempts have been carried out and investigators disagree on several issues. The barriers exogenous RNAs must surpass are harsh and adequate copies must reach target cells for biological actions to be carried out. This prospect opened a window for previously unlikely scenarios concerning exogenous non-coding RNAs, such as a potential role for breast milk microRNAs in infants' development and maturation. This review is focused on the thorny path breast milk miRNAs face towards confirmation as relevant role players in infants' development and maturation, taking into consideration the research carried out so far on the uptake, gastrointestinal barriers and potential biological effects of diet-derived miRNAs. We also discuss the future pharmacological and pharma-nutritional consequences of appropriate miRNAs research.
Collapse
Affiliation(s)
- João Tomé-Carneiro
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid 28049, Spain
| | | | - Cristina Tomás-Zapico
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33006, Spain; Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Francesco Visioli
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid 28049, Spain; Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | | | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid 28049, Spain.
| |
Collapse
|
28
|
Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-Dependent Polymerase Chain Reaction and Elimination of Confounders in Sample Collection, Storage, and Analysis Strengthen Evidence That microRNAs in Bovine Milk Are Bioavailable in Humans. J Nutr 2018; 148:153-159. [PMID: 29378054 PMCID: PMC6251634 DOI: 10.1093/jn/nxx024] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Evidence suggests that dietary microRNAs (miRs) are bioavailable and regulate gene expression across species boundaries. Concerns were raised that the detection of dietary miRs in plasma might have been due to sample contamination or lack of assay specificity. Objectives: The objectives of this study were to assess potential confounders of plasma miR analysis and to detect miRs from bovine milk in human plasma. Methods Potential confounders of plasma miR analysis (circadian rhythm, sample collection and storage, calibration, and erythrocyte hemolysis) were assessed by quantitative reverse transcriptase polymerase chain reaction (PCR) by using blood from healthy adults (7 men, 6 women; aged 23-57 y). Bovine miRs were analyzed by RNase H2-dependent PCR (rhPCR) in plasma collected from a subcohort of 11 participants before and 6 h after consumption of 1.0 L of 1%-fat bovine milk. Results The use of heparin tubes for blood collection resulted in a complete loss of miRs. Circadian variations did not affect the concentrations of 8 select miRs. Erythrocyte hemolysis caused artifacts for some miRs if plasma absorbance at 414 nm was >0.300. The stability of plasma miRs depended greatly on the matrix in which the miRs were stored and whether the plasma was frozen before analysis. Purified miR-16, miR-200c, and cel-miR-39 were stable for ≤24 h at room temperature, whereas losses equaled ≤80% if plasma was frozen, thawed, and stored at room temperature for as little as 4 h. rhPCR distinguished between bovine and human miRs with small variations in the nucleotide sequence; plasma concentrations of Bos taurus (bta)-miR-21-5p and bta-miR-30a-5p were >100% higher 6 h after milk consumption than before milk consumption. Conclusions Confounders in plasma miR analysis include the use of heparin tubes, erythrocyte hemolysis, and storage of thawed plasma at room temperature. rhPCR is a useful tool to detect dietary miRs.
Collapse
Affiliation(s)
- Lanfang Wang
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE
| | - David Giraud
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln,
Lincoln, NE,Address correspondence to JZ (e-mail: )
| |
Collapse
|
29
|
Chen Y, Wang J, Yang S, Utturkar S, Crodian J, Cummings S, Thimmapuram J, San Miguel P, Kuang S, Gribskov M, Plaut K, Casey T. Effect of high-fat diet on secreted milk transcriptome in midlactation mice. Physiol Genomics 2017; 49:747-762. [PMID: 29093195 DOI: 10.1152/physiolgenomics.00080.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-fat diet (HFD) during lactation alters milk composition and is associated with development of metabolic diseases in the offspring. We hypothesized that HFD affects milk microRNA (miRNA) and mRNA content, which potentially impact offspring development. Our objective was to determine the effect of maternal HFD on secreted milk transcriptome. To meet this objective, 4 wk old female ICR mice were divided into two treatments: control diet containing 10% kcal fat and HFD containing 60% kcal fat. After 4 wk on CD or HFD, mice were bred while continuously fed the same diets. On postnatal day 2 (P2), litters were normalized to 10 pups, and half the pups in each litter were cross-fostered between treatments. Milk was collected from dams on P10 and P12. Total RNA was isolated from milk fat fraction of P10 samples and used for mRNA-Seq and small RNA-Seq. P12 milk was used to determine macronutrient composition. After 4 wk of prepregnancy feeding HFD mice weighed significantly more than did the control mice. Lactose and fat concentration were significantly ( P < 0.05) higher in milk of HFD dams. Pup weight was significantly greater ( P < 0.05) in groups suckled by HFD vs. control dams. There were 25 miRNA and over 1,500 mRNA differentially expressed (DE) in milk of HFD vs. control dams. DE mRNA and target genes of DE miRNA enriched categories that were primarily related to multicellular organismal development. Maternal HFD impacts mRNA and miRNA content of milk, if bioactive nucleic acids are absorbed by neonate differences may affect development.
Collapse
Affiliation(s)
- Y. Chen
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - J. Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - S. Yang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - S. Utturkar
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - J. Crodian
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - S. Cummings
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - J. Thimmapuram
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - P. San Miguel
- Genomics Core at Purdue University, West Lafayette, Indiana
| | - S. Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - M. Gribskov
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - K. Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - T. Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
30
|
Otsuka K, Yamamoto Y, Matsuoka R, Ochiya T. Maintaining good miRNAs in the body keeps the doctor away?: Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Mol Nutr Food Res 2017; 62. [PMID: 28594130 DOI: 10.1002/mnfr.201700080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
During the last decade, it has been uncovered that microRNAs (miRNAs), a class of small non-coding RNAs, are related to many diseases including cancers. With an increase in reports describing the dysregulation of miRNAs in various tumor types, it has become abundantly clear that miRNAs play significant roles in the formation and progression of cancers. Intriguingly, miRNAs are present in body fluids because they are packed in exosomes/extracellular vesicles and released from all types of cells. The miRNAs in the fluids are measured in a relatively simple way and the profile of miRNAs is likely to be an indicator of health condition. In recent years, various studies have demonstrated that some naturally occurring compounds can control tumor-suppressive and oncogenic miRNAs in a positive manner, suggesting that food-derived compounds could maintain the expression levels of miRNAs and help maintain good health. Therefore, our daily food and compounds in food are of great interest. In addition, exogenous diet-derived miRNAs have been indicated to function in the regulation of target mammalian transcripts in the body. These findings highlight the possibility of diet for good health through the regulation of miRNAs, and we also discuss the perspective of food application and health promotion.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan.,R&D Division, Kewpie Corporation Sengawa Kewport, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. GENES AND NUTRITION 2017; 12:13. [PMID: 29308096 PMCID: PMC5753850 DOI: 10.1186/s12263-017-0561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants. Rigorous assessment of these data emphasize that uptake of active dietary sRNAs is neither a robust nor a prevalent mechanism to maintain steady-state levels in higher organisms. While disagreement still continues regarding whether such transfer may occur in specialized contexts, concerns about technical difficulties and a lack of consensus on appropriate methods have led to questions regarding the reproducibility and biologic significance of some seemingly positive results. For any continuing investigations, concerted efforts should be made to establish a strong mechanistic basis for potential effects of dietary sRNAs and to agree on methodological guidelines for realizing such proof. Such processes would ensure proper interpretation of studies aiming to prove dietary sRNA activity in mammals and inform potential for application in therapeutics and agriculture.
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, BST 1704.2, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027 USA
| |
Collapse
|
32
|
Witwer KW, Zhang CY. Diet-derived microRNAs: unicorn or silver bullet? GENES AND NUTRITION 2017; 12:15. [PMID: 28694875 PMCID: PMC5501113 DOI: 10.1186/s12263-017-0564-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
In ancient lore, a bullet cast from silver is the only effective weapon against monsters. The uptake of active diet-derived microRNAs (miRNAs) in consumers may be the silver bullet long sought after in nutrition and oral therapeutics. However, the majority of scientists consider the transfer and regulation of consumer’s gene activity by these diet-derived miRNAs to be a fantasy akin to spotting a unicorn. Nevertheless, groups like Dr. Chen-Yu Zhang’s lab in Nanjing University have stockpiled breathtaking amounts of data to shoot down these naysayers. Meanwhile, Dr. Ken Witwer at John Hopkins has steadfastly cautioned the field to beware of fallacies caused by contamination, technical artifacts, and confirmation bias. Here, Dr. Witwer and Dr. Zhang share their realities of dietary miRNAs by answering five questions related to this controversial field.
Collapse
Affiliation(s)
- Kenneth W Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University, Baltimore, USA.,School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
McCormick R, Goljanek-Whysall K. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:265-308. [PMID: 28838540 DOI: 10.1016/bs.ircmb.2017.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Katarzyna Goljanek-Whysall
- Musculoskeletal Biology II, Centre for Integrated Research into Musculoskeletal Aging, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
34
|
Kang W, Bang-Berthelsen CH, Holm A, Houben AJS, Müller AH, Thymann T, Pociot F, Estivill X, Friedländer MR. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA (NEW YORK, N.Y.) 2017; 23:433-445. [PMID: 28062594 PMCID: PMC5340907 DOI: 10.1261/rna.059725.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/05/2023]
Abstract
miRNAs are small 22-nucleotide RNAs that can post-transcriptionally regulate gene expression. It has been proposed that dietary plant miRNAs can enter the human bloodstream and regulate host transcripts; however, these findings have been widely disputed. We here conduct the first comprehensive meta-study in the field, surveying the presence and abundances of cross-species miRNAs (xenomiRs) in 824 sequencing data sets from various human tissues and body fluids. We find that xenomiRs are commonly present in tissues (17%) and body fluids (69%); however, the abundances are low, comprising 0.001% of host human miRNA counts. Further, we do not detect a significant enrichment of xenomiRs in sequencing data originating from tissues and body fluids that are exposed to dietary intake (such as liver). Likewise, there is no significant depletion of xenomiRs in tissues and body fluids that are relatively separated from the main bloodstream (such as brain and cerebro-spinal fluids). Interestingly, the majority (81%) of body fluid xenomiRs stem from rodents, which are a rare human dietary contribution but common laboratory animals. Body fluid samples from the same studies tend to group together when clustered by xenomiR compositions, suggesting technical batch effects. Last, we performed carefully designed and controlled animal feeding studies, in which we detected no transfer of plant miRNAs into rat blood, or bovine milk sequences into piglet blood. In summary, our comprehensive computational and experimental results indicate that xenomiRs originate from technical artifacts rather than dietary intake.
Collapse
Affiliation(s)
- Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claus Heiner Bang-Berthelsen
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Diabetes Biology, Novo Nordisk, 2760 Måløv, Denmark
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anja Holm
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, 2600 Glostrup, Denmark
| | - Anna J S Houben
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Anne Holt Müller
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, 2600 Glostrup, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Science, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Flemming Pociot
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, 1870 Copenhagen, Denmark
- Department of Paediatrics, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
35
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
36
|
Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017; 147:3-10. [PMID: 27852870 PMCID: PMC5177735 DOI: 10.3945/jn.116.238949] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are limited.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ana Aguilar-Lozano
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonia Manca
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
37
|
Perge P, Nagy Z, Decmann Á, Igaz I, Igaz P. Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol 2016; 14:391-401. [PMID: 27791594 DOI: 10.1080/15476286.2016.1251001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are short non-protein coding RNA molecules involved in the epigenetic regulation of gene expression. Recently, extracellular microRNAs have been described in body fluids that might enable epigenetic communication between distant tissues. Being highly conserved molecules, exogenous xeno-microRNAs from different species could affect gene expression in the host even in a cross-kingdom fashion. Several data underline the relevance of microRNA-mediated communication between virus and host, and there are some experimental data showing that plant- or animal-derived dietary microRNAs might have gene expression modulating activity in humans. Milk-derived microRNAs might be involved in the "epigenetic priming" of the baby. Exogenous microRNAs might be hypothesized to be implicated in disease pathogenesis, e.g. in tumors. Major questions remain to be addressed including the amount of xeno-microRNAs needed for biological action or routes for microRNA delivery. In this brief review, experimental data and hypotheses on the potential pathogenic inter-species relevance of microRNA are presented.
Collapse
Affiliation(s)
- Pál Perge
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Zoltán Nagy
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Ábel Decmann
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| | - Ivan Igaz
- b Department of Gastroenterology , Szent Imre Teaching Hospital , Budapest , Hungary
| | - Peter Igaz
- a 2nd Department of Medicine, Faculty of Medicine , Semmelweis University , Budapest , Hungary
| |
Collapse
|
38
|
Masood M, Everett CP, Chan SY, Snow JW. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. RNA Biol 2016; 13:109-18. [PMID: 26680555 DOI: 10.1080/15476286.2015.1128063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The putative transfer and gene regulatory activities of diet-derived miRNAs in ingesting animals are still debated. Importantly, no study to date has fully examined the role of dietary uptake of miRNA in the honey bee, a critical pollinator in both agricultural and natural ecosystems. After controlled pollen feeding experiments in adult honey bees, we observed that midguts demonstrated robust increases in plant miRNAs after pollen ingestion. However, we found no evidence of biologically relevant delivery of these molecules to proximal or distal tissues of recipient honey bees. Our results, therefore, support the premise that pollen miRNAs ingested as part of a typical diet are not robustly transferred across barrier epithelia of adult honey bees under normal conditions. Key future questions include whether other small RNA species in honey bee diets behave similarly and whether more specialized and specific delivery mechanisms exist for more efficient transport, particularly in the context of stressed barrier epithelia.
Collapse
Affiliation(s)
- Maryam Masood
- a Department of Biology , Barnard College , New York , NY , 10027 , USA
| | - Claire P Everett
- a Department of Biology , Barnard College , New York , NY , 10027 , USA
| | - Stephen Y Chan
- b Vascular Medicine Institute, University of Pittsburgh Medical Center , Pittsburgh , PA , 15261 , USA
| | - Jonathan W Snow
- a Department of Biology , Barnard College , New York , NY , 10027 , USA
| |
Collapse
|
39
|
Witwer KW, Halushka MK. Toward the promise of microRNAs - Enhancing reproducibility and rigor in microRNA research. RNA Biol 2016; 13:1103-1116. [PMID: 27645402 DOI: 10.1080/15476286.2016.1236172] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fields of applied and translational microRNA research have exploded in recent years as microRNAs have been implicated across a spectrum of diseases. MicroRNA biomarkers, microRNA therapeutics, microRNA regulation of cellular physiology and even xenomiRs have stimulated great interest, which have brought many researchers into the field. Despite many successes in determining general mechanisms of microRNA generation and function, the application of microRNAs in translational areas has not had as much success. It has been a challenge to localize microRNAs to a given cell type within tissues and assay them reliably. At supraphysiologic levels, microRNAs may regulate hosts of genes that are not the physiologic biochemical targets. Thus the applied and translational microRNA literature is filled with pitfalls and claims that are neither scientifically rigorous nor reproducible. This review is focused on increasing awareness of the challenges of working with microRNAs in translational research and recommends better practices in this area of discovery.
Collapse
Affiliation(s)
- Kenneth W Witwer
- a Department of Molecular and Comparative Pathobiology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Department of Neurology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marc K Halushka
- c Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
40
|
Melnik BC, Kakulas F, Geddes DT, Hartmann PE, John SM, Carrera-Bastos P, Cordain L, Schmitz G. Milk miRNAs: simple nutrients or systemic functional regulators? Nutr Metab (Lond) 2016; 13:42. [PMID: 27330539 PMCID: PMC4915038 DOI: 10.1186/s12986-016-0101-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
Milk is rich in miRNAs that appear to play important roles in the postnatal development of all mammals. Currently, two competing hypotheses exist: the functional hypothesis, which proposes that milk miRNAs are transferred to the offspring and exert physiological regulatory functions, and the nutritional hypothesis, which suggests that these molecules do not reach the systemic circulation of the milk recipient, but merely provide nutrition without conferring active regulatory signals to the offspring. The functional hypothesis is based on indirect evidence and requires further investigation. The nutritional hypothesis is primarily based on three mouse models, which are inherently problematic: 1) miRNA-375 KO mice, 2) miRNA-200c/141 KO mice, and 3) transgenic mice presenting high levels of miRNA-30b in milk. This article presents circumstantial evidence that these mouse models may all be inappropriate to study the physiological traffic of milk miRNAs to the newborn mammal, and calls for new studies using more relevant mouse models or human milk to address the fate and role of milk miRNAs in the offspring and the adult consumer of cow's milk.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - Foteini Kakulas
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Donna T Geddes
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Peter E Hartmann
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | | | - Loren Cordain
- Department of Health and Exercise Science, Colorado State University, Fort Collins, USA
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinics of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Auerbach A, Vyas G, Li A, Halushka M, Witwer K. Uptake of dietary milk miRNAs by adult humans: a validation study. F1000Res 2016; 5:721. [PMID: 27158459 PMCID: PMC4857747 DOI: 10.12688/f1000research.8548.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/05/2023] Open
Abstract
Breast milk is replete with nutritional content as well as nucleic acids including microRNAs (miRNAs). In a recent report, adult humans who drank bovine milk appeared to have increased circulating levels of miRNAs miR-29b-3p and miR-200c-3p. Since these miRNAs are homologous between human and cow, these results could be explained by xeno-miRNA influx, endogenous miRNA regulation, or both. More data were needed to validate the results and explore for additional milk-related alterations in circulating miRNAs. Samples from the published study were obtained, and 223 small RNA features were profiled with a custom OpenArray, followed by individual quantitative PCR assays for selected miRNAs. Additionally, small RNA sequencing (RNA-seq) data obtained from plasma samples of the same project were analyzed to find human and uniquely bovine miRNAs. OpenArray revealed no significantly altered miRNA signals after milk ingestion, and this was confirmed by qPCR. Plasma sequencing data contained no miR-29b or miR-200c reads and no intake-consistent mapping of uniquely bovine miRNAs. In conclusion, the results do not support transfer of dietary xenomiRs into the circulation of adult humans.
Collapse
Affiliation(s)
- Amanda Auerbach
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gopi Vyas
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Li
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc Halushka
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. Am J Clin Nutr 2015; 102:828-36. [PMID: 26354539 DOI: 10.3945/ajcn.114.103184] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein consumed after resistance exercise increases postexercise muscle protein synthesis rates. To date, dairy protein has been studied extensively, with little known about the capacity of other protein-dense foods to augment postexercise muscle protein synthesis rates. OBJECTIVE We aimed to compare protein digestion and absorption kinetics, postprandial amino acid availability, anabolic signaling, and the subsequent myofibrillar protein synthetic response after the ingestion of milk compared with beef during recovery from resistance-type exercise. DESIGN In crossover trials, 12 healthy young men performed a single bout of resistance exercise. Immediately after cessation of exercise, participants ingested 30 g protein by consuming isonitrogenous amounts of intrinsically l-[1-(13)C]phenylalanine-labeled beef or milk. Blood and muscle biopsy samples were collected at rest and after exercise during primed continuous infusions of l-[ring-(2)H5]phenylalanine and l-[ring-3,5-(2)H2]tyrosine to assess protein digestion and absorption kinetics, plasma amino acid availability, anabolic signaling, and subsequent myofibrillar protein synthesis rates in vivo in young men. RESULTS Beef protein-derived phenylalanine appeared more rapidly in circulation compared with milk ingestion (P < 0.001). The availability of phenylalanine during the 5-h postexercise period tended to be higher after beef (64% ± 3%) ingestion than after milk ingestion (57% ± 3%; P = 0.08). Both beef and milk ingestion were followed by an increase in the phosphorylation of mammalian target of rapamycin complex 1 and 70-kDa S6 protein kinase 1 during postexercise recovery. Milk ingestion increased myofibrillar protein synthesis rates to a greater extent than did beef ingestion during the 0- to 2-h postexercise phase (P = 0.013). However, the increase in myofibrillar protein synthesis rates did not differ between milk and beef ingestion during the entire 0- to 5-h postexercise phase (P = 0.114). CONCLUSIONS Both milk and beef ingestion augment the postexercise myofibrillar protein synthetic response in young men, with a stronger stimulation of myofibrillar protein synthesis during the early postprandial stage after milk ingestion. This trial was registered at www.clinicaltrials.gov as NCT01578590.
Collapse
Affiliation(s)
- Nicholas A Burd
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Stefan H Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Stephan van Vliet
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Luc Jc van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
43
|
Title AC, Denzler R, Stoffel M. Uptake and Function Studies of Maternal Milk-derived MicroRNAs. J Biol Chem 2015; 290:23680-91. [PMID: 26240150 PMCID: PMC4583031 DOI: 10.1074/jbc.m115.676734] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of cell-autonomous gene expression that influence many biological processes. They are also released from cells and are present in virtually all body fluids, including blood, urine, saliva, sweat, and milk. The functional role of nutritionally obtained extracellular miRNAs is controversial, and irrefutable demonstration of exogenous miRNA uptake by cells and canonical miRNA function is still lacking. Here we show that miRNAs are present at high levels in the milk of lactating mice. To investigate intestinal uptake of miRNAs in newborn mice, we employed genetic models in which newborn miR-375 and miR-200c/141 knockout mice received milk from wild-type foster mothers. Analysis of the intestinal epithelium, blood, liver, and spleen revealed no evidence for miRNA uptake. miR-375 levels in hepatocytes were at the limit of detection and remained orders of magnitude below the threshold for target gene regulation (between 1000 and 10,000 copies/cell). Furthermore, our study revealed rapid degradation of milk miRNAs in intestinal fluid. Together, our results indicate a nutritional rather than gene-regulatory role of miRNAs in the milk of newborn mice.
Collapse
Affiliation(s)
- Alexandra C Title
- From the Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland and
| | - Rémy Denzler
- From the Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland and
| | - Markus Stoffel
- From the Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland and the Faculty of Medicine, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|