1
|
Gouveia M, Schmidt C, Basilio PG, Aveiro SS, Domingues P, Xia K, Colón W, Vitorino R, Ferreira R, Santos M, Vieira SI, Ribeiro F. Exercise training decreases the load and changes the content of circulating SDS-resistant protein aggregates in patients with heart failure with reduced ejection fraction. Mol Cell Biochem 2024; 479:2711-2722. [PMID: 37902886 PMCID: PMC11455743 DOI: 10.1007/s11010-023-04884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Heart failure (HF) often disrupts the protein quality control (PQC) system leading to protein aggregate accumulation. Evidence from tissue biopsies showed that exercise restores PQC system in HF; however, little is known about its effects on plasma proteostasis. AIM To determine the effects of exercise training on the load and composition of plasma SDS-resistant protein aggregates (SRA) in patients with HF with reduced ejection fraction (HFrEF). METHODS Eighteen patients with HFrEF (age: 63.4 ± 6.5 years; LVEF: 33.4 ± 11.6%) participated in a 12-week combined (aerobic plus resistance) exercise program (60 min/session, twice per week). The load and content of circulating SRA were assessed using D2D SDS-PAGE and mass spectrometry. Cardiorespiratory fitness, quality of life, and circulating levels of high-sensitive C-reactive protein, N-terminal pro-B-type natriuretic peptide (NT-proBNP), haptoglobin and ficolin-3, were also evaluated at baseline and after the exercise program. RESULTS The exercise program decreased the plasma SRA load (% SRA/total protein: 38.0 ± 8.9 to 36.1 ± 9.7%, p = 0.018; % SRA/soluble fraction: 64.3 ± 27.1 to 59.8 ± 27.7%, p = 0.003). Plasma SRA of HFrEF patients comprised 31 proteins, with α-2-macroglobulin and haptoglobin as the most abundant ones. The exercise training significantly increased haptoglobin plasma levels (1.03 ± 0.40 to 1.11 ± 0.46, p = 0.031), while decreasing its abundance in SRA (1.83 ± 0.54 × 1011 to 1.51 ± 0.59 × 1011, p = 0.049). Cardiorespiratory fitness [16.4(5.9) to 19.0(5.2) ml/kg/min, p = 0.002], quality of life, and circulating NT-proBNP [720.0(850.0) to 587.0(847.3) pg/mL, p = 0.048] levels, also improved after the exercise program. CONCLUSION Exercise training reduced the plasma SRA load and enhanced PQC, potentially via haptoglobin-mediated action, while improving cardiorespiratory fitness and quality of life of patients with HFrEF.
Collapse
Affiliation(s)
- Marisol Gouveia
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.
| | - Cristine Schmidt
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Priscilla Gois Basilio
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Susana S Aveiro
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
- GreenCoLab - Green Ocean Association, University of Algarve, Faro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry, LAQV REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Centre for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
- Surgery and Physiology Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA & LAQV-REQUIMTE, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Serviço de Cardiologia, Hospital Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, UMIB, University of Porto, Porto, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Building 30, Agras do Crasto - Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Fernando Ribeiro
- School of Health Sciences, iBiMED - Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Lei X, Xu Z, Huang Y, Huang L, Lang J, Qu M, Liu D. Regulation of Mitochondrial Quality Control of Intestinal Stem Cells in Homeostasis and Diseases. Antioxid Redox Signal 2024. [PMID: 39225500 DOI: 10.1089/ars.2023.0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Significance: Intestinal stem cells (ISCs) are crucial for the continuous renewal and regeneration of the small intestinal epithelium. ISC fate decisions are strictly controlled by metabolism. Mitochondria act as the central hubs of energetic metabolism and dynamically remodel their morphology to perform required metabolic functions. Mitochondrial dysfunction is closely associated with a variety of gastrointestinal diseases. Recent Advances: In recent years, several studies have reported that mitochondria are potential therapeutic targets for regulating ISC function to alleviate intestinal diseases. However, how mitochondrial quality control mediates ISCs under physiological conditions and protects against intestinal injury remains to be comprehensively reviewed. Critical Issues: In this review, we summarize the available studies about how mitochondrial metabolism, redox state, dynamics, autophagy, and proteostasis impact ISC proliferation, differentiation, and regeneration, respectively. Future Directions: We propose that remodeling the function of mitochondria in ISCs may be a promising potential future direction for the treatment of intestinal diseases. This review may provide new strategies for therapeutically targeting the mitochondria of ISCs in intestinal diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinyi Lang
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Dengqun Liu
- Department of Experimental Research, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital and Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Zhang CY, Li KL, Zhao XX, Zhang ZY, Yin AW, Wang RX. The Role and Underlying Mechanisms of Exercise in Heart Failure. Rev Cardiovasc Med 2024; 25:285. [PMID: 39228484 PMCID: PMC11366989 DOI: 10.31083/j.rcm2508285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 09/05/2024] Open
Abstract
Heart failure is a prevalent and life-threatening syndrome characterized by structural and/or functional abnormalities of the heart. As a global burden with high rates of morbidity and mortality, there is growing recognition of the beneficial effects of exercise on physical fitness and cardiovascular health. A substantial body of evidence supports the notion that exercise can play a protective role in the development and progression of heart failure and improve cardiac function through various mechanisms, such as attenuating cardiac fibrosis, reducing inflammation, and regulating mitochondrial metabolism. Further investigation into the role and underlying mechanisms of exercise in heart failure may uncover novel therapeutic targets for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Chong-Yi Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Ku-Lin Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Xiao-Xi Zhao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - An-Wen Yin
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 214023 Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2024. [PMID: 39034866 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Umar Raza
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Jia Song
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, Texas, USA
| | - Junyan Lu
- Department of Cardiology, Zengcheng Branch of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiaohong Liu
- Cardiovascular Department of Internal Medicine, Karamay Hospital of People's Hospital of Xinjiang Uygur Autonomous Region, Karamay, Xinjiang Uygur Autonomous Region, China
| | - Wei Zhang
- Outpatient Clinic of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shujuan Li
- Department of Pediatric Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Hu F, Hu T, Qiao Y, Huang H, Zhang Z, Huang W, Liu J, Lai S. Berberine inhibits excessive autophagy and protects myocardium against ischemia/reperfusion injury via the RhoE/AMPK pathway. Int J Mol Med 2024; 53:49. [PMID: 38577949 PMCID: PMC10999226 DOI: 10.3892/ijmm.2024.5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia‑reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol‑cytochrome c reductase core protein U, the Bcl‑2‑associated X protein/B‑cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule‑associated protein 1 light 3 protein, caspase‑3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND‑99 staining results showed that BBR pretreatment inhibited H/R‑induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase‑3. However, the protective effects of BBR were attenuated by pAD/RhoE‑small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP‑activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP‑activated protein kinase pathway.
Collapse
Affiliation(s)
- Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zeyu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenxiong Huang
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jichun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Songqing Lai
- Institute of Cardiovascular Surgical Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Wang L, Zhang S, Liu H, Gao L, He L, Chen Y, Zhang J, Yang M, He C. STING activation in cardiomyocytes drives hypertrophy-associated heart failure via NF-κB-mediated inflammatory response. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166997. [PMID: 38142758 DOI: 10.1016/j.bbadis.2023.166997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Accumulating evidence highlights the key importance of innate immunity in heart hypertrophy and failure. Though stimulator of interferon genes (STING) is an integral innate immunity regulator, whether cardiomyocyte-derived STING driving cardiac hypertrophy and failure has rarely been explored, nor has its underlying mechanism been clarified. Herein, we addressed these two questions through several mouse experiments. Our results revealed that cardiac tissues from patients exhibiting cardiac hypertrophy markedly increased STING expression. Myocardial tissues of mice challenged with angiotensin II (Ang II) or transverse aortic constriction (TAC) also showed that STING was consistently upregulated and activated. Activation of STING by cGAMP or DMXAA resulted in cardiomyocyte hypertrophy in vitro, which was abolished by STING knockout. Furthermore, deleting or pharmacologically inhibiting STING attenuated cardiac hypertrophy and dysfunction in TAC or Ang II-treated mice. In contrast, mice with cardiomyocyte-specific STING activation developed cardiac hypertrophy and failure. Mechanistically, NF-κB signaling but not TBK1 or autophagy formation was implicated in STING -induced cardiac hypertrophy and failure. Collectively, we identified that STING-NF-κB axis mediated inflammatory response to drive cardiac hypertrophy-associated heart failure, highlighting its promise as a potential therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Lintao Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Suya Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hongxia Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Li Gao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lu He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yue Chen
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230011, China
| | - Junsheng Zhang
- Department of Pathophysiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Miaomiao Yang
- Department of Pathophysiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaoyong He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Lu B, Chen X, Ma Y, Gui M, Yao L, Li J, Wang M, Zhou X, Fu D. So close, yet so far away: the relationship between MAM and cardiac disease. Front Cardiovasc Med 2024; 11:1353533. [PMID: 38374992 PMCID: PMC10875081 DOI: 10.3389/fcvm.2024.1353533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria-associated membrane (MAM) serve as crucial contact sites between mitochondria and the endoplasmic reticulum (ER). Recent research has highlighted the significance of MAM, which serve as a platform for various protein molecules, in processes such as calcium signaling, ATP production, mitochondrial structure and function, and autophagy. Cardiac diseases caused by any reason can lead to changes in myocardial structure and function, significantly impacting human health. Notably, MAM exhibits various regulatory effects to maintain cellular balance in several cardiac diseases conditions, such as obesity, diabetes mellitus, and cardiotoxicity. MAM proteins independently or interact with their counterparts, forming essential tethers between the ER and mitochondria in cardiomyocytes. This review provides an overview of key MAM regulators, detailing their structure and functions. Additionally, it explores the connection between MAM and various cardiac injuries, suggesting that precise genetic, pharmacological, and physical regulation of MAM may be a promising strategy for preventing and treating heart failure.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulong Ma
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Algothmi KM, Mahasneh ZMH, Abdelnour SA, Khalaf QAW, Noreldin AE, Barkat RA, Khalifa NE, Khafaga AF, Tellez-Isaias G, Alqhtani AH, Swelum AA, Abd El-Hack ME. Protective impacts of mitochondria enhancers against thermal stress in poultry. Poult Sci 2024; 103:103218. [PMID: 37980733 PMCID: PMC10692709 DOI: 10.1016/j.psj.2023.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023] Open
Abstract
Heat stress (HS) is still the essential environmental agent influencing the poultry industry. Research on HS in poultry has progressively acquired growing interest because of increased attention to climate alteration. Poultry can survive at certain zone of environmental temperatures, so it could be considered homoeothermic. In poultry, the normal body temperature is essential to enhance the internal environment for growth, which is achieved by normal environmental temperature. Recently, many studies have revealed that HS could cause mitochondrial dysfunction in broilers by inducing redox dysfunction, increasing uncoupling protein, boosting lipid and protein oxidation, and oxidative stress. Moreover, HS diminished the energy suppliers supported by mitochondria activity. A novel strategy for combating the negative influences of HS via boosting the mitochondria function through enrichment of the diets with mitochondria enhancers was also described in this review. Finally, the current review highlights the mitochondria dysfunction induced by HS in broilers and attempts to boost mitochondria functionality by enriching mitochondria enhancers to broiler diets.
Collapse
Affiliation(s)
- Khloud M Algothmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, the University of Jordan, Amman 11942, Jordan
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Qahtan A W Khalaf
- Department of Medical Laboratory Techniques, College of Medical Technology, Al-Kitab University, Kirkuk 36001, Iraq
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Rasha A Barkat
- Department of Physiology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | | | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
11
|
Tang Y, Xu W, Liu Y, Zhou J, Cui K, Chen Y. Autophagy protects mitochondrial health in heart failure. Heart Fail Rev 2024; 29:113-123. [PMID: 37823952 DOI: 10.1007/s10741-023-10354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
The progression of heart failure is reported to be strongly associated with homeostatic imbalance, such as mitochondrial dysfunction and abnormal autophagy, in the cardiomyocytes. Mitochondrial dysfunction triggers autophagic and cardiac dysfunction. In turn, abnormal autophagy impairs mitochondrial function and leads to apoptosis or autophagic cell death under certain circumstances. These events often occur concomitantly, forming a vicious cycle that exacerbates heart failure. However, the role of the crosstalk between mitochondrial dysfunction and abnormal autophagy in the development of heart failure remains obscure and the underlying mechanisms are mainly elusive. The potential role of the link between mitochondrial dysfunction and abnormal autophagy in heart failure progression has recently garnered attention. This review summarized recent advances of the interactions between mitochondria and autophagy during the development of heart failure.
Collapse
Affiliation(s)
- Yating Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Wenlong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yu Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Jiajun Zhou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Kai Cui
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China.
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China.
| |
Collapse
|
12
|
Guo C, Wu RY, Dou JH, Song SF, Sun XL, Hu YW, Guo FS, Wei J, Lin L, Wei J. Mitophagy-dependent cardioprotection of resistance training on heart failure. J Appl Physiol (1985) 2023; 135:1390-1401. [PMID: 37942531 DOI: 10.1152/japplphysiol.00674.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Resistance exercise is an indispensable mode of exercise rehabilitation for heart failure. Here we elucidate the cardiac effects of resistance training alone or combined with different aerobic trainings on heart failure and explore the critical regulation of mitophagy. The chronic heart failure model was constructed by transverse aortic constriction surgery, followed by 8 wk of resistance training (RT), moderate-intensity continuous training combined with resistance training (MRT), and high-intensity interval training combined with resistance training (HRT), and subsequently analyzed the changes of maximum load, cardiac structure and function, and myocardial mitophagic activity. The role and signaling of mitophagy in exercise protection of heart failure were investigated by knockdown of Hif1α and Parkin genes in primary neonatal cardiomyocytes. RT and especially MRT improved maximum load (P < 0.0001), myocardial morphology and fibrosis (P < 0.0001), reduced left ventricular diameter and enhanced left ventricular systolic function (P < 0.01), and enhanced myocardial mitophagic activity and HIF1α expression (P < 0.05) in heart failure mice. However, HRT had no obvious protective effect on ventricular diameter and function or mitophagy. The abilities of exercise stimulation to regulate reactive oxygen species, adenosine triphosphate, and brain natriuretic peptide were impaired after knockdown of Hif1α and Parkin genes inhibited mitophagy in failing cardiomyocytes (P < 0.05). Different exercise modalities provide discrepant cardiovascular effects on heart failure, and MRT exhibits optimal protection. The HIF1α-Parkin-mitophagy pathway is involved in the protection and regulation of exercise on heart failure.NEW & NOTEWORTHY Impaired myocardial mitophagy is implicated in the pathogenesis of heart failure. Resistance training alone or combined with different aerobic trainings provide discrepant cardiovascular effects on heart failure, and the cardioprotective function depends on HIF1α-Parkin-mitophagy pathway.
Collapse
Affiliation(s)
- Chen Guo
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Rui-Yun Wu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Jia-Hao Dou
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Shou-Fang Song
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Xue-Lu Sun
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Yi-Wei Hu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Fan-Shun Guo
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Jia Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Lin Lin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Kiyuna LA, Candido DS, Bechara LRG, Jesus ICG, Ramalho LS, Krum B, Albuquerque RP, Campos JC, Bozi LHM, Zambelli VO, Alves AN, Campolo N, Mastrogiovanni M, Bartesaghi S, Leyva A, Durán R, Radi R, Arantes GM, Cunha-Neto E, Mori MA, Chen CH, Yang W, Mochly-Rosen D, MacRae IJ, Ferreira LRP, Ferreira JCB. 4-Hydroxynonenal impairs miRNA maturation in heart failure via Dicer post-translational modification. Eur Heart J 2023; 44:4696-4712. [PMID: 37944136 DOI: 10.1093/eurheartj/ehad662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND AIMS Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.
Collapse
Affiliation(s)
- Ligia A Kiyuna
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Darlan S Candido
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Itamar C G Jesus
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Lisley S Ramalho
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Barbara Krum
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Ruda P Albuquerque
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Luiz H M Bozi
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | | | - Ariane N Alves
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, Brazil
| | - Nicolás Campolo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Alejandro Leyva
- Unidad de Bioquímica y Proteómica Analítica (UByPA), Instituto de Investigaciones Biológicas Celemente Estable & Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analítica (UByPA), Instituto de Investigaciones Biológicas Celemente Estable & Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Guilherme M Arantes
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, Brazil
| | - Edécio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), São Paulo, Brazil
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR 3145A, 269 Campus Drive, Stanford, CA 94305, USA
| | - Wenjin Yang
- Foresee Pharmaceuticals, Co., Ltd, Taipei, Taiwan
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR 3145A, 269 Campus Drive, Stanford, CA 94305, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ludmila R P Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Brazilian National Institute of Vaccine Science and Technology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR 3145A, 269 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Nijholt KT, Sánchez-Aguilera PI, Mahmoud B, Gerding A, Wolters JC, Wolters AHG, Giepmans BNG, Silljé HHW, de Boer RA, Bakker BM, Westenbrink BD. A Kinase Interacting Protein 1 regulates mitochondrial protein levels in energy metabolism and promotes mitochondrial turnover after exercise. Sci Rep 2023; 13:18822. [PMID: 37914850 PMCID: PMC10620178 DOI: 10.1038/s41598-023-45961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes mitochondrial respiration and attenuates mitochondrial oxidative stress in cultured cardiomyocytes. We sought to determine whether AKIP1 influences mitochondrial function and the mitochondrial adaptation in response to exercise in vivo. We assessed mitochondrial respiratory capacity, as well as electron microscopy and mitochondrial targeted-proteomics in hearts from mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and their wild type (WT) littermates. These parameters were also assessed after four weeks of voluntary wheel running. In contrast to our previous in vitro study, respiratory capacity measured as state 3 respiration on palmitoyl carnitine was significantly lower in AKIP1-TG compared to WT mice, whereas state 3 respiration on pyruvate remained unaltered. Similar findings were observed for maximal respiration, after addition of FCCP. Mitochondrial DNA damage and oxidative stress markers were not elevated in AKIP1-TG mice and gross mitochondrial morphology was similar. Mitochondrial targeted-proteomics did reveal reductions in mitochondrial proteins involved in energy metabolism. Exercise performance was comparable between genotypes, whereas exercise-induced cardiac hypertrophy was significantly increased in AKIP1-TG mice. After exercise, mitochondrial state 3 respiration on pyruvate substrates was significantly lower in AKIP1-TG compared with WT mice, while respiration on palmitoyl carnitine was not further decreased. This was associated with increased mitochondrial fission on electron microscopy, and the activation of pathways associated with mitochondrial fission and mitophagy. This study suggests that AKIP1 regulates the mitochondrial proteome involved in energy metabolism and promotes mitochondrial turnover after exercise. Future studies are required to unravel the mechanistic underpinnings and whether the mitochondrial changes are required for the AKIP1-induced physiological cardiac growth.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Belend Mahmoud
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Albert Gerding
- Department of Metabolic Disease, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, Systems Medicine of Metabolism and Signalling, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Cardiology, Erasmus University Medical, Rotterdam, The Netherlands
| | - Barbara M Bakker
- Department of Metabolic Disease, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
15
|
Lai W, Luo D, Li Y, Li Y, Wang Q, Hu Z, Ye Z, Peng H. Irisin ameliorates diabetic kidney disease by restoring autophagy in podocytes. FASEB J 2023; 37:e23175. [PMID: 37742293 DOI: 10.1096/fj.202300420r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Many studies have highlighted the importance of moderate exercise. While it can attenuate diabetic kidney disease, its mechanism has remained unclear. The level of myokine irisin in plasma increases during exercise. We found that irisin was decreased in diabetic patients and was closely related to renal function, proteinuria, and podocyte autophagy injury. Muscle-specific overexpression of PGC-1α (mPGC-1α) in a mouse model is known to increase plasma irisin levels. The mPGC-1α mice were crossed with db/m mice to obtain db/db mPGC-1α+ mice in the present study. Compared to db/db mice without mPGC-1α, plasma irisin was increased, and albuminuria and glomerular pathological damage were both alleviated in db/db mPGC-1α+ mice. Impaired autophagy in podocytes was restored as well. Irisin inhibited the activation of the PI3K/AKT/mTOR signaling pathway in cultured human podocytes and improved damaged autophagy induced by high glucose levels. Then, db/db mice were treated with recombinant irisin, which had similar beneficial effects on the kidney as those in db/db mPGC-1α+ mice, with alleviated glomerular injury and albuminuria. Moreover, the autophagy in podocytes was also significantly restored. These results suggest that irisin secreted by skeletal muscles protects the kidney from diabetes mellitus damage. It also restores autophagy in podocytes by inhibiting the abnormal activation of the PI3K/AKT/mTOR signaling pathway. Thus, irisin may become a new drug for the prevention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Weiyan Lai
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan Luo
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yin Li
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanqing Li
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qianqian Wang
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoyong Hu
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Zengchun Ye
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Nephrology Division, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
da Silva VL, Mota GAF, de Souza SLB, de Campos DHS, Melo AB, Vileigas DF, Coelho PM, Sant’Ana PG, Padovani C, Lima-Leopoldo AP, Bazan SGZ, Leopoldo AS, Cicogna AC. Aerobic Exercise Training Improves Calcium Handling and Cardiac Function in Rats with Heart Failure Resulting from Aortic Stenosis. Int J Mol Sci 2023; 24:12306. [PMID: 37569680 PMCID: PMC10418739 DOI: 10.3390/ijms241512306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic exercise training (AET) has been used to manage heart disease. AET may totally or partially restore the activity and/or expression of proteins that regulate calcium (Ca2+) handling, optimize intracellular Ca2+ flow, and attenuate cardiac functional impairment in failing hearts. However, the literature presents conflicting data regarding the effects of AET on Ca2+ transit and cardiac function in rats with heart failure resulting from aortic stenosis (AoS). This study aimed to evaluate the impact of AET on Ca2+ handling and cardiac function in rats with heart failure due to AoS. Wistar rats were distributed into two groups: control (Sham; n = 61) and aortic stenosis (AoS; n = 44). After 18 weeks, the groups were redistributed into: non-exposed to exercise training (Sham, n = 28 and AoS, n = 22) and trained (Sham-ET, n = 33 and AoS-ET, n = 22) for 10 weeks. Treadmill exercise training was performed with a velocity equivalent to the lactate threshold. The cardiac function was analyzed by echocardiogram, isolated papillary muscles, and isolated cardiomyocytes. During assays of isolated papillary muscles and isolated cardiomyocytes, the Ca2+ concentrations were evaluated. The expression of regulatory proteins for diastolic Ca2+ was assessed via Western Blot. AET attenuated the diastolic dysfunction and improved the systolic function. AoS-ET animals presented an enhanced response to post-rest contraction and SERCA2a and L-type Ca2+ channel blockage compared to the AoS. Furthermore, AET was able to improve aspects of the mechanical function and the responsiveness of the myofilaments to the Ca2+ of the AoS-ET animals. AoS animals presented an alteration in the protein expression of SERCA2a and NCX, and AET restored SERCA2a and NCX levels near normal values. Therefore, AET increased SERCA2a activity and myofilament responsiveness to Ca2+ and improved the cellular Ca2+ influx mechanism, attenuating cardiac dysfunction at cellular, tissue, and chamber levels in animals with AoS and heart failure.
Collapse
Affiliation(s)
- Vítor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Dijon Henrique Salomé de Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Alexandre Barroso Melo
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Priscila Murucci Coelho
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - Carlos Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Ana Paula Lima-Leopoldo
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Silméia Garcia Zanati Bazan
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| | - André Soares Leopoldo
- Department of Sports, Federal University of Espirito Santo, Vitória 29075-910, Brazil; alexandre-- (A.B.M.); (P.M.C.); (A.P.L.-L.); (A.S.L.)
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil; (G.A.F.M.); (S.L.B.d.S.); (D.H.S.d.C.); (D.F.V.); (P.G.S.); (S.G.Z.B.); (A.C.C.)
| |
Collapse
|
17
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Kemi OJ. Exercise and Calcium in the Heart. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
19
|
Campos JC, Marchesi Bozi LH, Krum B, Grassmann Bechara LR, Ferreira ND, Arini GS, Albuquerque RP, Traa A, Ogawa T, van der Bliek AM, Beheshti A, Chouchani ET, Van Raamsdonk JM, Blackwell TK, Ferreira JCB. Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics. Proc Natl Acad Sci U S A 2023; 120:e2204750120. [PMID: 36595699 PMCID: PMC9926278 DOI: 10.1073/pnas.2204750120] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.
Collapse
Affiliation(s)
- Juliane Cruz Campos
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo05508-000, Brazil
- Research Division, Joslin Diabetes Center, Boston, MA02215
- Department of Genetics, Harvard Medical School, Boston, MA02215
| | - Luiz Henrique Marchesi Bozi
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo05508-000, Brazil
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Cell Biology, Harvard Medical School, Boston, MA02215
| | - Barbara Krum
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo05508-000, Brazil
| | | | | | - Gabriel Santos Arini
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo05508-000, Brazil
| | | | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, MontrealH3A 2B4, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, MontrealH4A 3J1, Canada
| | - Takafumi Ogawa
- Research Division, Joslin Diabetes Center, Boston, MA02215
- Department of Genetics, Harvard Medical School, Boston, MA02215
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima739-8530, Japan
- Hiroshima Research Center for Healthy Aging, Hiroshima University, Higashi-Hiroshima739-8530, Japan
| | - Alexander M. van der Bliek
- Molecular Biology Institute at University of California, Los Angeles, CA90095-1570
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1737
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA94035
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Cell Biology, Harvard Medical School, Boston, MA02215
| | - Jeremy M. Van Raamsdonk
- Department of Genetics, Harvard Medical School, Boston, MA02215
- Department of Neurology and Neurosurgery, McGill University, MontrealH3A 2B4, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, MontrealH4A 3J1, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, MontrealH4A 3J1, Canada
| | - T. Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA02215
- Department of Genetics, Harvard Medical School, Boston, MA02215
| | | |
Collapse
|
20
|
Almikhlafi MA. The role of exercise in Parkinson's Disease. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2023; 28:4-12. [PMID: 36617448 PMCID: PMC9987629 DOI: 10.17712/nsj.2023.1.20220105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is a progressive widespread neurodegenerative disorder affecting the brain. It is characterized by dopaminergic neuron degeneration in the substantia nigra pars compacta (SNpc). Current therapeutic options ease the symptoms of PD; however, they have multiple undesirable effects and do not slow the disease progression. Exercise by itself has many positive impacts on general health. In this review, the positive impact of different forms of exercise were found to improve motor and non-motor symptoms in PD. Exercise effects is mediate by multiple mechanisms, including the upregulation of brain-derived neurotrophic factor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, and autophagy regulating proteins; and downregulates proinflammatory cytokines. In this review, the significance of exercise in PD, as well as in the prevention and maintenance of the disease was discussed. Many questions are left unanswered in this manuscript, including potential genetic factors underlying response to exercise. Therefore, further high-quality studies on humans are needed.
Collapse
Affiliation(s)
- Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah Al-Munawarah, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
22
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
23
|
Cho JM, Ghosh R, Mookherjee S, Boudina S, Symons JD. Reduce, Reuse, Recycle, Run ! : 4 Rs to improve cardiac health in advanced age. Aging (Albany NY) 2022; 14:9388-9392. [PMID: 36470665 PMCID: PMC9792203 DOI: 10.18632/aging.204415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
During the aging process damaged/dysfunctional proteins and organelles accumulate and contribute to organ dysfunction. Luckily, there is a conserved intracellular process to reuse and recycle these dysregulated cellular components termed macroautophagy (autophagy). Unfortunately, strong evidence indicates autophagy is compromised with aging, protein quality control is jeopardized, and resultant proteotoxicity can contribute significantly to age-associated organ dysfunction. Are there interventions that can re-establish autophagic flux that is otherwise impaired with aging? With particular regard to the heart, here we review evidence that caloric-restriction, the polyamine spermidine, and the mTOR inhibitor rapamycin, even when initiated late-in-life, restore cardiomyocyte autophagy to an extent that lessens age-associated cardiac dysfunction. Cho et al. provide a physiological intervention to this list i.e., regular physical exercise initiated late-in-life boosts cardiomyocyte autophagic flux and rejuvenates cardiac function in male mice. While this study provides strong evidence for a mechanism whereby heightened physical activity can lead to improved heart health in the context of aging, (i) only male mice were studied; (ii) the intensity of exercise-training might not be suitable for all; and (iii) mice with aging-associated comorbidities were not investigated. Nonetheless, Cho et al. provide robust evidence that a low-cost and simple behavioral intervention initiated late-in-life improves cardiomyocyte autophagic flux and rejuvenates cardiac function.
Collapse
Affiliation(s)
- Jae Min Cho
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Rajeshwary Ghosh
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sohom Mookherjee
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA,Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - J. David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA,Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
Viloria MAD, Li Q, Lu W, Nhu NT, Liu Y, Cui ZY, Cheng YJ, Lee SD. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Front Cardiovasc Med 2022; 9:949744. [PMID: 36304547 PMCID: PMC9592995 DOI: 10.3389/fcvm.2022.949744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 12/07/2022] Open
Abstract
Objective Cardiac mitochondrial dysfunction was found in ischemic heart disease (IHD). Hence, this study determined the effects of exercise training (ET) on cardiac mitochondrial respiration and cardiac mitochondrial quality control in IHD. Methods A narrative synthesis was conducted after searching animal studies written in English in three databases (PubMed, Web of Science, and EMBASE) until December 2020. Studies that used aerobic exercise as an intervention for at least 3 weeks and had at least normal, negative (sedentary IHD), and positive (exercise-trained IHD) groups were included. The CAMARADES checklist was used to check the quality of the included studies. Results The 10 included studies (CAMARADES score: 6–7/10) used swimming or treadmill exercise for 3–8 weeks. Seven studies showed that ET ameliorated cardiac mitochondrial respiratory function as manifested by decreased reactive oxygen species (ROS) production and increased complexes I-V activity, superoxide dismutase 2 (SOD2), respiratory control ratio (RCR), NADH dehydrogenase subunits 1 and 6 (ND1/6), Cytochrome B (CytB), and adenosine triphosphate (ATP) production. Ten studies showed that ET improved cardiac mitochondrial quality control in IHD as manifested by enhanced and/or controlled mitochondrial biogenesis, dynamics, and mitophagy. Four other studies showed that ET resulted in better cardiac mitochondrial physiological characteristics. Conclusion Exercise training could improve cardiac mitochondrial functions, including respiration, biogenesis, dynamics, and mitophagy in IHD. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=226817, identifier: CRD42021226817.
Collapse
Affiliation(s)
- Mary Audrey D. Viloria
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,Department of Physical Therapy, College of Health Sciences, Mariano Marcos State University, Batac, Philippines
| | - Qing Li
- Department of Rehabilitation, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wang Lu
- Department of Traditional Treatment, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nguyen Thanh Nhu
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Yijie Liu
- School of Rehabilitation Medicine, Shanghai University of Traditional Medicine, Shanghai, China,Institute of Rehabilitation Medicine, Shanghai University of Traditional Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,Yu-Jung Cheng
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan,School of Rehabilitation Medicine, Weifang Medical University, Weifang, China,Department of Physical Therapy, Asia University, Taichung, Taiwan,*Correspondence: Shin-Da Lee
| |
Collapse
|
25
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
26
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
27
|
Bioactive Peptides and Exercise Modulate the AMPK/SIRT1/PGC-1α/FOXO3 Pathway as a Therapeutic Approach for Hypertensive Rats. Pharmaceuticals (Basel) 2022; 15:ph15070819. [PMID: 35890118 PMCID: PMC9319799 DOI: 10.3390/ph15070819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Peptides are fragments of fundamental protein sequences that may have health benefits in addition to basic dietary benefits. Recently, we have reported on the pharmacological benefits of alcalase potato protein hydrolysate (APPH) and bioactive peptides isolated from APPH. The aim was to evaluate the synergistic effect of exercise along with DIKTNKPVIF (DF) peptides in ameliorating hypertension in spontaneously hypertensive rat (SHR) rats. We examined ECG parameters, lipid profiles, cardiac markers, and histology, and quantified the proteins associated with fibrosis, hypertrophy, apoptosis, mitochondrial biogenesis, and longevity pathways. DF peptide administration, along with exercise, reduced the blood pressure and cardiac marker levels in serum. Furthermore, it also suppressed the expression of fibrosis markers COL1A1, CTGF, and uPA and downregulated cardiac-hypertrophy-associated markers such as calcineurin, NFATC3, GATA4, pGATA4 and BNP. Exercise synergistically increases the expression of IFG1, PI3K, and AKT cell-survival pathway proteins, along with DF administration. Moreover, AMPK/SIRT1/PGC-1α/FOXO3 pathway protein expression was increased with the combinatorial administration of DF and exercise. Our data suggest that exercise, along with DF peptides, act synergistically in alleviating hypertension by activating the mitochondrial biogenesis pathway.
Collapse
|
28
|
Yang L, Wang S, Wu J, Ma LL, Li Y, Tang H. Editorial: Mitochondrial Metabolism in Ischemic Heart Disease. Front Cardiovasc Med 2022; 9:961580. [PMID: 35833188 PMCID: PMC9271965 DOI: 10.3389/fcvm.2022.961580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei-Lei Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
- Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Haiyang Tang
| |
Collapse
|
29
|
Lv Y, Cheng L, Peng F. Compositions and Functions of Mitochondria-Associated Endoplasmic Reticulum Membranes and Their Contribution to Cardioprotection by Exercise Preconditioning. Front Physiol 2022; 13:910452. [PMID: 35733995 PMCID: PMC9207531 DOI: 10.3389/fphys.2022.910452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are important components of intracellular signaling and contribute to the regulation of intracellular Ca2+/lipid homeostasis, mitochondrial dynamics, autophagy/mitophagy, apoptosis, and inflammation. Multiple studies have shown that proteins located on MAMs mediate cardioprotection. Exercise preconditioning (EP) has been shown to protect the myocardium from adverse stimuli, but these mechanisms are still being explored. Recently, a growing body of evidence points to MAMs, suggesting that exercise or EP may be involved in cardioprotection by modulating proteins on MAMs and subsequently affecting MAMs. In this review, we summarize the latest findings on MAMs, analyzing the structure and function of MAMs and the role of MAM-related proteins in cardioprotection. We focused on the possible mechanisms by which exercise or EP can modulate the involvement of MAMs in cardioprotection. We found that EP may affect MAMs by regulating changes in MFN2, MFN1, AMPK, FUNDC1, BECN1, VDAC1, GRP75, IP3R, CYPD, GSK3β, AKT, NLRP3, GRP78, and LC3, thus playing a cardioprotective role. We also provided direction for future studies that may be of interest so that more in-depth studies can be conducted to elucidate the relationship between EP and cardioprotection.
Collapse
|
30
|
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxid Redox Signal 2022; 36:844-863. [PMID: 35044229 PMCID: PMC9125524 DOI: 10.1089/ars.2021.0145] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Ann Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
31
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
32
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
33
|
Shi X, Qiu H. New Insights Into Energy Substrate Utilization and Metabolic Remodeling in Cardiac Physiological Adaption. Front Physiol 2022; 13:831829. [PMID: 35283773 PMCID: PMC8914108 DOI: 10.3389/fphys.2022.831829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac function highly relies on sufficient energy supply. Perturbations in myocardial energy metabolism play a causative role in cardiac pathogenesis. Accumulating evidence has suggested that modifications of cardiac metabolism are also an essential part of the adaptive responses to various physiological conditions in the heart to meet specific energy needs. The review highlighted some new studies on basic myocardial energy substrate metabolism and updated recent findings regarding cardiac metabolic remodeling and their associated mechanisms under physiological conditions, including exercise and cardiac development. Studying basic metabolic profiles in the heart in these conditions can contribute to understanding the significance of metabolic regulation in the heart during physiological adaption and gaining further insights into the maladaptive metabolic changes associated with cardiac pathogenesis, thus opening up new avenues to exploring novel therapeutic strategies in cardiac diseases.
Collapse
|
34
|
Yu Y, Chen W, Yu M, Liu J, Sun H, Yang P. Exercise-Generated β-Aminoisobutyric Acid (BAIBA) Reduces Cardiomyocyte Metabolic Stress and Apoptosis Caused by Mitochondrial Dysfunction Through the miR-208b/AMPK Pathway. Front Cardiovasc Med 2022; 9:803510. [PMID: 35282369 PMCID: PMC8915946 DOI: 10.3389/fcvm.2022.803510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the cardioprotective effects of exercise-derived β-aminoisobutyric (BAIBA) on cardiomyocyte apoptosis and energy metabolism in a rat model of heart failure (HF). Methods In male Sprague-Dawley rats (8-week-old), myocardial infarction (MI) was used to induce HF by ligating the left anterior descending branch of the coronary artery. In the Sham group, the coronary artery was threaded but not ligated. After HF development, Sham and HF rats were exercised 60 min daily, 5 days/week on a treadmill for 8 weeks (50–60% maximal intensity) and exercise-induced cardiac remodeling after MI were assessed using echocardiography, hematoxylin and eosin (H&E), Masson's Trichrome, and TUNEL staining for the detection of apoptosis-associated factors in cardiac tissue. High-throughput sequencing and mass spectrometry were used to measure BAIBA production and to explore its cardioprotective effects and molecular actions. To further characterize the cardioprotective effects of BAIBA, an in vitro model of apoptosis was generated by applying H2O2 to H9C2 cells to induce mitochondrial dysfunction. In addition, cells were transfected with either a miR-208b analog or a miR-208b inhibitor. Apoptosis-related proteins were detected by Western Blotting (WB). ATP production was also assessed by luminometry. After administration of BAIBA and Compound C, the expression of proteins related to apoptosis, mitochondrial function, lipid uptake, and β-oxidative were determined. Changes in the levels of reactive oxygen species (ROS) were assessed by fluorescence microscopy. In addition, alterations in membrane potential (δψm) were obtained by confocal microscopy. Results Rats with HF after MI are accompanied by mitochondrial dysfunction, metabolic stress and apoptosis. Reduced expression of apoptosis-related proteins was observed, together with increased ATP production and reduced mitochondrial dysfunction in the exercised compared with the Sham (non-exercised) HF group. Importantly, exercise increased the production of BAIBA, irrespective of the presence of HF. To assess whether BAIBA had similar effects to exercise in ameliorating HF-induced adverse cardiac remodeling, rats were treated with 75 mg/kg/ day of BAIBA and we found BAIBA had a similar cardioprotective effect. Transcriptomic analyses found that the expression of miR-208b was increased after BAIBA administration, and subsequent transfection with an miR-208b analog ameliorated both the expression of apoptosis-related proteins and energy metabolism in H2O2-treated H9C2 cells. In combining transcriptomic with metabolomic analyses, we identified AMPK as a downstream target for BAIBA in attenuating metabolic stress in HF. Further cell experiments confirmed that BAIBA increased AMPK phosphorylation and had a cardioprotective effect on downstream fatty acid uptake, oxidative efficiency, and mitochondrial function, which was prevented by the AMPK inhibitor Compound C. Conclusion Exercise-generated BAIBA can reduce cardiomyocyte metabolic stress and apoptosis induced by mitochondrial dysfunction through the miR-208b/AMPK pathway.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Rehabilitation, China-Japan Union Hospital, Changchun, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
| | - Wewei Chen
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
| | - Ming Yu
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
| | - Jinsha Liu
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
| | - Huan Sun
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
- *Correspondence: Huan Sun
| | - Ping Yang
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Center, Changchun, China
- Department of Cardiology, China-Japan Union Hospital, Changchun, China
- Ping Yang
| |
Collapse
|
35
|
Amaral AG, da Silva CCC, Serna JDC, Honorato-Sampaio K, Freitas JA, Duarte-Neto AN, Bloise AC, Cassina L, Yoshinaga MY, Chaves-Filho AB, Qian F, Miyamoto S, Boletta A, Bordin S, Kowaltowski AJ, Onuchic LF. Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166371. [PMID: 35218894 DOI: 10.1016/j.bbadis.2022.166371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-protein-coupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACCβ, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid β-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.
Collapse
Affiliation(s)
- Andressa G Amaral
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Camille C C da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Kinulpe Honorato-Sampaio
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG 31270901, Brazil
| | - Jéssica A Freitas
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Amaro N Duarte-Neto
- Disciplina de Emergências Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Antonio C Bloise
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Laura Cassina
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Silvana Bordin
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Luiz F Onuchic
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil.
| |
Collapse
|
36
|
Li H, Trager LE, Liu X, Hastings MH, Xiao C, Guerra J, To S, Li G, Yeri A, Rodosthenous R, Silverman MG, Das S, Ambardekar AV, Bristow MR, Gonzalez-Rosa JM, Rosenzweig A. lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation 2022; 145:1218-1233. [PMID: 35114812 PMCID: PMC9056949 DOI: 10.1161/circulationaha.121.056850] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The heart grows in response to pathological and physiological stimuli. The former often precedes cardiomyocyte loss and heart failure; the latter paradoxically protects the heart and enhances cardiomyogenesis. The mechanisms underlying these differences remain incompletely understood. While long noncoding RNAs (lncRNAs) are important in cardiac development and disease, less is known about their roles in physiological hypertrophy or cardiomyogenesis. METHODS RNA sequencing was applied to hearts from mice after eight weeks voluntary exercise-induced physiological hypertrophy and cardiomyogenesis or transverse aortic constriction (TAC) for two or eight weeks to induce pathological hypertrophy or heart failure. The top lncRNA candidate was overexpressed in hearts with adeno-associated virus (AAV) vectors and inhibited with antisense locked nucleic acid (LNA)-GapmeRs to examine its function. Downstream effectors were identified through promoter analyses and binding assays. The functional roles of a novel downstream effector, dachsous cadherin-related 2 (DCHS2), were examined through transgenic overexpression in zebrafish and cardiac-specific deletion in Cas9-knockin mice. RESULTS We identified exercise-regulated cardiac lncRNAs, termed lncExACTs. lncExACT1 was evolutionarily conserved and decreased in exercised hearts but increased in human and experimental heart failure. Cardiac lncExACT1 overexpression caused pathological hypertrophy and heart failure, while lncExACT1 inhibition induced physiological hypertrophy and cardiomyogenesis, protecting against cardiac fibrosis and dysfunction. lncExACT1 functioned by regulating microRNA-222, calcineurin signaling, and Hippo/Yap1 signaling through DCHS2. Cardiomyocyte DCHS2 overexpression in zebrafish induced pathological hypertrophy and impaired cardiac regeneration, promoting scarring after injury. In contrast, murine DCHS2 deletion induced physiological hypertrophy and promoted cardiomyogenesis. CONCLUSIONS These studies identify lncExACT1-DCHS2 as a novel pathway regulating cardiac hypertrophy and cardiomyogenesis. lncExACT1-DCHS2 acts as a master switch toggling the heart between physiological and pathological growth to determine functional outcomes, providing a potentially tractable therapeutic target for harnessing the beneficial effects of exercise.
Collapse
Affiliation(s)
- Haobo Li
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lena E Trager
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiaojun Liu
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Margaret H Hastings
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chunyang Xiao
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Justin Guerra
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Samantha To
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Guoping Li
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ashish Yeri
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rodosthenis Rodosthenous
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael G Silverman
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Saumya Das
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael R Bristow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Juan Manuel Gonzalez-Rosa
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anthony Rosenzweig
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Liu Y, Chu G, Shen W, Zhang Y, Xu W, Yu Y. XMU-MP-1 protects heart from ischemia/reperfusion injury in mice through modulating Mst1/AMPK pathway. Eur J Pharmacol 2022; 919:174801. [DOI: 10.1016/j.ejphar.2022.174801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
38
|
Li G, Li J, Shao R, Zhao J, Chen M. FUNDC1: A Promising Mitophagy Regulator at the Mitochondria-Associated Membrane for Cardiovascular Diseases. Front Cell Dev Biol 2022; 9:788634. [PMID: 35096821 PMCID: PMC8797154 DOI: 10.3389/fcell.2021.788634] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial autophagy (or mitophagy) regulates the mitochondrial network and function to contribute to multiple cellular processes. The protective effect of homeostatic mitophagy in cardiovascular diseases (CVDs) has attracted increasing attention. FUN14 domain containing 1 (FUNDC1), an identified mitophagy receptor, plays an essential role in CVDs. Different expression levels of FUNDC1 and its phosphorylated state at different sites alleviate or exacerbate hypoxia and ischemia/reperfusion injury, cardiac hypertrophy, or metabolic damage through promotion or inhibition of mitophagy. In addition, FUNDC1 can be enriched at contact sites between mitochondria and the endoplasmic reticulum (ER), determining the formation of mitochondria-associated membranes (MAMs) that regulate cellular calcium (Ca2+) homeostasis and mitochondrial dynamics to prevent heart dysfunction. Moreover, FUNDC1 has also been involved in inflammatory cardiac diseases such as septic cardiomyopathy. In this review, we collect and summarize the evidence on the roles of FUNDC1 exclusively in various CVDs, describing its interactions with different cellular organelles, its involvement in multiple cellular processes, and its associated signaling pathways. FUNDC1 may become a promising therapeutic target for the prevention and management of various CVDs.
Collapse
Affiliation(s)
- Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ruochen Shao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Xu C, Cao Y, Liu R, Liu L, Zhang W, Fang X, Jia S, Ye J, Liu Y, Weng L, Qiao X, Li B, Zheng M. Mitophagy-regulated mitochondrial health strongly protects the heart against cardiac dysfunction after acute myocardial infarction. J Cell Mol Med 2022; 26:1315-1326. [PMID: 35040256 PMCID: PMC8831983 DOI: 10.1111/jcmm.17190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Autophagy including mitophagy serves as an important regulatory mechanism in the heart to maintain the cellular homeostasis and to protect against heart damages caused by myocardial infarction (MI). The current study aims to dissect roles of general autophagy and specific mitophagy in regulating cardiac function after MI. By using Beclin1+/- , Fundc1 knockout (KO) and Fundc1 transgenic (TG) mouse models, combined with starvation and MI models, we found that Fundc1 KO caused more severe mitochondrial and cardiac dysfunction damages than Beclin1+/- after MI. Interestingly, Beclin1+/- caused notable decrease of total autophagy without detectable change to mitophagy, and Fundc1 KO markedly suppressed mitophagy but did not change the total autophagy activity. In contrast, starvation increased total autophagy without changing mitophagy while Fundc1 TG elevated total autophagy and mitophagy in mouse hearts. As a result, Fundc1 TG provided much stronger protective effects than starvation after MI. Moreover, Beclin1+/- /Fundc1 TG showed increased total autophagy and mitophagy to a level comparable to Fundc1 TG per se, and completely reversed Beclin1+/- -caused aggravation of mitochondrial and cardiac injury after MI. Our results reveal that mitophagy but not general autophagy contributes predominantly to the cardiac protective effect through regulating mitochondrial function.
Collapse
Affiliation(s)
- Chunling Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yangpo Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ruxia Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weilin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Fang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jingjing Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lin Weng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xue Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
40
|
Gu C, Yan J, Zhao L, Wu G, Wang YL. Regulation of Mitochondrial Dynamics by Aerobic Exercise in Cardiovascular Diseases. Front Cardiovasc Med 2022; 8:788505. [PMID: 35097008 PMCID: PMC8793839 DOI: 10.3389/fcvm.2021.788505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dynamics, including continuous biogenesis, fusion, fission, and autophagy, are crucial to maintain mitochondrial integrity, distribution, size, and function, and play an important role in cardiovascular homeostasis. Cardiovascular health improves with aerobic exercise, a well-recognized non-pharmaceutical intervention for both healthy and ill individuals that reduces overall cardiovascular disease (CVD) mortality. Increasing evidence shows that aerobic exercise can effectively regulate the coordinated circulation of mitochondrial dynamics, thus inhibiting CVD development. This review aims to illustrate the benefits of aerobic exercise in prevention and treatment of cardiovascular disease by modulating mitochondrial function.
Collapse
Affiliation(s)
- Changping Gu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Taian, China
- Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jie Yan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Liang Zhao
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Guanghan Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yue-lan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Taian, China
- Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Department of Anesthesiology and Perioperative Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Yue-lan Wang
| |
Collapse
|
41
|
Nijholt KT, Sánchez-Aguilera PI, Voorrips SN, de Boer RA, Westenbrink BD. Exercise: a molecular tool to boost muscle growth and mitochondrial performance in heart failure? Eur J Heart Fail 2021; 24:287-298. [PMID: 34957643 PMCID: PMC9302125 DOI: 10.1002/ejhf.2407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates. Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings of exercise‐induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality control in HF should always be combined with some form of exercise training.
Collapse
Affiliation(s)
- Kirsten T Nijholt
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Pablo I Sánchez-Aguilera
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne N Voorrips
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol 2021; 164:126-135. [PMID: 34914934 DOI: 10.1016/j.yjmcc.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
43
|
Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med 2021; 177:347-359. [PMID: 34748911 DOI: 10.1016/j.freeradbiomed.2021.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Vascular mitochondria constantly integrate signals from environment and respond accordingly to match vascular function to metabolic requirements of the organ tissues, while mitochondrial dysfunction contributes to vascular aging and pathologies such as atherosclerosis, stenosis, and hypertension. As an effective lifestyle intervention, exercise induces extensive mitochondrial adaptations through vascular mechanical stress and the increased production and release of reactive oxygen species and nitric oxide that activate multiple intracellular signaling pathways, among which peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a critical role. PGC-1α coordinates mitochondrial quality control mechanisms to maintain a healthy mitochondrial pool and promote endothelial nitric oxide synthase activity in vasculature. The mitochondrial adaptations to exercise improve bioenergetics, balance redox status, protect endothelial cells against detrimental insults, increase vascular plasticity, and ameliorate aging-related vascular dysfunction, thus benefiting vascular health. This review highlights recent findings of mitochondria as a central hub integrating exercise-afforded vascular benefits and its underlying mechanisms. A better understanding of the mitochondrial adaptations to exercise will not only shed light on the mechanisms of exercise-induced cardiovascular protection, but may also provide new clues to mitochondria-oriented precise exercise prescriptions for cardiovascular health.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
44
|
Mori MA. Autophagy: mechanisms and applications—a session at the 20th IUPAB congress/45th SBBf annual meeting/50th SBBq annual meeting. Biophys Rev 2021; 13:857-858. [DOI: 10.1007/s12551-021-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023] Open
|
45
|
Sui YB, Xiu J, Wei JX, Pan PP, Sun BH, Liu L. Shen Qi Li Xin formula improves chronic heart failure through balancing mitochondrial fission and fusion via upregulation of PGC-1α. J Physiol Sci 2021; 71:32. [PMID: 34663205 PMCID: PMC10717454 DOI: 10.1186/s12576-021-00816-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Our previous study proved that Shen Qi Li Xin formula (SQLXF) improved the heart function of chronic heart failure (CHF) patients, while the action mechanism remains unclear. METHODS H&E staining and TUNEL staining were performed to measure myocardial damages. Western blot was used to examine the expression of proteins. Moreover, CCK-8 assay and flow cytometry were used to measure cell viability and cell apoptosis, respectively. Concentrations of ATP and ROS in cells, and mitochondrial membrane potential (MMP) were detected to estimate oxidative stress. RESULTS In vivo, we found that SQLXF improved cardiac hemodynamic parameters, reduced LDH, CK-MB and BNP production, and attenuated myocardial damages in CHF rats. Besides, SQLXF promoted mitochondrial fusion-related proteins expression and inhibited fission-related proteins expression in CHF rats and oxygen glucose deprivation/reoxygenation (OGD/R)-induced cardiac myocytes (CMs). In vitro, our data show that certain dose of SQLXF inhibited OGD/R-induced CMs apoptosis, cell viability decreasing and oxidative stress. CONCLUSION Overall, certain dose of SQLXF could effectively improve the cardiac function of CHF rats through inhibition of CMs apoptosis via balancing mitochondrial fission and fusion. Our data proved a novel action mechanism of SQLXF in CHF improvement, and provided a reference for clinical.
Collapse
Affiliation(s)
- Yan-Bo Sui
- Department of Cardiology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No 26 Heping Road, Xiangfang District, Harbin, 150040, China
- Department of Cardiology, Heilongjiang University of Chinese Medicine, No 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Jian Xiu
- Department of Cardiology, First People's Hospital of Zhaoqing, No 9 Donggangdong Road, Duanzhou District, Zhaoqing, China
| | - Jin-Xuan Wei
- Department of Cardiology, Heilongjiang University of Chinese Medicine, No 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Pei-Pei Pan
- Department of Cardiology, Heilongjiang University of Chinese Medicine, No 24 Heping Road, Xiangfang District, Harbin, 150040, China
| | - Bi-Hong Sun
- Department of Cardiology, Heilongjiang University of Chinese Medicine, No 24 Heping Road, Xiangfang District, Harbin, 150040, China.
| | - Li Liu
- Department of Cardiology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No 26 Heping Road, Xiangfang District, Harbin, 150040, China.
| |
Collapse
|
46
|
The mitochondrial signaling peptide MOTS-c improves myocardial performance during exercise training in rats. Sci Rep 2021; 11:20077. [PMID: 34635713 PMCID: PMC8505603 DOI: 10.1038/s41598-021-99568-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiac remodeling is a physiological adaptation to aerobic exercise and which is characterized by increases in ventricular volume and the number of cardiomyocytes. The mitochondrial derived peptide MOTS-c functions as an important regulator in physical capacity and performance. Exercise elevates levels of endogenous MOTS-c in circulation and in myocardium, while MOTS-c can significantly enhance exercise capacity. However, the effects of aerobic exercise combined with MOTS-c on cardiac structure and function are unclear. We used pressure–volume conductance catheter technique to examine cardiac function in exercised rats with and without treatment with MOTS-c. Surprisingly, MOTS-c improved myocardial mechanical efficiency, enhanced cardiac systolic function, and had a tendency to improve the diastolic function. The findings suggest that using exercise supplements could be used to modulate the cardiovascular benefits of athletic training.
Collapse
|
47
|
Cho JM, Park S, Ghosh R, Ly K, Ramous C, Thompson L, Hansen M, Mattera MSDLC, Pires KM, Ferhat M, Mookherjee S, Whitehead KJ, Carter K, Buffolo M, Boudina S, Symons JD. Late-in-life treadmill training rejuvenates autophagy, protein aggregate clearance, and function in mouse hearts. Aging Cell 2021; 20:e13467. [PMID: 34554626 PMCID: PMC8520717 DOI: 10.1111/acel.13467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/08/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age-associated cardiac dysfunction. Macroautophagy is the process by which post-mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late-in-life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24-month-old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8-month-old (adult) mice (all p < 0.05). To investigate the influence of late-in-life exercise training, additional cohorts of 21-month-old mice did (old-ETR) or did not (old-SED) complete a 3-month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old-ETR vs. old-SED mice at 24 months (all p < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all p < 0.05) in hearts from old-ETR vs. old-SED mice. These data provide the first evidence that a physiological intervention initiated late-in-life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.
Collapse
Affiliation(s)
- Jae Min Cho
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Seul‐Ki Park
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Rajeshwary Ghosh
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Kellsey Ly
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Caroline Ramous
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Lauren Thompson
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Michele Hansen
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | | | - Karla Maria Pires
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Maroua Ferhat
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Sohom Mookherjee
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Kevin J. Whitehead
- Molecular Medicine Program University of Utah Salt Lake City Utah USA
- Division of Cardiovascular Medicine and Pediatric Cardiology University of Utah Salt Lake City Utah USA
- George E Wahlen VA Medical Center University of Utah Salt Lake City Utah USA
| | - Kandis Carter
- Molecular Medicine Program University of Utah Salt Lake City Utah USA
| | - Márcio Buffolo
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
| | - Sihem Boudina
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
- Molecular Medicine Program University of Utah Salt Lake City Utah USA
| | - J. David Symons
- Nutrition and Integrative Physiology University of Utah Salt Lake City Utah USA
- Molecular Medicine Program University of Utah Salt Lake City Utah USA
| |
Collapse
|
48
|
Ma M, Chen W, Hua Y, Jia H, Song Y, Wang Y. Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M 2 AChR. J Cell Physiol 2021; 236:6581-6596. [PMID: 33615478 DOI: 10.1002/jcp.30342] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Aerobic exercise increases M2 AChR, which thus improves cardiac function in cardiovascular disease (CVD) rats. This study aimed to determine whether aerobic exercise could ameliorate pressure overload-induced heart hypertrophy through M2 AChR, and to elucidate the underlying mechanisms of action. Mice were used to establish the myocardial hypertrophy model by transverse aortic constriction (TAC), and subjected to 2, 4, and 8 weeks of moderate-intensity aerobic exercise and choline intervention (14 mg/kg/day). Our results showed that 4 and 8 weeks of exercise and choline intervention reduced excessive mitochondrial fission and autophagy of myocardial mitochondria, thereby improving the ultrastructure and function of mitochondria after TAC. Moreover, 8-week exercise and choline intervention have enhanced parasympathetic function and promoted the expression of M2 AChR. In addition, 8-week exercise and choline intervention also inhibited the protein expression of myocardial MFN2, PERK/eIF2α/ATF4, and NLRP3/caspase-1/IL-1β signaling pathways, thereby effectively reducing mitochondrial fusion, endoplasmic reticulum stress, and inflammation. Taken together, these data suggest that pressure overload led to cardiac hypertrophy, cardiac dysfunction, and decreased parasympathetic function in cardiac tissues. Aerobic exercise attenuated cardiac dysfunction by modulating the expression of proteins involved in mitochondrial quality control, and induced endoplasmic reticulum stress and inflammation, thereby reducing cardiac hypertrophy and improving cardiac function in impaired heart tissues following TAC, which was likely mediated by M2 AChR activation.
Collapse
Affiliation(s)
- Mei Ma
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wei Chen
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yijie Hua
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hao Jia
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yinping Song
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
49
|
The Role of Autophagy Modulated by Exercise in Cancer Cachexia. Life (Basel) 2021; 11:life11080781. [PMID: 34440525 PMCID: PMC8402221 DOI: 10.3390/life11080781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cachexia is a syndrome experienced by many patients with cancer. Exercise can act as an autophagy modulator, and thus holds the potential to be used to treat cancer cachexia. Autophagy imbalance plays an important role in cancer cachexia, and is correlated to skeletal and cardiac muscle atrophy and energy-wasting in the liver. The molecular mechanism of autophagy modulation in different types of exercise has not yet been clearly defined. This review aims to elaborate on the role of exercise in modulating autophagy in cancer cachexia. We evaluated nine studies in the literature and found a potential correlation between the type of exercise and autophagy modulation. Combined exercise or aerobic exercise alone seems more beneficial than resistance exercise alone in cancer cachexia. Looking ahead, determining the physiological role of autophagy modulated by exercise will support the development of a new medical approach for treating cancer cachexia. In addition, the harmonization of the exercise type, intensity, and duration might play a key role in optimizing the autophagy levels to preserve muscle function and regulate energy utilization in the liver.
Collapse
|
50
|
Souza LM, Okoshi MP, Gomes MJ, Gatto M, Rodrigues EA, Pontes THD, Damatto FC, Oliveira LRS, Borim PA, Lima ARR, Zornoff LAM, Okoshi K, Pagan LU. Effects of Late Aerobic Exercise on Cardiac Remodeling of Rats with Small-Sized Myocardial Infarction. Arq Bras Cardiol 2021; 116:784-792. [PMID: 33886729 PMCID: PMC8121407 DOI: 10.36660/abc.20190813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Fundamento: O exercício físico tem sido considerado uma importante terapia não farmacológica para a prevenção e tratamento das doenças cardiovasculares. No entanto, seus efeitos na remodelação cardíaca leve não são claros. Objetivo: Avaliar a influência do exercício aeróbico sobre a capacidade funcional, estrutura cardíaca, função ventricular esquerda (VE) e expressão gênica das subunidades da NADPH oxidase em ratos com infarto do miocárdio pequeno (IM). Métodos: Três meses após a indução do IM, ratos Wistar foram divididos em três grupos: Sham; IM sedentário (IM-SED); e IM exercício aeróbico (IM-EA). Os ratos se exercitaram em uma esteira três vezes por semana durante 12 semanas. Um ecocardiograma foi realizado antes e após o treinamento. O tamanho do infarto foi avaliado por histologia e a expressão gênica por RT-PCR. O nível de significância para análise estatística foi estabelecido em 5%. Resultados: Ratos com IM menor que 30% da área total do VE foram incluídos no estudo. A capacidade funcional foi maior no IM-EA do que nos ratos Sham e IM-SED. O tamanho do infarto não diferiu entre os grupos. Ratos infartados apresentaram aumento do diâmetro diastólico e sistólico do VE, diâmetro do átrio esquerdo e massa do VE, com disfunção sistólica. A espessura relativa da parede foi menor no grupo IM-SED do que nos grupos IM-EA e Sham. A expressão gênica das subunidades NADPH oxidase NOX2, NOX4, p22phox e p47phox não diferiu entre os grupos. Conclusão: Infarto do miocárdio pequeno altera a estrutura cardíaca e a função sistólica do VE. O exercício aeróbico tardio pode melhorar a capacidade funcional e a remodelação cardíaca por meio da preservação da geometria ventricular esquerda. A expressão gênica das subunidades da NADPH oxidase não está envolvida na remodelação cardíaca, nem é modulada pelo exercício aeróbico em ratos com infarto do miocárdio pequeno.
Collapse
Affiliation(s)
- Lidiane M Souza
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Marina P Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Mariana J Gomes
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Mariana Gatto
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Eder A Rodrigues
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Thierres H D Pontes
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Felipe C Damatto
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Leiliane R S Oliveira
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Patrícia Aparecida Borim
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Aline R R Lima
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Leonardo A M Zornoff
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| | - Luana U Pagan
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Botucatu, SP - Brasil
| |
Collapse
|