1
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Yong M, Zeng Y, Yao Y, Yang M, Tang F, Zhu H, Hu J. CircFAM188A Regulates Autophagy via miR-670-3p and ULK1 in Epithelial Ovarian Carcinoma. Cancer Rep (Hoboken) 2024; 7:e2128. [PMID: 39229655 PMCID: PMC11372287 DOI: 10.1002/cnr2.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND AIMS CircRNAs and autophagy are closely involved in the physiological and pathological processes of ovarian cancer; however, their exact mechanisms are still undetermined. This investigation aimed to elucidate the function and associated pathways of circFAM188A, which modulates proliferation, autophagy, and invasion in ovarian cancer (EOC). METHODS The expression of circFAM188A in the tissues of EOC patients was assessed via RT-PCR. To elucidate proliferation, invasion, and autophagy in the tumor cells, Transwell, 5-ethynyl-2'-deoxyuridine (EdU), and mRFP-GFP-LC3 reporter assays were conducted. The binding sites between circ-FAM188A and the miR-670-3p, miR-670-3p and YY1 were predicted using bioinformatics and verified by dual-luciferase reporter assays. Pulldown assays demonstrated binding between ULK1 and circ-FAM188A. ULK1 was found to be crucial in the initial stage of autophagy. Moreover, an in vivo xenograft model was established by subcutaneous injection of nude mice with EOC cells. RESULT Expression of circ-FAM188A was increased in EOC tissues relative to normal ovarian tissues and circ-FAM188A overexpression promoted proliferation, invasion, and autophagy; these effects were reversed by circ-FAM188A silencing. miR-670-3p and circ-FAM188A co-localized in the cytoplasm. circ-FAM188A enhanced YY1 expression by sponging miR-670-3p and was also shown to interact with ULK1. CONCLUSION It is thus suggested that circ-FAM188A modulates autophagy by sponging miR-670-3p as well as interacting with ULK1.
Collapse
Affiliation(s)
- Min Yong
- Center for Reproductive Medicine, Department of Obstetrics and GynecologyAffiliated Hospital of North Sichuan Medical CollegeNanchongPeople's Republic of China
| | - Yuhua Zeng
- Center for Reproductive Medicine, Department of Obstetrics and GynecologyAffiliated Hospital of North Sichuan Medical CollegeNanchongPeople's Republic of China
| | - Yuqin Yao
- Department of Obstetrics and GynecologyAffiliated Hospital of North Sichuan Medical CollegeNanchongPeople's Republic of China
| | - Miyuan Yang
- Department of Clinical LaboratoryAffiliated Hospital of North Sichuan Medical CollegeNanchongPeople's Republic of China
| | - Furong Tang
- Department of PediatricsNanchong Center HospitalNanchongPeople's Republic of China
| | - Hongtao Zhu
- Department of Obstetrics and GynecologySecond Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Jianguo Hu
- Department of Obstetrics and GynecologySecond Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Xu Y, Zhao S, Shen Y, Li Y, Dang Y, Guo F, Chen Z, Li J, Yang H. MARCH5 promotes aerobic glycolysis to facilitate ovarian cancer progression via ubiquitinating MPC1. Apoptosis 2024; 29:1232-1245. [PMID: 38615083 PMCID: PMC11263418 DOI: 10.1007/s10495-024-01962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
MARCH5 is a ring-finger E3 ubiquitin ligase located in the outer membrane of mitochondria. A previous study has reported that MARCH5 was up-regulated and contributed to the migration and invasion of OC cells by serving as a competing endogenous RNA. However, as a mitochondrial localized E3 ubiquitin ligase, the function of MARCH5 in mitochondrial-associated metabolism reprogramming in human cancers remains largely unexplored, including OC. We first assessed the glycolysis effect of MARCH5 in OC both in vitro and in vivo. Then we analyzed the effect of MARCH5 knockdown or overexpression on respiratory activity by evaluating oxygen consumption rate, activities of OXPHOS complexes and production of ATP in OC cells with MARCH5. Co-immunoprecipitation, western-blot, and in vitro and vivo experiments were performed to investigate the molecular mechanisms underlying MARCH5-enhanced aerobic glycolysis s in OC. In this study, we demonstrate that the abnormal upregulation of MARCH5 is accompanied by significantly increased aerobic glycolysis in OC. Mechanistically, MARCH5 promotes aerobic glycolysis via ubiquitinating and degrading mitochondrial pyruvate carrier 1 (MPC1), which mediates the transport of cytosolic pyruvate into mitochondria by localizing on mitochondria outer membrane. In line with this, MPC1 expression is significantly decreased and its downregulation is closely correlated with unfavorable survival. Furthermore, in vitro and in vivo assays revealed that MARCH5 upregulation-enhanced aerobic glycolysis played a critical role in the proliferation and metastasis of OC cells. Taken together, we identify a MARCH5-regulated aerobic glycolysis mechanism by degradation of MPC1, and provide a rationale for therapeutic targeting of aerobic glycolysis via MARCH5-MPC1 axis inhibition.
Collapse
Affiliation(s)
- Ying Xu
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yujie Shen
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuanfeng Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yinghui Dang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Fenfen Guo
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhihao Chen
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jia Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
4
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024:10.1007/s10555-024-10201-x. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
5
|
Zhang Z, Hu J. DKK1 loss promotes endometrial fibrosis via autophagy and exosome-mediated macrophage-to-myofibroblast transition. J Transl Med 2024; 22:617. [PMID: 38961399 PMCID: PMC11223343 DOI: 10.1186/s12967-024-05402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Intrauterine adhesions (IUA) manifest as endometrial fibrosis, often causing infertility or recurrent miscarriage; however, their pathogenesis remains unclear. OBJECTIVES This study assessed the role of Dickkopf WNT signaling pathway inhibitor 1 (DKK1) and autophagy in endometrial fibrosis, using clinical samples as well as in vitro and in vivo experiments. METHODS Immunohistochemistry, immunofluorescence and western blot were used to determine the localization and expression of DKK1 in endometrium; DKK1 silencing and DKK1 overexpression were used to detect the biological effects of DKK1 silencing or expression in endometrial cells; DKK1 gene knockout mice were used to observe the phenotypes caused by DKK1 gene knockout. RESULTS In patients with IUA, DKK1 and autophagy markers were down-regulated; also, α-SMA and macrophage localization were increased in the endometrium. DKK1 conditional knockout (CKO) mice showed a fibrotic phenotype with decreased autophagy and increased localization of α-SMA and macrophages in the endometrium. In vitro studies showed that DKK1 knockout (KO) suppressed the autophagic flux of endometrial stromal cells. In contrast, ectopic expression of DKK1 showed the opposite phenotype. Mechanistically, we discovered that DKK1 regulates autophagic flux through Wnt/β-catenin and PI3K/AKT/mTOR pathways. Further studies showed that DKK1 KO promoted the secretion of interleukin (IL)-8 in exosomes, thereby promoting macrophage proliferation and metastasis. Also, in DKK1 CKO mice, treatment with autophagy activator rapamycin partially restored the endometrial fibrosis phenotype. CONCLUSION Our findings indicated that DKK1 was a potential diagnostic marker or therapeutic target for IUA.
Collapse
Affiliation(s)
- Zhanqin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China.
| |
Collapse
|
6
|
Zhao H, Xiong Y, Zhou Z, Xu Q, Zi Y, Zheng X, Chen S, Xiao X, Gong L, Xu H, Liu L, Lu H, Cui Y, Shao S, Zhang J, Ma J, Zhou Q, Ma D, Li X. A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis. Clin Transl Med 2024; 14:e1759. [PMID: 38997803 PMCID: PMC11245404 DOI: 10.1002/ctm2.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCβ. CONCLUSIONS We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) β in preeclampsia.
Collapse
Affiliation(s)
- Huanqiang Zhao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yu Xiong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zixiang Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qixin Xu
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yang Zi
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xiujie Zheng
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Shiguo Chen
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Xirong Xiao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lili Gong
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huangfang Xu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lidong Liu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huiqing Lu
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yutong Cui
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuyi Shao
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongjie Zhou
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaotian Li
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Zhao S, Wang Q, Zhang X, Ma B, Shi Y, Yin Y, Kong W, Zhang W, Li J, Yang H. MARCH5-mediated downregulation of ACC2 promotes fatty acid oxidation and tumor progression in ovarian cancer. Free Radic Biol Med 2024; 212:464-476. [PMID: 38211832 DOI: 10.1016/j.freeradbiomed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.
Collapse
Affiliation(s)
- Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qingqiang Wang
- General Department, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Boyi Ma
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuan Shi
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yadong Yin
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weina Kong
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Jibin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
8
|
Di Gregorio J, Appignani M, Flati V. Role of the Mitochondrial E3 Ubiquitin Ligases as Possible Therapeutic Targets in Cancer Therapy. Int J Mol Sci 2023; 24:17176. [PMID: 38139010 PMCID: PMC10743160 DOI: 10.3390/ijms242417176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Ubiquitination is a post-translational modification that targets specific proteins on their lysine residues. Depending on the type of ubiquitination, this modification ultimately regulates the stability or degradation of the targeted proteins. Ubiquitination is mediated by three different classes of enzymes: the E1 ubiquitin-activating enzymes, the E2 ubiquitin-conjugating enzymes and, most importantly, the E3 ubiquitin ligases. E3 ligases are responsible for the final step of the ubiquitin cascade, interacting directly with the target proteins. E3 ligases can also be involved in DNA repair, cell cycle regulation and response to stress; alteration in their levels can be involved in oncogenic transformation and cancer progression. Of all the six hundred E3 ligases of the human genome, only three of them are specific to the mitochondrion: MARCH5, RNF185 and MUL1. Their alterations (that reflect on the alteration of the mitochondria functions) can be related to cancer progression, as underlined by the increasing research performed in recent years on these three mitochondrial enzymes. This review will focus on the function and mechanisms of the mitochondrial E3 ubiquitin ligases, as well as their important targets, in cancer development and progression, also highlighting their potential use for cancer therapy.
Collapse
Affiliation(s)
| | | | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (J.D.G.); (M.A.)
| |
Collapse
|
9
|
Wang J, Chen A, Xue Z, Liu J, He Y, Liu G, Zhao Z, Li W, Zhang Q, Chen A, Wang J, Li X, Wang X, Huang B. BCL2L13 promotes mitophagy through DNM1L-mediated mitochondrial fission in glioblastoma. Cell Death Dis 2023; 14:585. [PMID: 37660127 PMCID: PMC10475114 DOI: 10.1038/s41419-023-06112-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
There is an urgent need for novel diagnostic and therapeutic strategies for patients with Glioblastoma multiforme (GBM). Previous studies have shown that BCL2 like 13 (BCL2L13) is a member of the BCL2 family regulating cell growth and apoptosis in different types of tumors. However, the clinical significance, biological role, and potential mechanism in GBM remain unexplored. In this study, we showed that BCL2L13 expression is significantly upregulated in GBM cell lines and clinical GBM tissue samples. Mechanistically, BCL2L13 targeted DNM1L at the Ser616 site, leading to mitochondrial fission and high mitophagy flux. Functionally, these alterations significantly promoted the proliferation and invasion of GBM cells both in vitro and in vivo. Overall, our findings demonstrated that BCL2L13 plays a significant role in promoting mitophagy via DNM1L-mediated mitochondrial fission in GBM. Therefore, the regulation and biological function of BCL2L13 render it a candidate molecular target for treating GBM.
Collapse
Affiliation(s)
- Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Anbin Chen
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 200092, Shanghai, China
| | - Zhiwei Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Junzhi Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Ying He
- Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guowei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China.
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, 250117, Jinan, China.
| |
Collapse
|
10
|
Ye L, Yao X, Xu B, Chen W, Lou H, Tong X, Fang S, Zou R, Hu Y, Wang Z, Xiang D, Lin Q, Feng S, Xue X, Guo G. RNA epigenetic modifications in ovarian cancer: The changes, chances, and challenges. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1784. [PMID: 36811232 DOI: 10.1002/wrna.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is the most common female cancer worldwide. Patients with OC have high mortality because of its complex and poorly understood pathogenesis. RNA epigenetic modifications, such as m6 A, m1 A, and m5 C, are closely associated with the occurrence and development of OC. RNA modifications can affect the stability of mRNA transcripts, nuclear export of RNAs, translation efficiency, and decoding accuracy. However, there are few overviews that summarize the link between m6 A RNA modification and OC. Here, we discuss the molecular and cellular functions of different RNA modifications and how their regulation contributes to the pathogenesis of OC. By improving our understanding of the role of RNA modifications in the etiology of OC, we provide new perspectives for their use in OC diagnosis and treatment. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Ye C, Chen P, Xu B, Jin Y, Pan Y, Wu T, Du Y, Mao J, Wu R. Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium. Eur J Med Res 2023; 28:209. [PMID: 37393390 DOI: 10.1186/s40001-023-01180-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria play a pivotal role in physiological and metabolic function of the cell. Mitochondrial dynamics orchestrate mitochondrial function and morphology, involving fission and fusion as well as ultrastructural remodeling. Mounting evidence unravels the close link between mitochondria and endometriosis. However, how mitochondrial architecture changes through fission and fusion in eutopic and ectopic tissues of women with ovarian endometriosis remains unknown. We detected the expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium in ovarian endometriosis. The results showed that the expression of DRP1 and LCLAT1 was upregulated in eutopic endometrial stromal cells (ESCs), and the expression of DRP1, OPA1, MFN1, MFN2, and LCLAT1 was significantly downregulated in ectopic ESCs, and reduced number of mitochondria, wider cristae width and narrower cristae junction width was observed, but there was no difference in cell survival rate. The altered mitochondrial dynamics and morphology might, respectively, provide an advantage for migration and adhesion in eutopic ESCs and be the adaptive response in ectopic endometrial cells to survive under hypoxic and oxidative stress environment.
Collapse
Affiliation(s)
- Chaoshuang Ye
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Pei Chen
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Bingning Xu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yang Jin
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yongchao Pan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Tianyu Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Yongjiang Du
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Jingxia Mao
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
12
|
Peng B, Li J, Yan Y, Liu Y, Liang Q, Liu W, Thakur A, Zhang K, Xu Z, Wang J, Zhang F. Non-coding RNAs: The recently accentuated molecules in the regulation of cell autophagy for ovarian cancer pathogenesis and therapeutic response. Front Pharmacol 2023; 14:1162045. [PMID: 37063265 PMCID: PMC10102359 DOI: 10.3389/fphar.2023.1162045] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Autophagy is a self-recycling and conserved process, in which the senescent cytoplasmic components are degraded in cells and then recycled to maintain homeostatic balance. Emerging evidence has suggested the involvement of autophagy in oncogenesis and progression of various cancers, such as ovarian cancer (OC). Meanwhile, the non-coding RNAs (ncRNAs) frequently regulate the mRNA transcription and other functional signaling pathways in cell autophagy, displaying promising roles in human cancer pathogenesis and therapeutic response. This article mainly reviews the cutting-edge research advances about the interactions between ncRNAs and autophagy in OC. This review not only summarizes the underlying mechanisms of dynamic ncRNA-autophagy association in OC, but also discusses their prognostic implications and therapeutic biomarkers. The aim of this review was to provide a more in-depth knowledge framework exploring the ncRNA-autophagy crosstalk and highlight the promising treatment strategies for OC patients.
Collapse
Affiliation(s)
- Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Li
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Pharmacy, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Fan Zhang,
| |
Collapse
|
13
|
Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer. Int J Mol Sci 2023; 24:ijms24032746. [PMID: 36769068 PMCID: PMC9916896 DOI: 10.3390/ijms24032746] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Although the tumor-stroma ratio (TSR) has prognostic value in many cancers, the traditional semi-quantitative visual assessment method has inter-observer variability, making it impossible for clinical practice. We aimed to develop a machine learning (ML) algorithm for accurately quantifying TSR in hematoxylin-and-eosin (H&E)-stained whole slide images (WSI) and further investigate its prognostic effect in patients with muscle-invasive bladder cancer (MIBC). We used an optimal cell classifier previously built based on QuPath open-source software and ML algorithm for quantitative calculation of TSR. We retrospectively analyzed data from two independent cohorts to verify the prognostic significance of ML-based TSR in MIBC patients. WSIs from 133 MIBC patients were used as the discovery set to identify the optimal association of TSR with patient survival outcomes. Furthermore, we performed validation in an independent external cohort consisting of 261 MIBC patients. We demonstrated a significant prognostic association of ML-based TSR with survival outcomes in MIBC patients (p < 0.001 for all comparisons), with higher TSR associated with better prognosis. Uni- and multivariate Cox regression analyses showed that TSR was independently associated with overall survival (p < 0.001 for all analyses) after adjusting for clinicopathological factors including age, gender, and pathologic stage. TSR was found to be a strong prognostic factor that was not redundant with the existing staging system in different subgroup analyses (p < 0.05 for all analyses). Finally, the expression of six genes (DACH1, DEEND2A, NOTCH4, DTWD1, TAF6L, and MARCHF5) were significantly associated with TSR, revealing possible potential biological relevance. In conclusion, we developed an ML algorithm based on WSIs of MIBC patients to accurately quantify TSR and demonstrated its prognostic validity for MIBC patients in two independent cohorts. This objective quantitative method allows application in clinical practice while reducing the workload of pathologists. Thus, it might be of significant aid in promoting precise pathology services in MIBC.
Collapse
|
14
|
Zhang Y, Qiu JG, Jia XY, Ke Y, Zhang MK, Stieg D, Liu WJ, Liu LZ, Wang L, Jiang BH. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Lett 2023; 553:215971. [PMID: 36257380 DOI: 10.1016/j.canlet.2022.215971] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cancer (OC) is a malignant tumor that seriously threatens women's health. Due to the difficulty of early diagnosis, most patients exhibit advanced disease or peritoneal metastasis at diagnosis. We discovered that IFFO1 is a novel tumor suppressor, but its role in tumorigenesis, development and chemoresistance is unknown. In this study, IFFO1 levels were downregulated across cancers, leading to the acceleration of tumor development, metastasis and/or cisplatin resistance. Overexpression of IFFO1 inhibited the translocation of β-catenin to the nucleus and decreased tumor metastasis and cisplatin resistance. Furthermore, we demonstrated that IFFO1 was regulated at both the transcriptional and posttranscriptional levels. At the transcriptional level, the recruitment of HDAC5 inhibited IFFO1 expression, which is mediated by the transcription factor YY1, and the METTL3/YTHDF2 axis regulated the mRNA stability of IFFO1 in an m6A-dependent manner. Mice injected with IFFO1-overexpressing cells had lower ascites volumes and tumor weights throughout the peritoneal cavity than those injected with parental cells expressing the vector control. In conclusion, we demonstrated that IFFO1 is a novel tumor suppressor that inhibits tumor metastasis and reverses drug resistance in ovarian cancer. IFFO1 was downregulated at both the transcriptional level and posttranscriptional level by histone deacetylase and RNA methylation, respectively, and the IFFO1 signaling pathway was identified as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Ye Zhang
- Academy of Medical Science, School of Basic Medical Science, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, China
| | - Jian-Ge Qiu
- Academy of Medical Science, School of Basic Medical Science, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, China
| | - Xiao-Yu Jia
- Academy of Medical Science, School of Basic Medical Science, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ming-Kun Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - David Stieg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Wen-Jing Liu
- Academy of Medical Science, School of Basic Medical Science, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, China; Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lin Wang
- Academy of Medical Science, School of Basic Medical Science, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, China.
| | - Bing-Hua Jiang
- Academy of Medical Science, School of Basic Medical Science, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
15
|
Rinaldi L, Senatore E, Iannucci R, Chiuso F, Feliciello A. Control of Mitochondrial Activity by the Ubiquitin Code in Health and Cancer. Cells 2023; 12:234. [PMID: 36672167 PMCID: PMC9856579 DOI: 10.3390/cells12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cellular homeostasis is tightly connected to the broad variety of mitochondrial functions. To stay healthy, cells need a constant supply of nutrients, energy production and antioxidants defenses, undergoing programmed death when a serious, irreversible damage occurs. The key element of a functional integration of all these processes is the correct crosstalk between cell signaling and mitochondrial activities. Once this crosstalk is interrupted, the cell is not able to communicate its needs to mitochondria, resulting in oxidative stress and development of pathological conditions. Conversely, dysfunctional mitochondria may affect cell viability, even in the presence of nutrients supply and energy production, indicating the existence of feed-back control mechanisms between mitochondria and other cellular compartments. The ubiquitin proteasome system (UPS) is a multi-step biochemical pathway that, through the conjugation of ubiquitin moieties to specific protein substrates, controls cellular proteostasis and signaling, removing damaged or aged proteins that might otherwise accumulate and affect cell viability. In response to specific needs or changed extracellular microenvironment, the UPS modulates the turnover of mitochondrial proteins, thus influencing the organelle shape, dynamics and function. Alterations of the dynamic and reciprocal regulation between mitochondria and UPS underpin genetic and proliferative disorders. This review focuses on the mitochondrial metabolism and activities supervised by UPS and examines how deregulation of this control mechanism results in proliferative disorders and cancer.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, 80131 Naples, Italy
| |
Collapse
|
16
|
Association of MARCH7 with tumor progression and T-cell infiltration in esophageal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:67. [PMID: 36583798 DOI: 10.1007/s12032-022-01938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
MARCH7 is an E3 ubiquitin ligase known to regulate neuronal development,T-cell proliferation, and cell and tissue differentiation. But, the altered expression of MARCH7 has been observed in various malignancies. Herein, the cellular localization and role of MARCH7 have been elucidated in esophageal squamous cell carcinoma (ESCC), the information regarding which is currently limited. To check the expression of MARCH7 and its correlation with immune cells infiltration in ESCC, immunohistochemical analysis was performed. RNAi approach was used to investigate the role of MARCH7 in esophageal cancer cells. Interestingly, we found a significantly higher expression of MARCH7 protein in 84% of ESCC tissues than in distant matched non-malignant tissues (p ≤ 0.001). In addition to this, immunohistochemistry results have shown a negative correlation between MARCH7 protein expression and tumor-infiltrating immune cells such as CD8 + T cells (r = - 0.633, p = 0.001) and PD1 + T cells (r = - 0.560, p = 0.005). Furthermore, MARCH7 silencing inhibited the ESCC cell growth and reduced the clonogenic and invasion/migration potential of ESCC cells. MARCH7 silencing also significantly increased E-cadherin protein levels in ESCC cells relative to those in negative control cells (p < 0.05). Thus, MARCH7 is oncogenic and might have a possible role in esophageal carcinogenesis. Moreover, E-cadherin may be a downstream target of MARCH7 in ESCC.
Collapse
|
17
|
Wang W, He Y, Zhai LL, Chen LJ, Yao LC, Wu L, Tang ZG, Ning JZ. m 6A RNA demethylase FTO promotes the growth, migration and invasion of pancreatic cancer cells through inhibiting TFPI-2. Epigenetics 2022; 17:1738-1752. [PMID: 35404184 PMCID: PMC9621031 DOI: 10.1080/15592294.2022.2061117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal cancers with a very poor prognosis. Here, we found that N6-methyladenosine (m6A) RNA demethylase fat mass and obesity-related protein (FTO) promote the growth, migration and invasion of PC. FTO expression level is increased in human PC and is associated with poor prognosis of PC patients. Knockdown of FTO increases m6A methylation of TFPI-2 mRNA in PC cells, thereby increasing mRNA stability via the m6A reader YTHDF1, resulting in up-regulation of TFPI-2 expression, and inhibits PC proliferation, colony formation, sphere formation, migration and invasion in vitro, as well as tumour growth in vivo. Rescue assay further confirms that FTO facilitates cancer progression by reducing the expression of TFPI-2. Mechanistically, FTO promotes the progression of PC at least partially through reducing m6A/YTHDF1 mediated TFPI-2 mRNA stability. Our findings reveal that FTO, as an m6A demethylase, plays a critical role in promoting PC growth, migration and invasion, suggesting that FTO may be a potential therapeutic target for treating PC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-most) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, WuhanHubei Province, China
| | - Lu-Lu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Long-Jiang Chen
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Li-Chao Yao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, WuhanHubei Province, China
| |
Collapse
|
18
|
Liu H, Chen B, Liu LL, Cong L, Cheng Y. The role of MARCH9 in colorectal cancer progression. Front Oncol 2022; 12:906897. [PMID: 36185211 PMCID: PMC9523723 DOI: 10.3389/fonc.2022.906897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer with a high global incidence and mortality. Mutated genes or dysregulated pathways responsible for CRC progression have been identified and employed as biomarkers for diagnosis and prognosis. In this study, a ubiquitination regulator, MARCH9, was shown to accelerate CRC progression both in vitro and in vivo. CRC samples from The Cancer Genome Atlas (TCGA) showed significantly upregulated MARCH9 expression by individual cancer stage, histological subtype, and nodal metastasis status. Knockdown of MARCH9 inhibited, while MARCH9 overexpression promoted, CRC cell proliferation and migration. Knockdown of MARCH9 also induced CRC cell apoptosis and caused cell cycle arrest. Further investigation showed that MARCH9 promoted CRC progression by downregulating the expression of a deubiquitinase cylindromatosis (CYLD) gene and activating p65, a member of the nuclear factor-κB (NF-κB) protein family. Finally, in vivo xenograft studies confirmed that MARCH9 knockdown suppressed tumor growth in nude mice. Thus, this study demonstrated that MARCH9 may be a novel and effective therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Biao Chen
- Department of General Surgery, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Lian-Lin Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Lin Cong, ; Yong Cheng,
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- *Correspondence: Lin Cong, ; Yong Cheng,
| |
Collapse
|
19
|
Chen J, Wei Z, Fu K, Duan Y, Zhang M, Li K, Guo T, Yin R. Non-apoptotic cell death in ovarian cancer: Treatment, resistance and prognosis. Biomed Pharmacother 2022; 150:112929. [PMID: 35429741 DOI: 10.1016/j.biopha.2022.112929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is mostly diagnosed at an advanced stage due to the absence of effective screening methods and specific symptoms. Repeated chemotherapy resistance and recurrence before PARPi are used as maintenance therapies, lead to low survival rates and poor prognosis. Apoptotic cell death plays a crucial role in ovarian cancer, which is proved by current researches. With the ongoing development of targeted therapy, non-apoptotic cell death has shown substantial potential in tumor prevention and treatment, including autophagy, ferroptosis, necroptosis, immunogenic cell death, pyroptosis, alkaliptosis, and other modes of cell death. We systematically reviewed the research progress on the role of non-apoptotic cell death in the onset, development, and outcome of ovarian cancer. This review provides a more theoretical basis for exploring therapeutic targets, reversing drug resistance in refractory ovarian cancer, and establishing risk prediction models that help realize the clinical transformation of vital drugs.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhichen Wei
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Kemin Li
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Tao Guo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rutie Yin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
20
|
Ma Q, Long S, Gan Z, Tettamanti G, Li K, Tian L. Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells 2022; 11:cells11030441. [PMID: 35159248 PMCID: PMC8833990 DOI: 10.3390/cells11030441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a widely conserved process in eukaryotes that is involved in a series of physiological and pathological events, including development, immunity, neurodegenerative disease, and tumorigenesis. It is regulated by nutrient deprivation, energy stress, and other unfavorable conditions through multiple pathways. In general, autophagy is synergistically governed at the RNA and protein levels. The upstream transcription factors trigger or inhibit the expression of autophagy- or lysosome-related genes to facilitate or reduce autophagy. Moreover, a significant number of non-coding RNAs (microRNA, circRNA, and lncRNA) are reported to participate in autophagy regulation. Finally, post-transcriptional modifications, such as RNA methylation, play a key role in controlling autophagy occurrence. In this review, we summarize the progress on autophagy research regarding transcriptional regulation, which will provide the foundations and directions for future studies on this self-eating process.
Collapse
Affiliation(s)
- Qiuqin Ma
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Zhending Gan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80138 Napoli, Italy
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Correspondence: (K.L.); (L.T.)
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (K.L.); (L.T.)
| |
Collapse
|
21
|
Chen Z, Lee HJ, Kim H, Cho S, Kim K. δ-Catenin promotes cell migration and invasion via Bcl-2-regulated suppression of autophagy in prostate cancer cells. Am J Cancer Res 2022; 12:108-122. [PMID: 35141007 PMCID: PMC8822292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023] Open
Abstract
As a member of the catenin family, δ-catenin is overexpressed in many cancers, including prostate cancer, and the role of δ-catenin in prostate tumor growth has been reported. However, the involvement of δ-catenin in the migration and invasion of prostate cancer has rarely been studied. In this study, we innovatively proposed that δ-catenin would enhance the migration and invasion ability of prostate cancer cells. It is worth noting that the molecular mechanism underlying the effect involved the downregulation of autophagy. We demonstrated that δ-catenin could suppress autophagy by Bcl-2-regulated disruption of the Beclin1-Vps34 autophagosome complex. Furthermore, the effect of δ-catenin on promoting cell migration and invasion was dependent upon β-catenin-mediated Bcl-2 transcription. Finally, using rapamycin and bafilomycin, we largely confirmed that the degradation of Snails by autolysosomes may be related to δ-catenin regulated migration and invasion. Overall, our results indicated that δ-catenin promoted cell migration and invasion of prostate cancer cells via Bcl-2-regulated autophagy suppression.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National UniversityGwangju 61186, Korea
- School of Pharmaceutical Science, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Hyoung Jae Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National UniversityGwangju 61186, Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National UniversitySunchon 57922, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang UniversitySeoul 06974, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National UniversityGwangju 61186, Korea
| |
Collapse
|
22
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
23
|
Multi-Omics Reveals the Immunological Role and Prognostic Potential of Mitochondrial Ubiquitin Ligase MARCH5 in Human Breast Cancer. Biomedicines 2021; 9:biomedicines9101329. [PMID: 34680446 PMCID: PMC8533422 DOI: 10.3390/biomedicines9101329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023] Open
Abstract
E3 ubiquitin-linked enzyme MARCH5, also known as membrane-associated circular finger 5, is an enzyme encoded by the human MARCH5 gene. The main objective of this study was to visualize the prognosis of MARCH5 in breast cancer and to determine the relationship between MARCH5 expression and tumor immunity. MARCH5 expression was significantly higher in several cancers, including breast cancer (BRCA), compared with corresponding normal tissues. Not only was high MARCH5 expression associated with poorer overall survival, but also MARCH5 expression was positively correlated with the number of tumor-infiltrating immune cells in BRCA malignant tissues. Furthermore, MARCH5 expression showed a strong correlation with various immune markers of BRCA, suggesting its role in regulating tumor immunity. MARCH5 is a useful prognostic biomarker in several cancers, and its expression is highly correlated with tumor immune cell infiltration, and increased MARCH5 expression may serve as a new biomarker for BRCA diagnosis and prognosis.
Collapse
|
24
|
Li Z, Ma J, Kuang Z, Jiang Y. β-Asarone Attenuates Aβ-Induced Neuronal Damage in PC12 Cells Overexpressing APPswe by Restoring Autophagic Flux. Front Pharmacol 2021; 12:701635. [PMID: 34393783 PMCID: PMC8355419 DOI: 10.3389/fphar.2021.701635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory damage and cognitive dysfunction. Studies have shown that defective autophagic flux is associated with neuronal dysfunction. Modulating autophagic activity represents a potential method of combating AD. In Chinese medicine, Acori Tatarinowii Rhizoma is used to treat dementia and amnesia. β-Asarone, an active component of this rhizome can protect PC12 cells from Aβ-induced injury and modulate expression of autophagy factors. However, its cytoprotective mechanisms have yet to be discerned. It is unclear whether β-asarone affects autophagic flux and, if it does, whether this effect can alleviate Aβ cell damage. In the present study, we constructed APPswe-overexpressing PC12 cell line as a cell model of Aβ-induced damage and assessed expression of autophagic flux-related proteins as well as the number and morphology of autophagosomes and autolysosomes. Our results show that β-asarone decreases the expression levels of Beclin-1, p62, LC3-Ⅱ, and Aβ1-42. β-Asarone reduced the number of autophagosomes and increased the number of autolysosomes, as determined by confocal laser scanning microscopy and transmission electron microscopy. Our results suggest that β-asarone can protect PC12 cells from Aβ-induced damage by promoting autophagic flux, which may be achieved by enhancing autophagosome-lysosome fusion and/or lysosome function.
Collapse
Affiliation(s)
- Zhenwan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Ma
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongsheng Kuang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Lu J, Zhou W, Dou F, Wang C, Yu Z. TRPV1 sustains microglial metabolic reprogramming in Alzheimer's disease. EMBO Rep 2021; 22:e52013. [PMID: 33998138 DOI: 10.15252/embr.202052013] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
As the brain-resident innate immune cells, reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia is still unclear in AD pathogenesis. Here, using metabolic profiling, we show that microglia energy metabolism is significantly suppressed during chronic Aβ-tolerant processes including oxidative phosphorylation and aerobic glycolysis via the mTOR-AKT-HIF-1α pathway. Pharmacological activation of TRPV1 rescues Aβ-tolerant microglial dysfunction, the AKT/mTOR pathway activity, and metabolic impairments and restores the immune responses including phagocytic activity and autophagy function. Amyloid pathology and memory impairment are accelerated in microglia-specific TRPV1-knockout APP/PS1 mice. Finally, we showed that metabolic boosting with TRPV1 agonist decreases amyloid pathology and reverses memory deficits in AD mice model. These results indicate that TRPV1 is an important target regulating metabolic reprogramming for microglial functions in AD treatment.
Collapse
Affiliation(s)
- Jia Lu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fangfang Dou
- Basic Research Department, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenfei Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Zhang Z, Zhu H, Hu J. CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis 2021; 12:219. [PMID: 33637694 PMCID: PMC7910449 DOI: 10.1038/s41419-021-03486-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/03/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
At present, no systematic and in-depth study is available on the function and potential mechanisms of circular RNA in autophagy. This study aimed to screen the expression profiles of circRNA, miRNA, and mRNA of ovarian cancer cells induced by Torin 1 (10 µM). The expression profiles of circRNA, miRNA, and mRNA were analyzed with next-generation sequencing technology. CircRAB11FIP1 expression was elevated in epithelial ovarian cancer (EOC) tissues than in normal ovarian tissues. Silencing circRAB11FIP1 inhibited the autophagic flux of ovarian cancer SKOV3 cells. However, circRAB11FIP1 overexpression activated the autophagic flux of ovarian cancer A2780 cells. CircRAB11FIP1-induced autophagy accelerated EOC proliferation and invasion. Also, circRAB11FIP1 directly bound to miR-129 and regulated its targets ATG7 and ATG14. CircRAB11FIP1 bound to desmocollin 1to facilitate its interaction with ATG101. Also, circRAB11FIP1 directly bound to the mRNA of fat mass and obesity-associated protein and promoted its expression. Then, circRAB11FIP1 mediated mRNA expression levels of ATG5 and ATG7 depending on m6A. In general, this study demonstrated that circRAB11FIP1 regulated ATG7 and ATG14 by sponging miR-129. The data suggested that circRAB11FIP1 might serve as a candidate biomarker for EOC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhanqin Zhang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Lei W, Li J, Li C, Chen L, Huang F, Xiao D, Zhang J, Zhao J, Li G, Qu T, Zhou H, Liao Y, Chen M. MARCH5 restores endothelial cell function against ischaemic/hypoxia injury via Akt/eNOS pathway. J Cell Mol Med 2021; 25:3182-3193. [PMID: 33611830 PMCID: PMC8034466 DOI: 10.1111/jcmm.16386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p‐eNOS and p‐Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L‐NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia‐induced ECs injury partially through Akt/eNOS pathway.
Collapse
Affiliation(s)
- Wenhua Lei
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Changming Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xiao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jialiang Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahao Zhao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyi Qu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbiao Liao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Zhao S, Zhang X, Shi Y, Cheng L, Song T, Wu B, Li J, Yang H. MIEF2 over-expression promotes tumor growth and metastasis through reprogramming of glucose metabolism in ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:286. [PMID: 33317572 PMCID: PMC7737286 DOI: 10.1186/s13046-020-01802-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023]
Abstract
Background Increasing evidence has revealed the close link between mitochondrial dynamic dysfunction and cancer. MIEF2 (mitochondrial elongation factor 2) is mitochondrial outer membrane protein that functions in the regulation of mitochondrial fission. However, the expression, clinical significance and biological functions of MIEF2 are still largely unclear in human cancers, especially in ovarian cancer (OC). Methods The expression and clinical significance of MIEF2 were determined by qRT-PCR, western blot and immunohistochemistry analyses in tissues and cell lines of OC. The biological functions of MIEF2 in OC were determined by in vitro and in vivo cell growth and metastasis assays. Furthermore, the effect of MIEF2 on metabolic reprogramming of OC was determined by metabolomics and glucose metabolism analyses. Results MIEF2 expression was significantly increased in OC mainly due to the down-regulation of miR-424-5p, which predicts poor survival for patients with OC. Knockdown of MIEF2 significantly suppressed OC cell growth and metastasis both in vitro and in vivo by inhibiting G1-S cell transition, epithelial-to-mesenchymal transition (EMT) and inducing cell apoptosis, while forced expression of MIEF2 had the opposite effects. Mechanistically, mitochondrial fragmentation-suppressed cristae formation and thus glucose metabolism switch from oxidative phosphorylation to glycolysis was found to be involved in the promotion of growth and metastasis by MIEF2 in OC cells. Conclusions MIEF2 plays a critical role in the progression of OC and may serve as a valuable prognostic biomarker and therapeutic target in the treatment of this malignancy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01802-9.
Collapse
Affiliation(s)
- Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Xiaohong Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Yuan Shi
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Lu Cheng
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Tingting Song
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China
| | - Bing Wu
- Department of Geriatrics, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Jia Li
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, 15 Changle Western Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
30
|
Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu X, Wu Y, Li W, Xu Z, Lu Y, Tang Q, Wei H. IGF2BP2 Promotes Liver Cancer Growth Through an m6A-FEN1-Dependent Mechanism. Front Oncol 2020; 10:578816. [PMID: 33224879 PMCID: PMC7667992 DOI: 10.3389/fonc.2020.578816] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China. N6-methyladenosine (m6A) plays an important role in posttranscriptional gene regulation. METTL3 and IGF2BP2 are key genes in the m6A signal pathway and have recently been shown to play important roles in cancer development and progression. In our work, higher METTL3 and IGF2BP2 expression were found in HCC tissues and were associated with a poor prognosis. In addition, IGF2BP2 overexpression promoted HCC proliferation in vitro and in vivo. Mechanistically, IGF2BP2 directly recognized and bound to the m6A site on FEN1 mRNA and enhanced FEN1 mRNA stability. Overall, our study revealed that METTL3 and IGF2BP2, acting as an oncogene, maintained FEN1 expression through an m6A-IGF2BP2-dependent mechanism in HCC cells, and indicated a potential biomarker panel for prognostic prediction in liver cancer.
Collapse
Affiliation(s)
- Jian Pu
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Zebang Qin
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Ya Zhang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Xianjian Wu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yi Wu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yuan Lu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
31
|
Yong M, Hu J, Zhu H, Jiang X, Gan X, Hu L. Circ-EEF2 facilitated autophagy via interaction with mir-6881-3p and ANXA2 in EOC. Am J Cancer Res 2020; 10:3737-3751. [PMID: 33294264 PMCID: PMC7716148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023] Open
Abstract
Circular RNAs, a special class of non-coding RNA with closed circular structure, have been increasingly proven to be involved in the progression of various tumors. However, the biological functions of circular RNAs in epithelial ovarian cancer (EOC) tissues remain a mystery. In this study, we detected the function of circEEF2 (has-circ-0048559) in EOC tissues. Firstly, the basic characteristics including closed circular structure and spliced mature sequence length of circEEF2 were confirmed. The location and expression in EOC tissues was detected by fluorescence in situ hybridization (FISH). The regulatory effect of circEEF2 on autophagy, proliferation, and invasion were investigated in SKOV3 and A2780 cells. The relationship between circEEF2 and mir-6881-3p was confirmed using dual-luciferase reporter gene assay. The binding of circEEF2 with ANXA2 was confirmed using RNA-pulldown assay and MALDI-TOF-MS. We found that the expression level of circEEF2 was higher in EOC tissue than in normal tissue. CircEEF2 promoted autophagy, proliferation, and invasion. CircEEF2-regulated EOC proliferation and invasion are closely related to the occurrence of autophagy. Mechanistically, circEEF2 harbor miR-6881-3p to upregulate the latter's targets ATG5 and ATG7. Moreover, circEEF2 could directly bind with ANXA2 to inhibit the expression of p-mTOR. In conclusion, findings of the current study illustrate that circEEF2 promoted autophagy, proliferation, and invasion of EOC by interacting with miR-6881-3p and ANXA2.
Collapse
Affiliation(s)
- Min Yong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Xinwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Xiaolin Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical UniversityLinjiang Road, No. 76, Chongqing 400010, China
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| |
Collapse
|
32
|
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, Hashemipour M, Nejati M, Abbasi-Kolli M, Sahebkar A, Mirzaei H. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161:105133. [DOI: 10.1016/j.phrs.2020.105133] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
|
33
|
Identification of low-density lipoprotein receptor class A domain containing 4 (LDLRAD4) as a prognostic indicator in primary gastrointestinal stromal tumors. Curr Probl Cancer 2020; 44:100593. [PMID: 32507364 DOI: 10.1016/j.currproblcancer.2020.100593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND There is an urgent clinical need to select the patients with resectable gastrointestinal stromal tumors (GISTs) who can benefit from adjuvant treatment after complete resection based on disease recurrence risk stratification. We hypothesized that integrating biomarkers into available risk assessment tools may improve the precision of GIST prognostic predictions. METHODS Candidate genes that may cause GIST progression were identified using the Gene Expression Omnibus dataset GSE20708. Quantitative Real-time was used to confirm the prognostic value of the candidate genes for recurrence-free survival (RFS) in a cohort of 94 patients. RESULTS Thirty-seven differentially expressed genes between localized tumors and metastatic primary tumors were found; 14 (37.8%) were upregulated and 23 (62.2%) were downregulated in the latter tumors. Low-density lipoprotein receptor class A domain containing 4 (LDLRAD4) was selected for further prognostic analysis. Although LDLRAD4 mRNA expression was not associated with recurrence risk grades as determined by the revised NIH consensus criteria, multivariate Cox regression analysis showed that LDLRAD4 expression (hazard ratio [HR] = 4.403, 95% confidence interval [CI]: 1.822-10.641, P = 0.001), tumor size (HR = 1.174, 95% CI: 1.027-1.342, P = 0.019) and tumor location (HR = 6.291, 95% CI: 1.128-35.080, P = 0.036) were independent prognostic factors for RFS in patients with resectable GISTs. Moreover, the RFS model constructed by these three factors may effectively predict GIST prognosis within the first 2 postsurgical years. CONCLUSION Our study identifies LDLRAD4 as a suitable prognostic marker for GISTs. The integration of biomarkers into risk assessment tools may improve the precision of GIST prognostic predictions.
Collapse
|
34
|
Yuan Y, Du Y, Wang L, Liu X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer 2020; 11:3588-3595. [PMID: 32284755 PMCID: PMC7150444 DOI: 10.7150/jca.42338] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine (m6A) is the richest modification in mammalian messenger RNAs (mRNAs), and exerts key roles in many biological processes, including cancer development, whereas its roles in prostate carcinoma (PCa) remain to be unclear. Here, we found that m6A modifications are increased in PCa and methyltransferase-like 3 (METTL3), but not other major m6A modification genes including METTL14, fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5), was the major dysregulated gene associated with abnormal m6A modification. In addition, METTL3 up-regulation acted as a poor prognostic factor for overall survival and disease-free survival in PCa patients. Knockdown of METTL3 significantly inhibited PCa cells proliferation, migration, and invasion. In addition, over-expression of METTL3, but not its catalytic mutant form, significantly promoted PCa cells growth and progression. Mechanistically, we revealed that METTL3 enhanced MYC(c-myc) expression by increasing m6A levels of MYC mRNA transcript, leading to oncogenic functions in PCa. Importantly, PCa cells growth and progression inhibition by METTL3 knockdown were restored through over-expression of MYC. Our results uncovered a METTL3/m6A/MYC axis and provided insight into the mechanisms of PCa progression.
Collapse
Affiliation(s)
- Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
35
|
Gan X, Zhu H, Jiang X, Obiegbusi SC, Yong M, Long X, Hu J. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer 2020; 19:45. [PMID: 32111227 PMCID: PMC7047414 DOI: 10.1186/s12943-020-01163-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) has been proven to play a significant role in multiple types of cancer. However, the expression and role of circRNAs in epithelial ovarian cancer (EOC) remains elusive. METHODS CircRNA and mRNA expression profiles of EOC were screened with sequencing analysis. Gene silencing and over-expression were used to study circRNA function. Cell proliferation and Matrigel invasion assays were used to detect cell proliferation and invasion, respectively. The expression of circRNAs, mRNAs and miRNAs was detected using qPCR. The location of circRNAs was detected using FISH. The expression of proteins was detected using western blot and immunohistochemistry. RESULTS CircMUC16 had increased expression in EOC tissues as compared to healthy ovarian tissues. The expression of circMUC16 was linked to the progression in stage and grade of EOC. Hence, silencing circMUC16 suppressed autophagy flux of SKOV3 cells. In contrast, ectopic expression of circMUC16 promoted autophagy flux of A2780 cells. CircMUC16-mediated autophagy exacerbated EOC invasion and metastasis. Mechanistically, circMUC16 could directly bind to miR-199a-5p and relieve suppression of target Beclin1 and RUNX1. In turn, RUNX1 elevated the expression of circMUC16 via promotion of its transcription. CircMUC16 could directly bind to ATG13 and promote its expression. CONCLUSION This study demonstrated that circMUC16 regulated Beclin1 and RUNX1 by sponging miR-199a-5p. The data suggested that circMUC16 could be a potential target for EOC diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoling Gan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongtao Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingwei Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Samuel C Obiegbusi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Yong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingtao Long
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
36
|
Lv X, Guo X, Ru Y, Zhou F, Yang X, Ge J, Li J, Liu S, Jiang K, Chen B. Dysbindin facilitates invasion and metastasis by promoting phosphorylation of ERK in epithelial ovarian cancer. J Cancer 2020; 11:2821-2829. [PMID: 32226500 PMCID: PMC7086264 DOI: 10.7150/jca.39269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Dysbindin has been reported to be correlated with several malignancies. However, the clinical significance and biological role of dysbindin in epithelial ovarian cancer remains largely unknown. Here we demonstrated that the mRNA and protein levels of dysbindin were significantly upregulated in EOC tissues compared with normal ovarian tissues. High levels of dysbindin were significantly correlated with worse clinicopathological characteristics and poor prognosis in EOC patients. Overexpression and silencing of dysbindin promoted and inhibited, respectively, invasion and metastasis of EOC cells in vitro and in vivo. Mechanistically, dysbindin activates phosphorylation of ERK to promote the epithelial-mesenchymal transition and to mediate the invasive and metastatic ability of EOC cells. Our findings suggest that dysbindin facilitates invasion and metastasis by promoting the EMT of EOC cells and may serve as a potential therapeutic target in EOC.
Collapse
Affiliation(s)
- Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Guo
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Department of Endoscopic Surgery, Chinese People's Liberation Army 986 th Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710054, China
| | - Yi Ru
- Department of biochemistry and molecular biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junli Ge
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia Li
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shujuan Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kuo Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
37
|
SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Lett 2020; 469:89-101. [DOI: 10.1016/j.canlet.2019.10.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/01/2023]
|
38
|
Xiong Y, Wang Q. STC1 regulates glioblastoma migration and invasion via the TGF‑β/SMAD4 signaling pathway. Mol Med Rep 2019; 20:3055-3064. [PMID: 31432189 PMCID: PMC6755173 DOI: 10.3892/mmr.2019.10579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Stanniocalcin-1 (STC1) is involved in cancer progression; however, the function of STC1 in glioblastoma remains unknown. In the present study, the expression levels of STC1 protein in glioblastoma were detected using immunohistochemistry. The expression levels of STC1, SMAD2/3 and SMAD4 proteins, following silencing of STC1, were assessed via western blotting. EdU and Transwell assays were performed to determine the proliferation and migration ability of the cells. The mRNA expression levels of STC1, SMAD4 and microRNA (miR)-34a were determined using quantitative PCR. The expression levels of STC1 were increased in glioblastoma tissues. STC1 revealed a significant association with poor outcome in patients with glioblastoma (P<0.05). The proliferation and invasion abilities were repressed in LN229 cells infected with LV3-shSTC1-1 and LV3-shSTC1-2 compared with LV3-NC. By contrast, the proliferation and invasion abilities were increased in T98G cells infected with LV5-STC1 compared with LV5-NC (P<0.05). The expression levels of STC1, SMAD2/3 and SMAD4 were decreased in LN229 cells infected with LV3-shSTC1-1 and LV3-shSTC1-2 compared with LV3-NC. However, the expression levels of STC1, SMAD2/3 and SMAD4 were elevated in T98G cells infected with LV5-STC1 compared with LV5-NC. The expression levels of miR-34a were decreased following silencing of STC1 (P<0.05). The expression levels of SMAD4 were decreased when transfected with miR-34a mimics (P<0.05). The luciferase activity of the wild-type 3′untranslated region of SMAD4 was decreased following transfection with miR-34a mimics (P<0.05). Silencing of STC1 inhibited the growth of LN229 in vivo. In conclusion, STC1 expression levels were increased in the present study, and it was revealed that STC1 regulated glioblastoma malignancy. This phenotype was observed in the SMAD2/3 and SMAD4 pathways.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Neurosurgery, Chongqing Ninth People's Hospital, Chongqing 400715, P.R. China
| | - Qibai Wang
- Department of Neurosurgery, Chongqing Red Cross Hospital (People's Hospital of Jiangbei District), Chongqing 400020, P.R. China
| |
Collapse
|
39
|
Lin H, Li S, Shu HB. The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Front Immunol 2019; 10:1751. [PMID: 31404274 PMCID: PMC6669941 DOI: 10.3389/fimmu.2019.01751] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
The membrane-associated RING-CH-type finger (MARCH) proteins of E3 ubiquitin ligases have emerged as critical regulators of immune responses. MARCH proteins target immune receptors, viral proteins as well as components in innate immune response for polyubiquitination and degradations via distinct routes. This review summarizes the current progress about MARCH proteins and their regulation on immune responses.
Collapse
Affiliation(s)
- Heng Lin
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Huang Z, Zhang S, Wang J, Sun H, Zhang Y, Li X, Song X. miR-373 inhibits nasopharyngeal carcinoma cell migration and invasion by targeting MARCH5. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2646-2652. [PMID: 31934093 PMCID: PMC6949538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
The abnormal expression of microRNAs (miRNAs) is critical for the development of human cancers. However, the functions of many miRNAs remain to be elucidated. miR-373 was reported to involve the tumorigenesis of multiple cancers, but its role in nasopharyngeal carcinoma (NPC) is not clear. Quantitative real-time PCR was performed to analyze miR-373 expression in NPC cell lines. The connection between membrane associated ring-CH-type finger 5 (MARCH5) and miR-373 was analyzed using a luciferase activity reporter assay and western blot. A cell counting kit-8 assay, a colony formation assay, and a wound-healing assay were performed to investigate the biological functions of miR-373 and MARCH5. We showed miR-373 expression is downregulated, and MARCH5 expression is upregulated, in NPC cells. MARCH5 was validated as a direct target of miR-373. miR-373 regulates NPC cell proliferation, colony formation, and cell migration by regulating MARCH5. In conclusion, our study showed that miR-373 has a tumor suppressive role in NPC by targeting MARCH5. This may provide novel therapeutic targets for NPC.
Collapse
Affiliation(s)
- Zehao Huang
- Department of Head & Neck Surgery, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical ScienceBeijing, P. R. China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Hehua Sun
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Yue Zhang
- Department of Cardiology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Xiao Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Xiang Song
- Department of Oncology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| |
Collapse
|
41
|
Shao Y, Liu X, Meng J, Zhang X, Ma Z, Yang G. MicroRNA-1251-5p Promotes Carcinogenesis and Autophagy via Targeting the Tumor Suppressor TBCC in Ovarian Cancer Cells. Mol Ther 2019; 27:1653-1664. [PMID: 31278033 DOI: 10.1016/j.ymthe.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
Accounting for more than 70% of ovarian cancer cases, epithelial ovarian malignancy has a low 5-year survival rate. MicroRNAs may be targeted in the clinical treatment of the disease. In this study, we first found that miR-1251-5p was significantly upregulated in human ovarian cancer cell lines and tissues with the cancer progression and stages. Overexpression or inhibition of miR-1251-5p promoted or impeded cell proliferation and cell cycle progression. Subsequently, TBCC, one of the tubulin-binding cofactors (TBCs), was identified as a target of miR-1251-5p to be negatively associated with cell cycle and autophagy. Exogenous overexpression of TBCC inhibited the expressions of CDK4 and LC3BII, but it promoted the expressions of α/β-tubulin and p62 to suppress cell growth and autophagy, particularly under the starving condition; whereas the introduction of miR-1251-5p in TBCC-overexpressing cells rescued the suppressive effects of TBCC on cell cycle and autophagy through the inverse regulation of the above proteins. Finally, miR-1251-5p was proven to enhance xenograft tumor growth through the downregulation of TBCC but upregulation of Ki67 and LC3B in xenograft tumor tissues. Collectively, these results suggest that miR-1251-5p functions as an oncogene to suppress TBCC and α/β-tubulin expression. Thus, the miR-1251-5p/TBCC/α/β-tubulin axis may be targeted for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaofei Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China.
| |
Collapse
|
42
|
Wang Y, Zhang S, Dang S, Fang X, Liu M. Overexpression of microRNA-216a inhibits autophagy by targeting regulated MAP1S in colorectal cancer. Onco Targets Ther 2019; 12:4621-4629. [PMID: 31354295 PMCID: PMC6580140 DOI: 10.2147/ott.s196992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Autophagy executes the rapid degradation of unneeded proteins and organelles through the lysosomal pathway, and is a crucial catabolic process widely conserved among eukaryotes. miRNAs can modulate autophagy by targeting genes encoding proteins involved in the process. A great deal of researchhas indicated that miR-216a was a functional miRNA related to tumorigenesis. However, the contribution of miR-216a to autophagy in colorectal cancer (CRC) remains unclear. The purpose of this study was to investigate the role of miR-216a in autophagy in CRC cells. Methods: The expression levels of miR-216a in 67 paired CRC patients were evaluated by qRT-PCR. Direct gene targeting predicted by TargetScan and miRanda was confirmed by luciferase activity. Western blot and flow cytometry were used to identify the regulatory mechanism of miR-216a on autophagy in CRC cells. Results: We determined that miR-216a is downregulated in CRC by screening its expression in 67 CRC tissue samples. Dual luciferase reporter assays showed that miR-216a binds the 3'-UTR of MAP1S, suggesting that MAP1S is a direct target of miR-216a. miR-216a could inhibit autophagy in HCT-116 and HT-29 CRC cells through downregulating MAP1S expression. Flow cytometry and Western blot analysis demonstrated that overexpression of miR-216a reduced MAP1S mRNA and protein levels. Moreover, we determined that miR-216a-regulated inhibition of autophagy via MAP1S regulation involves the TGF-β pathway. Conclusion: Taken together, our findings indicate that miR-216a was a tumor-suppressor miRNA in human CRC, which can inhibit autophagy via the TGF-β/MAP1S pathway.
Collapse
Affiliation(s)
- Yunfeng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Songyan Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Shuwei Dang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xuan Fang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
43
|
Zhu H, Diao S, Lim V, Hu L, Hu J. FAM83D inhibits autophagy and promotes proliferation and invasion of ovarian cancer cells via PI3K/AKT/mTOR pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:509-516. [PMID: 30939187 DOI: 10.1093/abbs/gmz028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignant tumors in women. The family with sequence similarity 83, member D (FAM83D) plays an important role in several cancers, but its function and underlying mechanism in ovarian cancer remain unknown. To investigate the role of FAM83D in ovarian cancer, the expression of FAM83D was determined by immunohistochemistry in tissue microarray slide. Cellular proliferation and invasion were detected by 5-Ethynyl-2'-deoxyuridine assays and transwell invasion assays. The correlations between FAM83D and autophagy were detected by western blot analysis and confocal microscopy. Western blot analysis was used to identify the protein expression of FAM83D, phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR) and Sequestosome 1 (P62). Tumorigenesis in nude mice was used to explore the function of FAM83D in vivo. We found high expression level of FAM83D in ovarian cancer tissues as compared to the normal ovarian tissues. Knockdown of FAM83D in SKOV3 cells enhanced autophagy and inhibited the proliferation and invasion in vitro, whereas ectopic expression of FAM83D in A2780 cells exerted an opposite effect. Mechanistically, overexpression of FAM83D activated the PI3K/AKT/mTOR pathway, and Torin1 could suppress FAM83D-induced cell proliferation and invasion. In vivo, overexpression FAM83D promoted tumor growth. Overall, FAM83D promoted ovarian cancer cell invasion and proliferation, while inhibited autophagy via the PI3K/AKT/mTOR signaling pathway. Our results suggest that FAM83D may be a candidate oncogene in ovarian cancer, which provides a fresh perspective of FAM83D in ovarian cancer.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shuai Diao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Vincent Lim
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Miao H, Wang N, Shi LX, Wang Z, Song WB. Overexpression of mircoRNA-137 inhibits cervical cancer cell invasion, migration and epithelial-mesenchymal transition by suppressing the TGF-β/smad pathway via binding to GREM1. Cancer Cell Int 2019; 19:147. [PMID: 31143092 PMCID: PMC6533679 DOI: 10.1186/s12935-019-0852-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/10/2019] [Indexed: 01/05/2023] Open
Abstract
Background Accumulating evidence has highlighted the tumor suppressive roles of microRNA (miRNAs) in cervical cancer (CC). In the present study, we aim to delineate the functional relevance of microRNA-137 (miR-137) in influencing epithelial-mesenchymal transition (EMT), and other CC cell biological activities via the TGF-β/smad pathway by binding to GREM1. Methods Microarray analysis was initially adopted to predict the differentially expressed genes and the miRNAs related to CC, followed by the measurement of the expression patterns of GREM1, EMT-related factors in the CC tissues and the adjacent tissues. Dual luciferase reporter gene assay was conducted to determine the relationship between miR-137 and GREM1. Gain-of- and loss-of-function experiments were conducted to characterize the effects of miR-137 and GREM1 on the colony formation, proliferation, apoptosis, migration, and invasion of CC cells in vitro, and the tumorigenicity of the CC cells in nude mice. The TGF-β/smad pathway was subsequently blocked with si-TGF-β to investigate its involvement. Results Reduced miR-137 expression and increased GREM1 expression were predicted in CC, which was subsequently observed in the CC tissues and cells. Notably, GREM1 was a target gene of miR-137. The overexpressed miR-137 was found to inhibit EMT, cell proliferation, colony formation, invasion, migration and tumorigenesis in nude mice. In addition, miR-137 was noted to inhibit the activation of the TGF-β/smad pathway by binding to GREM1. The silencing of TGF-β1 was shown to reverse the effects induced by downregulated expression of miR-137. Conclusions This study suggests that upregulated miR-137 suppresses the tumor progression in CC via blocking the TGF-β/smad pathway by binding to and negatively regulating GREM1.
Collapse
Affiliation(s)
- Hui Miao
- 1Department of Radiotherapy, Xuzhou Cancer Hospital, Xuzhou, 221000 People's Republic of China
| | - Nuan Wang
- 2Department of Neurology, Xuzhou No. 1 People's Hospital, Xuzhou, 221002 People's Republic of China
| | - Lin-Xin Shi
- 1Department of Radiotherapy, Xuzhou Cancer Hospital, Xuzhou, 221000 People's Republic of China
| | - Zheng Wang
- 3Clinical Medical College, Yangzhou University, Yangzhou, 225001 People's Republic of China
| | - Wen-Bo Song
- Department of Radiotherapy, Jiangdu People's Hospital of Yangzhou, No. 9, Dongfanghong Road, Yangzhou, 225200 Jiangsu People's Republic of China
| |
Collapse
|
45
|
Zhu H, Gan X, Jiang X, Diao S, Wu H, Hu J. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res 2019; 38:163. [PMID: 30987661 PMCID: PMC6463658 DOI: 10.1186/s13046-019-1159-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background ALKBH5 regulated the malignant behavior of breast cancer and glioblastoma. However, the expression and function of ALKBH5 in epithelial ovarian cancer have not yet been determined. In the present study, we investigated the expression and function of ALKBH5 in epithelial ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as an early diagnostic marker. Methods Immunohistochemistry and western blot were used to detect protein expression. Gene silencing and over-expression experiment were used to study gene function. Cell proliferation assay and Matrigel invasion assays were used to detect cell proliferation and invasion, respectively. The nude mouse tumor formation experiment was used to evaluate the growth of cells in vivo. Results The expression of ALKBH5 was found to be increased in epithelial ovarian cancer tissue as compared to the normal ovarian tissues. The silencing of ALKBH5 in SKOV3 cells enhanced the autophagy and inhibited the proliferation and invasion in vitro and in vivo, whereas the ectopic expression of ALKBH5 in A2780 cells exerted an opposite effect. Mechanical study revealed that ALKBH5 physically interacted with HuR. ALKBH5 activated EGFR-PIK3CA-AKT-mTOR signaling pathway. Also, ALKBH5 enhanced the stability of BCL-2 mRNA and promoted the interaction between Bcl-2 and Beclin1. Conclusion Overall, the present study identified ALKBH5 as a candidate oncogene in epithelial ovarian cancer and a potential target for ovarian cancer therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1159-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Xiaoling Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Xingwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Shuai Diao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Linjiang Road, No. 76, Chongqing, 400010, China.
| |
Collapse
|
46
|
Cheng X, Xu Q, Zhang Y, Shen M, Zhang S, Mao F, Li B, Yan X, Shi Z, Wang L, Sheng G, Zhang Q. miR-34a inhibits progression of neuroblastoma by targeting autophagy-related gene 5. Eur J Pharmacol 2019; 850:53-63. [PMID: 30716314 DOI: 10.1016/j.ejphar.2019.01.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/29/2022]
Abstract
Neuroblastoma (NB) is a common pediatric malignancy with high mortality in childhood. Although many attentions have been gained, novel biomarkers for NB diagnosis and prognosis are still needed. microRNAs (miRNAs) played important roles in NB progression and miR-34a is a tumor suppressor in NB. However, the mechanism that underlies miR-34a regulating proliferation, migration, invasion and autophagy in NB remains poorly understood. In this study, cell proliferation was investigated by MTT and colony assay. Cell apoptosis was measured by caspase 3 activity assay. Cell migration and invasion were detected by trans-well analysis. Autophagy was measured via GFP-LC3 puncta fluorescence assay and western blots (WB). The expression of miR-34a was examined by quantitative real-time PCR (qRT-PCR). The regulatory effect of miR-34a on autophagy-related gene 5 (ATG5) was detected by qRT-PCR and WB. The interaction between miR-34a and ATG5 was probed by luciferase activity and RNA immunoprecipitation (RIP) assay. Results showed that miR-34a expression was inhibited in NB tissues and cells with low survival rate. Addition of miR-34a suppressed cell proliferation, migration, invasion and autophagy but promoted apoptosis in NB cells, whereas miR-34a deficiency played opposite roles in NB progression. Intriguingly, ATG5 was directly targeted by miR-34a. Moreover, ATG5 restoration attenuated miR-34a-mediated inhibitory effect on proliferation, apoptosis, migration, invasion and autophagy. These results indicated miR-34a suppressed proliferation, apoptosis, migration, invasion and autophagy in NB cells by targeting ATG5, providing a novel therapeutic avenue for NB treatment.
Collapse
Affiliation(s)
- Xinru Cheng
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qianya Xu
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yixia Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Min Shen
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shanshan Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Fengxia Mao
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Bing Li
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaomin Yan
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zanyang Shi
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Li Wang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Guangyao Sheng
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Qian Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
47
|
Tang H, Peng S, Dong Y, Yang X, Yang P, Yang L, Yang B, Bao G. MARCH5 overexpression contributes to tumor growth and metastasis and associates with poor survival in breast cancer. Cancer Manag Res 2018; 11:201-215. [PMID: 30636894 PMCID: PMC6307674 DOI: 10.2147/cmar.s190694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Human MARCH5 is a mitochondrial localized E3 ubiquitin-protein ligase that is critical for the regulation of mitochondrial dynamics. A body of evidence has indicated the close links between unbalanced mitochondrial dynamics and cancers. However, the expression, biological functions, and prognostic significance of MARCH5 in breast cancer (BC) have not been determined. Materials and methods The mRNA and protein expressions of MARCH5 were evaluated by quantitative real-time PCR and Western blot analysis in BC cell lines and tumor tissues. Clinical prognostic significance of MARCH5 was assessed in 65 patients with BC. The biological functions of MARCH5 were determined by in vitro cell proliferation, apoptosis, cell cycle, migration and invasion assays, and in vivo tumor growth and metastasis assays through knockdown or overexpression of MARCH5 in BC cells. In addition, the underlying mechanisms by which MARCH5 regulated BC cell growth and metastasis were explored. Results MARCH5 was substantially upregulated in BC cells mainly due to the downregulation of miR-30a, which contributed to the poor survival of BC patients. MARCH5 promoted the growth and metastasis of BC cells both in vitro and in vivo by inducing G1-S cell cycle arrest and epithelial-mesenchymal transition. Mechanistic investigations revealed that the oncogenic effect of MARCH5 was mainly mediated by increased mitochondrial fission and subsequent ROS production in BC cells. Conclusion Our findings demonstrate that MARCH5 plays a critical oncogenic role in BC cells, which provides experimental evidence supporting MARCH5 as a potential therapeutic target in BC therapy.
Collapse
Affiliation(s)
- Haili Tang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| | - Shujia Peng
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| | - Yanming Dong
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| | - Xiaojun Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| | - Ping Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| | - Lin Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| | - Bing Yang
- Department of General Surgery, JingYang Country Hospital, XianYang, Shaanxi 713700, China
| | - Guoqiang Bao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China,
| |
Collapse
|
48
|
Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu M, Li Y, Li ST, Chen J, Hong L. Lysine demethylase 2A promotes the progression of ovarian cancer by regulating the PI3K pathway and reversing epithelial‑mesenchymal transition. Oncol Rep 2018; 41:917-927. [PMID: 30483796 PMCID: PMC6313075 DOI: 10.3892/or.2018.6888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the most common cause of death in ovarian cancer patients but remains largely untreated. Epithelial‑mesenchymal transition (EMT) is critical for the conversion of early‑stage ovarian tumors into metastatic malignancies. Thus, investigating the signaling pathways promoting EMT may identify potential targets for the treatment of metastatic ovarian cancer. Lysine demethylase 2A (KDM2A), also known as FBXL11 and JHDM1A, is a histone H3 lysine 36 (H3K36) demethylase that regulates EMT and the metastasis of ovarian cancer. However, the function and underlying mechanisms of EMT suppression in ovarian cancer have not been thoroughly elucidated to date. In the present study, we used Gene Expression Omnibus (GEO) databases to determine that KDM2A is significantly upregulated in human ovarian cancers. KDM2A expression was assessed by immunohistochemistry of epithelial ovarian cancer (EOC) borderline ovarian tumors and normal ovary tissues. Seven fresh EOC tissues and 3 fresh normal ovary tissues were collected for western blot analysis. Kaplan‑Meier survival curves were constructed to identify genes related to EOC prognosis from the TCGA data portal. Stable KDM2A‑knockdown cell lines were established to study the biological functions and underlying mechanisms of KDM2A in EMT in vitro. GEO database analysis revealed that KDM2A was highly upregulated in EOC tissues; this analysis was accompanied by immunochemistry and western blot analysis using samples of human tissues. High expression of KDM2A was associated with poor survival in EOC patients. KDM2A knockdown promoted apoptosis and suppressed the proliferation, migration and invasion of tumor cells in vitro. EMT and the PI3K/AKT/mTOR signaling pathway were suppressed in KDM2A‑silenced cells. Inactivation of the PI3K/AKT/mTOR signaling pathway in A2780 cells induced EMT inhibition. Our data revealed that KDM2A functions as a tumor oncogene, and the downregulation of KDM2A expression regulates EMT and EOC progression, providing a valuable prognostic marker and potential target for the treatment of EOC patients.
Collapse
Affiliation(s)
- Dan-Hua Lu
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiang Yang
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li-Kun Gao
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Min
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Tang
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Hu
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Li
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Su-Ting Li
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Pathology, Molecular Diagnostics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Hong
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
49
|
Hu J, Liu L, Gong Y, Zhang L, Gan X, Luo X, Yu T, Zhong X, Deng X, Hu L, Zhang Z, Dong X. Linc02527 promoted autophagy in Intrahepatic cholestasis of pregnancy. Cell Death Dis 2018; 9:979. [PMID: 30250023 PMCID: PMC6155230 DOI: 10.1038/s41419-018-1013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
LncRNA plays a crucial role in human disease. However, the expression and function of LncRNA in ICP(Intrahepatic cholestasis of pregnancy) is still not fully elucidated. In this study, we found Linc02527 was increased expression in placenta and serum of ICP patients. Ectopically expression of Linc02527 promoted autophagy and proliferate in HTR8 cells. Silencing Linc02527 suppressed the autophagy and proliferate in HTR8 cells. Mechanically study revealed that Linc02527 regulated the expression of ATG5 and ATG7 by sponging miR-3185. Linc02527 directly binding to YBX1 and activated P21. The growth of C57 mouse was retarded when autophagy was activated. In normal condition, inhibited autophagy using chloroquine did not affect the growth of C57 mouse. However, in the condition of autophagy was activated, inhibited autophagy using chloroquine can improve the growth of C57 mouse. Overall, the results of this study identified Linc02527 as a candidate biomarker in ICP and a potential target for ICP therapy. Chloroquine was a potential drug for ICP therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yangyang Gong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoling Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaodong Luo
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaocui Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinru Deng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhanyu Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
50
|
Lin HH, Chung Y, Cheng CT, Ouyang C, Fu Y, Kuo CY, Chi KK, Sadeghi M, Chu P, Kung HJ, Li CF, Limesand KH, Ann DK. Autophagic reliance promotes metabolic reprogramming in oncogenic KRAS-driven tumorigenesis. Autophagy 2018; 14:1481-1498. [PMID: 29956571 PMCID: PMC6135591 DOI: 10.1080/15548627.2018.1450708] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Defects in basal autophagy limit the nutrient supply from recycling of intracellular constituents. Despite our understanding of the prosurvival role of macroautophagy/autophagy, how nutrient deprivation, caused by compromised autophagy, affects oncogenic KRAS-driven tumor progression is poorly understood. Here, we demonstrate that conditional impairment of the autophagy gene Atg5 (atg5-KO) extends the survival of KRASG12V-driven tumor-bearing mice by 38%. atg5-KO tumors spread more slowly during late tumorigenesis, despite a faster onset. atg5-KO tumor cells displayed reduced mitochondrial function and increased mitochondrial fragmentation. Metabolite profiles indicated a deficiency in the nonessential amino acid asparagine despite a compensatory overexpression of ASNS (asparagine synthetase), key enzyme for de novo asparagine synthesis. Inhibition of either autophagy or ASNS reduced KRASG12V-driven tumor cell proliferation, migration, and invasion, which was rescued by asparagine supplementation or knockdown of MFF (mitochondrial fission factor). Finally, these observations were reflected in human cancer-derived data, linking ASNS overexpression with poor clinical outcome in multiple cancers. Together, our data document a widespread yet specific asparagine homeostasis control by autophagy and ASNS, highlighting the previously unrecognized role of autophagy in suppressing the metabolic barriers of low asparagine and excessive mitochondrial fragmentation to permit malignant KRAS-driven tumor progression.
Collapse
Affiliation(s)
- H. Helen Lin
- Department of Diabetes and Metabolic Diseases Research
| | - Yiyin Chung
- Department of Diabetes and Metabolic Diseases Research
| | | | | | - Yong Fu
- Department of Diabetes and Metabolic Diseases Research
| | | | - Kevin K. Chi
- Department of Diabetes and Metabolic Diseases Research
| | | | | | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | | | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA USA
| |
Collapse
|