1
|
Lin R, Li H, Lai L, Yang F, Qiu J, Lin W, Bao X, Pan C, Lin W, Jiang X. Analysis of genetic structure and identification of important genes associated with muscle growth in Fujian Muscovy duck. Poult Sci 2024; 103:104445. [PMID: 39504826 PMCID: PMC11570716 DOI: 10.1016/j.psj.2024.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Fujian Muscovy duck is a well-known meat waterfowl in Fujian Province due to its high meat production, superior breeding potential, and strong resistance. To fully explore the genetic characteristics of these advantages, Fujian black Muscovy duck and white Muscovy duck were used for whole-genome re-sequencing and transcriptome analyses. Population structure analysis showed significant differentiation between the two feather strains. Runs of homozygosity analysis indicated a stronger artificial influence on the black-feathered strain, with ROH island genes notably enriched in muscle tissue-related terms and pathways. Selective sweep and transcriptome analysis revealed a significant enrichment of genes linked to muscle tissue and muscle fiber-related terms and pathways. Key candidate genes identified, such as MEF2C, MYOZ2, and METTL21C, are believed to play crucial roles in meat production in Fujian Muscovy duck. This study offers a new perspective on improving meat production in Fujian Muscovy duck, which can benefit breeding strategies and production management.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Jialing Qiu
- General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 350002
| | - Xiaobing Jiang
- General Animal husbandry Station of Fujian Province, Fuzhou, Fujian, China, 350003.
| |
Collapse
|
2
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
3
|
Giong HK, Hyeon SJ, Lee JG, Cho HJ, Park U, Stein TD, Lee J, Yu K, Ryu H, Lee JS. Tau accumulation is cleared by the induced expression of VCP via autophagy. Acta Neuropathol 2024; 148:46. [PMID: 39316141 PMCID: PMC11422276 DOI: 10.1007/s00401-024-02804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Tauopathy, including frontotemporal lobar dementia and Alzheimer's disease, describes a class of neurodegenerative diseases characterized by the aberrant accumulation of Tau protein due to defects in proteostasis. Upon generating and characterizing a stable transgenic zebrafish that expresses the human TAUP301L mutant in a neuron-specific manner, we found that accumulating Tau protein was efficiently cleared via an enhanced autophagy activity despite constant Tau mRNA expression; apparent tauopathy-like phenotypes were revealed only when the autophagy was genetically or chemically inhibited. We performed RNA-seq analysis, genetic knockdown, and rescue experiments with clinically relevant point mutations of valosin-containing protein (VCP), and showed that induced expression of VCP, an essential cytosolic chaperone for the protein quality system, was a key factor for Tau degradation via its facilitation of the autophagy flux. This novel function of VCP in Tau clearance was further confirmed in a tauopathy mouse model where VCP overexpression significantly decreased the level of phosphorylated and oligomeric/aggregate Tau and rescued Tau-induced cognitive behavioral phenotypes, which were reversed when the autophagy was blocked. Importantly, VCP expression in the brains of human Alzheimer's disease patients was severely downregulated, consistent with its proposed role in Tau clearance. Taken together, these results suggest that enhancing the expression and activity of VCP in a spatiotemporal manner to facilitate the autophagy pathway is a potential therapeutic approach for treating tauopathy.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Geun Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kweon Yu
- Disease Target Structure Research Centre, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Cheng J, Liu H, Yu W, Dong X, Sai Y, Ye F, Dan G, Chen M, Zhao Y, Zhang X, Zou Z. Nitrogen mustard induces dynamic nuclear protein spectrum change and DNA-protein crosslinking, with p97 mediating repair. Heliyon 2024; 10:e37401. [PMID: 39290288 PMCID: PMC11407038 DOI: 10.1016/j.heliyon.2024.e37401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrogen mustard (NM) is a chemotherapeutic agent capable of alkylating nucleophilic proteins and DNA, causing severe cell damage. However, no reports have been on the dynamic changes in proteomics induced by NM. In this study, we established a model of acute exposure to NM for 1 h and a continuous cultured model for 24 h after NM removal (repair stage) using 16HBE cells. The nuclear protein spectrum and nuclear proteins crosslinked with DNA were analyzed, and the function of p97 during NM damage was examined. An hour of NM exposure resulted in severe changes in the nuclear protein spectrum and protein into the cell nucleus, which is mainly involved in nuclear acid-related issues. After 24 h, the return to normal process of the types and amounts of differentially expressed proteins was inhibited by si-p97. The main processes involved in si-p97 intervention were nucleocytoplasmic transport, processing in the endoplasmic reticulum, metabolic abnormalities, and DNA-response; however. An hour of exposure to NM increased DNA-protein crosslinking (DPC), total-H2AX, and p-H2AX. In contrast, si-p97 only further increased or maintained their levels at 24 h yet not at 1 h. The effect of the proteasome inhibitor, MG132, was similar to that of si-p97. The siRNA of DVC1, a partner of p97, also increased the DPC content. Both si-p97 and si-DVC1 increased the cytoplasmic levels of the proteasome (PSMD2). These results suggest acute NM exposure induces severe nuclear protein spectral changes, rapid protein influx into the nucleus, DPC formation, and DNA double-strand breaks. Furthermore, our data indicated that p97 is involved in normal protein spectrum maintenance and DPC removal after NM withdrawal, requiring the participation of DVC1 and the proteasome.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
- Department of Clinic, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Haoyin Liu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xunhu Dong
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Preventive Medicine, The Third Military Medical University Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Chen S, Chen J, Wang C, He T, Yang Z, Huang W, Luo X, Zhu H. Betaine attenuates age-related suppression in autophagy via Mettl21c/p97/VCP axis to delay muscle loss. J Nutr Biochem 2024; 125:109555. [PMID: 38147913 DOI: 10.1016/j.jnutbio.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Age-related impairment of autophagy accelerates muscle loss and lead to sarcopenia. Betaine can delay muscle loss as a dietary methyl donor via increasing S-adenosyl-L-methionine (SAM, a crucial metabolite for autophagy regulation) in methionion cycle. However, whether betaine can regulate autophagy level to attenuate degeneration in aging muscle remains unclear. Herein, male C57BL/6J young mice (YOU, 2-month-old), old mice (OLD, 15-month-old), and 2%-betaine-treated old mice (BET, 15-month-old) were employed and raised for 12 weeks. All mice underwent body composition examination and grip strength test before being sacrificed. Betaine alleviated age-related decline in muscle mass and strength. Meanwhile, betaine preserved the expression autophagy markers (Atg5, Atg7, LC3-II, and Beclin1) both at transcriptional and translational level during the aging process. RNA-sequencing results generated from mice gastrocnemius muscle found Mettl21c, a SAM-dependent autophagy-regulating methyltransferase, was significantly higher expressed in BET and YOU group. Results were further validated by qPCR and western bloting. In vitro, C2C12 cells with or without Mettl21c RNA interference were treated different concentration of betaine (0 mM, 10 mM) under methionine-starved condition. Compared with control group, betaine upregulated autophagy markers expression and autophagy flux. By increasing the SAM level, betaine facilitated trimethylation of p97 (Mettl21c downstream effector) into valosin-containing protein (VCP). Increased VCP promoted autophagic turnover of cellular components, ATP production, and cell differentiation. Knock-down of Metthl21c dismissed improvements mentioned above. Collectively, betaine could enhance aged skeletal muscle autophagy level via Mettl21c/p97/VCP axis to delay muscle loss.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Jiedong Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Tongtong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Zhijun Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wenge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Experimental and Teaching Center for Public Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.
| |
Collapse
|
6
|
Matthews I, Birnbaum A, Gromova A, Huang AW, Liu K, Liu EA, Coutinho K, McGraw M, Patterson DC, Banks MT, Nobles AC, Nguyen N, Merrihew GE, Wang L, Baeuerle E, Fernandez E, Musi N, MacCoss MJ, Miranda HC, La Spada AR, Cortes CJ. Skeletal muscle TFEB signaling promotes central nervous system function and reduces neuroinflammation during aging and neurodegenerative disease. Cell Rep 2023; 42:113436. [PMID: 37952157 PMCID: PMC10841857 DOI: 10.1016/j.celrep.2023.113436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ian Matthews
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Allison Birnbaum
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amy W Huang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kailin Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Eleanor A Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kristen Coutinho
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Megan McGraw
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dalton C Patterson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Macy T Banks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amber C Nobles
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhat Nguyen
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Baeuerle
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Elizabeth Fernandez
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; RNA Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology and Department of Biological Chemistry, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Constanza J Cortes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
7
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
9
|
Roles of miR-196a and miR-196b in Zebrafish Motor Function. Biomolecules 2023; 13:biom13030554. [PMID: 36979489 PMCID: PMC10046552 DOI: 10.3390/biom13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The exertion of motor function depends on various tissues, such as bones and muscles. miR-196 has been widely studied in cancer and other fields, but its effect on bone and skeletal muscle is rarely reported. In order to explore the role of miR-196 family in bone and skeletal muscle, we used the previously successfully constructed miR-196a-1 and miR-196b gene knockout zebrafish animal models for research. Methods: The behavioral trajectories of zebrafish from 4 days post-fertilization (dpf) to 7 dpf were detected to analyze the effect of miR-196a-1 and miR-196b on motor ability. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were used to detect the dorsal muscle tissue of zebrafish. The bone tissue of zebrafish was detected by microcomputed tomography (micro-CT). Real-time PCR was used to detect the expression levels of related genes, including vcp, dpm1, acta1b, mylpfb, col1a1a, bmp8a, gdf6a, and fgfr3. Results: The behavioral test showed that the total behavioral trajectory, movement time, and movement speed of zebrafish larvae were decreased in the miR-196a-1 and miR-196b gene knockout lines. Muscle tissue analysis showed that the structure of muscle fibers in the zebrafish lacking miR-196a-1 and miR-196b was abnormal and was characterized by vacuolar degeneration of muscle fibers, intranuclear migration, melanin deposition, and inflammatory cell infiltration. Bone CT examination revealed decreased bone mineral density and trabecular bone number. The real-time PCR results showed that the expression levels of vcp, dpm1, gdf6a, fgfr3, and col1a1a were decreased in the miR-196b gene knockout group. The expression levels of dpm1, acta1b, mylpfb, gdf6a, and col1a1a were decreased, and the expression level of fgfr3 was increased in the miR-196b gene knockout group compared with the wild-type group. Conclusions: miR-196a-1 and miR-196b play an important role in muscle fiber structure, bone mineral density, and bone trabecular quantity by affecting the expression of vcp, dpm1, acta1b, mylpfb, gdf6a, fgfr3, and col1a1a and then affect the function of the motor system
Collapse
|
10
|
Zhang TM, Liao L, Yang SY, Huang MY, Zhang YL, Deng L, Hu SY, Yang F, Zhang FL, Shao ZM, Li DQ. TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Autophagy 2023; 19:805-821. [PMID: 35920704 PMCID: PMC9980475 DOI: 10.1080/15548627.2022.2103992] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype to treat due to the lack of effective targeted therapies. Transmembrane (TMEM) proteins represent attractive drug targets for cancer therapy, but biological functions of most members of the TMEM family remain unknown. Here, we report for the first time that TMEM63A (transmembrane protein 63A), a poorly characterized TMEM protein with unknown functions in human cancer, functions as a novel oncogene to promote TNBC cell proliferation, migration, and invasion in vitro and xenograft tumor growth and lung metastasis in vivo. Mechanistic investigations revealed that TMEM63A localizes in endoplasmic reticulum (ER) and lysosome membranes, and interacts with VCP (valosin-containing protein) and its cofactor DERL1 (derlin 1). Furthermore, TMEM63A undergoes autophagy receptor TOLLIP-mediated autophagic degradation and is stabilized by VCP through blocking its lysosomal degradation. Strikingly, TMEM63A in turn stabilizes oncoprotein DERL1 through preventing TOLLIP-mediated autophagic degradation. Notably, pharmacological inhibition of VCP by CB-5083 or knockdown of DERL1 partially abolishes the oncogenic effects of TMEM63A on TNBC progression both in vitro and in vivo. Collectively, these findings uncover a previously unknown functional and mechanistic role for TMEM63A in TNBC progression and provide a new clue for targeting TMEM63A-driven TNBC tumors by using a VCP inhibitor.Abbreviations: ATG16L1, autophagy related 16 like 1; ATG5, autophagy related 5; ATP5F1B/ATP5B, ATP synthase F1 subunit beta; Baf-A1, bafilomycin A1; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CANX, calnexin; DERL1, derlin 1; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum-associated degradation; HSPA8, heat shock protein family A (Hsp70) member 8; IP, immunoprecipitation; LAMP2A, lysosomal associated membrane protein 2; NBR1, NBR1 autophagy cargo receptor; OPTN, optineurin; RT-qPCR, reverse transcription-quantitative PCR; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TMEM63A, transmembrane protein 63A; TNBC, triple-negative breast cancer; TOLLIP, toll interacting protein; VCP, valosin containing protein.
Collapse
Affiliation(s)
- Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China
| | - Fan Yang
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai Yangpu, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, Yangpu, China
| |
Collapse
|
11
|
Mhalhel K, Sicari M, Pansera L, Chen J, Levanti M, Diotel N, Rastegar S, Germanà A, Montalbano G. Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders. Cells 2023; 12:252. [PMID: 36672187 PMCID: PMC9856690 DOI: 10.3390/cells12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Levanti
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Nicolas Diotel
- Université de la Réunion, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Plateforme CYROI, F-97490 Sainte-Clotilde, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab., Department of Veterinary Sciences, University of Messina, Via Giovanni Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
12
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
14
|
Voisard P, Diofano F, Glazier AA, Rottbauer W, Just S. CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo. Int J Mol Sci 2022; 23:ijms23126722. [PMID: 35743185 PMCID: PMC9223409 DOI: 10.3390/ijms23126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.
Collapse
Affiliation(s)
- Philipp Voisard
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Federica Diofano
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Amelia A. Glazier
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
- Correspondence: ; Tel.: +49-731-500-45118; Fax: +49-731-500-45159
| |
Collapse
|
15
|
Hesaraki M, Bora U, Pahlavan S, Salehi N, Mousavi SA, Barekat M, Rasouli SJ, Baharvand H, Ozhan G, Totonchi M. A Novel Missense Variant in Actin Binding Domain of MYH7 Is Associated With Left Ventricular Noncompaction. Front Cardiovasc Med 2022; 9:839862. [PMID: 35463789 PMCID: PMC9024299 DOI: 10.3389/fcvm.2022.839862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiomyopathies are a group of common heart disorders that affect numerous people worldwide. Left ventricular non-compaction (LVNC) is a structural disorder of the ventricular wall, categorized as a type of cardiomyopathy that mostly caused by genetic disorders. Genetic variations are underlying causes of developmental deformation of the heart wall and the resultant contractile insufficiency. Here, we investigated a family with several affected members exhibiting LVNC phenotype. By whole-exome sequencing (WES) of three affected members, we identified a novel heterozygous missense variant (c.1963C>A:p.Leu655Met) in the gene encoding myosin heavy chain 7 (MYH7). This gene is evolutionary conserved among different organisms. We identified MYH7 as a highly enriched myosin, compared to other types of myosin heavy chains, in skeletal and cardiac muscles. Furthermore, MYH7 was among a few classes of MYH in mouse heart that highly expresses from early embryonic to adult stages. In silico predictions showed an altered actin-myosin binding, resulting in weaker binding energy that can cause LVNC. Moreover, CRISPR/Cas9 mediated MYH7 knockout in zebrafish caused impaired cardiovascular development. Altogether, these findings provide the first evidence for involvement of p.Leu655Met missense variant in the incidence of LVNC, most probably through actin-myosin binding defects during ventricular wall morphogenesis.
Collapse
Affiliation(s)
- Mahdi Hesaraki
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Najmeh Salehi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Javad Rasouli
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Turkey
- *Correspondence: Gunes Ozhan
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Mehdi Totonchi
| |
Collapse
|
16
|
Scarian E, Fiamingo G, Diamanti L, Palmieri I, Gagliardi S, Pansarasa O. The Role of VCP Mutations in the Spectrum of Amyotrophic Lateral Sclerosis-Frontotemporal Dementia. Front Neurol 2022; 13:841394. [PMID: 35273561 PMCID: PMC8902152 DOI: 10.3389/fneur.2022.841394] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurological diseases which, respectively, and primarily affect motor neurons and frontotemporal lobes. Although they can lead to different signs and symptoms, it is now evident that these two pathologies form a continuum and that hallmarks of both diseases can be present within the same person in the so-called ALS-FTD spectrum. Many studies have focused on the genetic overlap of these pathologies and it is now clear that different genes, such as C9orf72, TARDBP, SQSTM1, FUS, and p97/VCP can be mutated in both the diseases. VCP was one of the first genes associated with both FTD and ALS representing an early example of gene overlapping. VCP belongs to the type II AAA (ATPases Associated with diverse cellular activities) family and is involved in ubiquitinated proteins degradation, autophagy, lysosomal clearance and mitochondrial quality control. Since its numerous roles, mutations in this gene lead to different pathological features, first and foremost TDP-43 mislocalization. This review aims to outline recent findings on VCP roles and on how its mutations are linked to the neuropathology of ALS and FTD.
Collapse
Affiliation(s)
- Eveljn Scarian
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Fiamingo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Ilaria Palmieri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
17
|
Wang D, He X, Zheng C, Wang C, Peng P, Gao C, Xu X, Ma Y, Liu M, Yang L, Luo Z. Endoplasmic Reticulum Stress: An Emerging Therapeutic Target for Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:819139. [PMID: 35178406 PMCID: PMC8843852 DOI: 10.3389/fcell.2021.819139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Low back pain (LBP) is a global health issue. Intervertebral disc degeneration (IDD) is a major cause of LBP. Although the explicit mechanisms underpinning IDD are unclear, endoplasmic reticulum (ER) stress caused by aberrant unfolded or misfolded proteins may be involved. The accumulation of unfolded/misfolded proteins may result in reduced protein synthesis and promote aberrant protein degradation to recover ER function, a response termed the unfolded protein response. A growing body of literature has demonstrated the potential relationships between ER stress and the pathogenesis of IDD, indicating some promising therapeutic targets. In this review, we summarize the current knowledge regarding the impact of ER stress on the process of IDD, as well as some potential therapeutic strategies for alleviating disc degeneration by targeting different pathways to inhibit ER stress. This review will facilitate understanding the pathogenesis and progress of IDD and highlights potential therapeutic targets for treating this condition.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Pharmacy Department, Air Force Hospital of Eastern Theater Command, Nanjing, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengzhe Wang
- Rehabilitation Department, Dongchangfu Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Pandi Peng
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Chu Gao
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yachao Ma
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mei Liu
- Pharmacy Department, Air Force Hospital of Eastern Theater Command, Nanjing, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
18
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
19
|
Bühler A, Gahr BM, Park DD, Bertozzi A, Boos A, Dalvoy M, Pott A, Oswald F, Kovall RA, Kühn B, Weidinger G, Rottbauer W, Just S. Histone deacetylase 1 controls cardiomyocyte proliferation during embryonic heart development and cardiac regeneration in zebrafish. PLoS Genet 2021; 17:e1009890. [PMID: 34723970 PMCID: PMC8584950 DOI: 10.1371/journal.pgen.1009890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/11/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart. Heart disease is one of the most common causes of death in all developed countries. While zebrafish cardiomyocytes are able to proliferate throughout adulthood, mammalian cardiomyocytes lose this ability during early development, and therefore are not capable to replace and renew cardiomyocytes after injury. The underlying mechanisms of cardiomyocyte proliferation are still not completely resolved. Understanding how zebrafish cardiomyocytes preserve their proliferating state, would be a valuable information to foster cardiac regeneration, e.g. after myocardial infarction in patients. Knowledge of the signaling pathways that need to be activated, or deactivated in order to induce cardiomyocyte proliferation after acute or chronic injury will pave the way for the development of genetic and/or pharmacological treatment options. In an ENU-mutagenesis screen, we identified the zebrafish mutant baldrian, which shows reduced embryonic cardiomyocyte proliferation. As genetic cause of the observed phenotype, we identified a missense mutation in the hdac1 gene. By treatment of heart-injured adult fish with the HDAC1 inhibitor Mocetinostat, we were able to show a reduced rate of cardiomyocyte proliferation also in the adult zebrafish heart in vivo, suggesting a role of Hdac1 in embryonic heart growth and adult regenerative cardiomyocyte proliferation in zebrafish.
Collapse
Affiliation(s)
- Anja Bühler
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Bernd M Gahr
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Deung-Dae Park
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Alberto Bertozzi
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Alena Boos
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Mohankrishna Dalvoy
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Alexander Pott
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bernhard Kühn
- Department of Pediatrics, University of Pittsburgh, and Richard King Mellon Institute for Pediatric Research and Division of Pediatric Cardiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|
20
|
Gangfuß A, Czech A, Hentschel A, Münchberg U, Horvath R, Töpf A, O'Heir E, Lochmüller H, Stehling F, Kiewert C, Sickmann A, Kuechler A, Kaiser FJ, Kölbel H, Christiansen J, Schara-Schmidt U, Roos A. Homozygous WASHC4 variant in two sisters causes a syndromic phenotype defined by dysmorphisms, intellectual disability, profound developmental disorder, and skeletal muscle involvement. J Pathol 2021; 256:93-107. [PMID: 34599609 DOI: 10.1002/path.5812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022]
Abstract
Recessive variants in WASHC4 are linked to intellectual disability complicated by poor language skills, short stature, and dysmorphic features. The protein encoded by WASHC4 is part of the Wiskott-Aldrich syndrome protein and SCAR homolog family, co-localizes with actin in cells, and promotes Arp2/3-dependent actin polymerization in vitro. Functional studies in a zebrafish model suggested that WASHC4 knockdown may also affect skeletal muscles by perturbing protein clearance. However, skeletal muscle involvement has not been reported so far in patients, and precise biochemical studies allowing a deeper understanding of the molecular etiology of the disease are still lacking. Here, we report two siblings with a homozygous WASHC4 variant expanding the clinical spectrum of the disease and provide a phenotypical comparison with cases reported in the literature. Proteomic profiling of fibroblasts of the WASHC4-deficient patient revealed dysregulation of proteins relevant for the maintenance of the neuromuscular axis. Immunostaining on a muscle biopsy derived from the same patient confirmed dysregulation of proteins relevant for proper muscle function, thus highlighting an affliction of muscle cells upon loss of functional WASHC4. The results of histological and coherent anti-Stokes Raman scattering microscopic studies support the concept of a functional role of the WASHC4 protein in humans by altering protein processing and clearance. The proteomic analysis confirmed key molecular players in vitro and highlighted, for the first time, the involvement of skeletal muscle in patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Artur Czech
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ute Münchberg
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Emily O'Heir
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Florian Stehling
- Children's Hospital, Department of Pneumology, University Hospital Essen, Essen, Germany
| | - Cordula Kiewert
- Children's Hospital, Department of Endocrinology, University Hospital Essen, Essen, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Essener Zentrum für seltene Erkrankungen (EZSE), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Essener Zentrum für seltene Erkrankungen (EZSE), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Jon Christiansen
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
21
|
Song R, Lei H, Feng L, Cheng W, Li Y, Yao LL, Liu J. TFEB insufficiency promotes cardiac hypertrophy by blocking autophagic degradation of GATA4. J Biol Chem 2021; 297:101189. [PMID: 34517007 PMCID: PMC8498468 DOI: 10.1016/j.jbc.2021.101189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023] Open
Abstract
Autophagosome-lysosome pathway (ALP) insufficiency has been suggested to play a critical role in the pathogenesis of cardiac hypertrophy. However, the mechanisms underlying ALP insufficiency remain largely unknown, and strategies to specifically manipulate ALP insufficiency for treating cardiac hypertrophy are lacking. Transcription factor EB (TFEB), as a master regulator of ALP, regulates the generation and function of autophagosomes and lysosomes. We found that TFEB was significantly decreased, whereas autophagosome markers were increased in phenylephrine (PE)-induced and transverse aortic constriction-induced cardiomyocyte hypertrophy and failing hearts from patients with dilated cardiomyopathy. Knocking down TFEB induced ALP insufficiency, as indicated by increased autophagosome markers, decreased light chain 3II flux, and cardiomyocyte hypertrophy manifested through increased levels of atrial natriuretic peptide and β-myosin heavy chain and enlarged cell size. The effects of TFEB knockdown were abolished by promoting autophagy. TFEB overexpression improved autophagic flux and attenuated PE-stimulated cardiomyocyte hypertrophy and transverse aortic constriction-induced hypertrophic remodeling, fibrosis, and cardiac dysfunction. Curcumin analog compound C1, a specific TFEB activator, similarly attenuated PE-induced ALP insufficiency and cardiomyocyte hypertrophy. TFEB knockdown increased the accumulation of GATA4, a transcription factor for several genes causing cardiac hypertrophy by blocking autophagic degradation of GATA4, whereas knocking down GATA4 attenuated TFEB downregulation-induced cardiomyocyte hypertrophy. Both TFEB overexpression and C1 promoted GATA4 autophagic degradation and alleviated PE-induced cardiomyocyte hypertrophy. In conclusion, TFEB downregulation plays a vital role in the development of pressure overload-induced cardiac hypertrophy by causing ALP insufficiency and blocking autophagic degradation. Activation of TFEB represents a potential therapeutic strategy for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Rui Song
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Han Lei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Guangzhou, China
| | - Wanwen Cheng
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Ying Li
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Ling Ling Yao
- Department of Cardiology, First Affiliated Hospital, Guangdong College of Pharmacy, Guangzhou, China.
| | - Jie Liu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
22
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, Al-Harrasi A, Bungau S. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 2021; 58:4886-4905. [PMID: 34212304 DOI: 10.1007/s12035-021-02472-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
23
|
Braems E, Tziortzouda P, Van Den Bosch L. Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neurosci Lett 2021; 759:136041. [PMID: 34118308 DOI: 10.1016/j.neulet.2021.136041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries. We conclude that small animal models will not replace rodent models, yet they clearly represent an important asset for preclinical studies.
Collapse
Affiliation(s)
- Elke Braems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paraskevi Tziortzouda
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
24
|
Abstract
We have previously bred Chinese local dairy sheep through grading up with local Small-Tailed Han (STH) sheep as female parent and DairyMeade (DM) sheep as male parent. In this research communication we characterize the whey protein profile of STH sheep and their offspring (F1, F2) to reveal physiological differences and variation in milk traits. A total of 1032 whey proteins were identified through tandem mass tag labeling (TMT) proteome profiling. Three proteins were significantly differentially abundant between F1 and STH milk, six between F2 and STH milk and five between F1 and F2 milk. In terms of differential changes between generations, WASHC4 and CUTA of F1 and Ig-like domain-containing protein of F2 milk were dominant whey proteins. Overall, the results showed that the whey protein profiles of different generations varied little. The crossbreeds of STH and DM sheep would be suitable for the development of the Chinese local sheep milk industry, and the F2 may be a better population for sheep milk production.
Collapse
|
25
|
Courtland JL, Bradshaw TWA, Waitt G, Soderblom EJ, Ho T, Rajab A, Vancini R, Kim IH, Soderling SH. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. eLife 2021; 10:e61590. [PMID: 33749590 PMCID: PMC7984842 DOI: 10.7554/elife.61590] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mutation of the Wiskott-Aldrich syndrome protein and SCAR homology (WASH) complex subunit, SWIP, is implicated in human intellectual disability, but the cellular etiology of this association is unknown. We identify the neuronal WASH complex proteome, revealing a network of endosomal proteins. To uncover how dysfunction of endosomal SWIP leads to disease, we generate a mouse model of the human WASHC4c.3056C>G mutation. Quantitative spatial proteomics analysis of SWIPP1019R mouse brain reveals that this mutation destabilizes the WASH complex and uncovers significant perturbations in both endosomal and lysosomal pathways. Cellular and histological analyses confirm that SWIPP1019R results in endo-lysosomal disruption and uncover indicators of neurodegeneration. We find that SWIPP1019R not only impacts cognition, but also causes significant progressive motor deficits in mice. A retrospective analysis of SWIPP1019R patients reveals similar movement deficits in humans. Combined, these findings support the model that WASH complex destabilization, resulting from SWIPP1019R, drives cognitive and motor impairments via endo-lysosomal dysfunction in the brain.
Collapse
Affiliation(s)
- Jamie L Courtland
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Greg Waitt
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
| | - Erik J Soderblom
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Tricia Ho
- Proteomics and Metabolomics Shared Resource, Duke University School of MedicineDurhamUnited States
| | - Anna Rajab
- Burjeel Hospital, VPS HealthcareMuscatOman
| | - Ricardo Vancini
- Department of Pathology, Duke University School of MedicineDurhamUnited States
| | - Il Hwan Kim
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Anatomy and Neurobiology, University of Tennessee Heath Science CenterMemphisUnited States
| | - Scott H Soderling
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
26
|
Aweida D, Cohen S. Breakdown of Filamentous Myofibrils by the UPS-Step by Step. Biomolecules 2021; 11:biom11010110. [PMID: 33467597 PMCID: PMC7830001 DOI: 10.3390/biom11010110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Protein degradation maintains cellular integrity by regulating virtually all biological processes, whereas impaired proteolysis perturbs protein quality control, and often leads to human disease. Two major proteolytic systems are responsible for protein breakdown in all cells: autophagy, which facilitates the loss of organelles, protein aggregates, and cell surface proteins; and the ubiquitin-proteasome system (UPS), which promotes degradation of mainly soluble proteins. Recent findings indicate that more complex protein structures, such as filamentous assemblies, which are not accessible to the catalytic core of the proteasome in vitro, can be efficiently degraded by this proteolytic machinery in systemic catabolic states in vivo. Mechanisms that loosen the filamentous structure seem to be activated first, hence increasing the accessibility of protein constituents to the UPS. In this review, we will discuss the mechanisms underlying the disassembly and loss of the intricate insoluble filamentous myofibrils, which are responsible for muscle contraction, and whose degradation by the UPS causes weakness and disability in aging and disease. Several lines of evidence indicate that myofibril breakdown occurs in a strictly ordered and controlled manner, and the function of AAA-ATPases is crucial for their disassembly and loss.
Collapse
|
27
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
28
|
Manzano R, Toivonen JM, Moreno-Martínez L, de la Torre M, Moreno-García L, López-Royo T, Molina N, Zaragoza P, Calvo AC, Osta R. What skeletal muscle has to say in amyotrophic lateral sclerosis: Implications for therapy. Br J Pharmacol 2020; 178:1279-1297. [PMID: 32986860 DOI: 10.1111/bph.15276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset disorder characterized by progressive neuromuscular junction (NMJ) dismantling and degeneration of motor neurons leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. Except for a minority of patients harbouring genetic mutations, the origin of most ALS cases remains elusive. Peripheral tissues, and particularly skeletal muscle, have lately demonstrated an active contribution to disease pathology attracting a growing interest for these tissues as therapeutic targets in ALS. In this sense, molecular mechanisms essential for cell and tissue homeostasis have been shown to be deregulated in the disease. These include muscle metabolism and mitochondrial activity, RNA processing, tissue-resident stem cell function responsible for muscle regeneration, and proteostasis that regulates muscle mass in adulthood. This review aims to compile scientific evidence that demonstrates the role of skeletal muscle in ALS pathology and serves as reference for development of novel therapeutic strategies targeting this tissue to delay disease onset and progression. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Manzano
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Janne Markus Toivonen
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Laura Moreno-Martínez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Miriam de la Torre
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Leticia Moreno-García
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Tresa López-Royo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain.,Geriatrics Service, Hospital Nuestra Señora de Gracia, Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
29
|
Diofano F, Weinmann K, Schneider I, Thiessen KD, Rottbauer W, Just S. Genetic compensation prevents myopathy and heart failure in an in vivo model of Bag3 deficiency. PLoS Genet 2020; 16:e1009088. [PMID: 33137814 PMCID: PMC7605898 DOI: 10.1371/journal.pgen.1009088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in the molecular co-chaperone Bcl2-associated athanogene 3 (BAG3) are found to cause dilated cardiomyopathy (DCM), resulting in systolic dysfunction and heart failure, as well as myofibrillar myopathy (MFM), which is characterized by protein aggregation and myofibrillar disintegration in skeletal muscle cells. Here, we generated a CRISPR/Cas9-induced Bag3 knockout zebrafish line and found the complete preservation of heart and skeletal muscle structure and function during embryonic development, in contrast to morpholino-mediated knockdown of Bag3. Intriguingly, genetic compensation, a process of transcriptional adaptation which acts independent of protein feedback loops, was found to prevent heart and skeletal muscle damage in our Bag3 knockout model. Proteomic profiling and quantitative real-time PCR analyses identified Bag2, another member of the Bag protein family, significantly upregulated on a transcript and protein level in bag3-/- mutants. This implied that the decay of bag3 mutant mRNA in homozygous bag3-/- embryos caused the transcriptional upregulation of bag2 expression. We further demonstrated that morpholino-mediated knockdown of Bag2 in bag3-/- embryos evoked severe functional and structural heart and skeletal muscle defects, which are similar to Bag3 morphants. However, Bag2 knockdown in bag3+/+ or bag3+/- embryos did not result in (cardio-)myopathy. Finally, we found that inhibition of the nonsense-mediated mRNA decay (NMD) machinery by knockdown of upf1, an essential NMD factor, caused severe heart and skeletal muscle defects in bag3-/- mutants due to the blockade of transcriptional adaptation of bag2 expression. Our findings provide evidence that genetic compensation might vitally influence the penetrance of disease-causing bag3 mutations in vivo. One form of genetic compensation is described as transcriptional adaptation of gene expression triggered by deleterious gene mutations. Although the precise molecular mechanism that induces genetic compensation needs to be defined, it represents a powerful biological phenomenon that warrants genetic robustness. We find that antisense-mediated knockdown of Bag3 in zebrafish embryos causes heart failure and myopathy. By contrast, CRISPR/Cas9-induced depletion of Bag3 does not result in the abrogation of heart and skeletal muscle function in zebrafish embryos. We find here that transcriptional activation of the Bag family member bag2 is capable of restoring heart and skeletal muscle function in bag3 mutant embryos, whereas this compensatory mechanism is not present in the bag3 morphants. Furthermore, we show that nonsense-mediated decay of bag3 mRNA is the molecular trigger for the compensatory upregulation of bag2. Our study provides evidence that genetic compensation via transcriptional adaptation is a vital modulator of disease peculiarity and penetrance in bag3 mutant zebrafish and that this biological phenomenon might also be active in certain human BAG3 mutation carriers.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis/genetics
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Disease Models, Animal
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Mutation
- Myocardium/metabolism
- Myopathies, Structural, Congenital/metabolism
- Phenotype
- Proteomics
- Zebrafish
- Zebrafish Proteins/deficiency
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Federica Diofano
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Karolina Weinmann
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Isabelle Schneider
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Kevin D. Thiessen
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
30
|
Romanello V, Sandri M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci 2020; 78:1305-1328. [PMID: 33078210 PMCID: PMC7904552 DOI: 10.1007/s00018-020-03662-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The dynamic coordination of processes controlling the quality of the mitochondrial network is crucial to maintain the function of mitochondria in skeletal muscle. Changes of mitochondrial proteolytic system, dynamics (fusion/fission), and mitophagy induce pathways that affect muscle mass and performance. When muscle mass is lost, the risk of disease onset and premature death is dramatically increased. For instance, poor quality of muscles correlates with the onset progression of several age-related disorders such as diabetes, obesity, cancer, and aging sarcopenia. To date, there are no drug therapies to reverse muscle loss, and exercise remains the best approach to improve mitochondrial health and to slow atrophy in several diseases. This review will describe the principal mechanisms that control mitochondrial quality and the pathways that link mitochondrial dysfunction to muscle mass regulation.
Collapse
Affiliation(s)
- Vanina Romanello
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy.
- Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy.
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy.
- Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100, Padova, Italy.
- Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
31
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
32
|
Lu F, Lu B, Zhang L, Wen J, Wang M, Zhang S, Li Q, Shu F, Sun Y, Liu N, Peng S, Zhao Y, Dong S, Zhao D, Lu F, Zhang W. Hydrogen sulphide ameliorating skeletal muscle atrophy in db/db mice via Muscle RING finger 1 S-sulfhydration. J Cell Mol Med 2020; 24:9362-9377. [PMID: 32633463 PMCID: PMC7417732 DOI: 10.1111/jcmm.15587] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022] Open
Abstract
Muscle atrophy occurs in many pathological states, including cancer, diabetes and sepsis, whose results primarily from accelerated protein degradation and activation of the ubiquitin‐proteasome pathway. Expression of Muscle RING finger 1 (MuRF1), an E3 ubiquitin ligase, was increased to induce the loss of muscle mass in diabetic condition. However, hydrogen sulphide (H2S) plays a crucial role in the variety of physiological functions, including antihypertension, antiproliferation and antioxidant. In this study, db/db mice and C2C12 myoblasts treated by high glucose and palmitate and oleate were chose as animal and cellular models. We explored how exogenous H2S attenuated the degradation of skeletal muscle via the modification of MuRF1 S‐sulfhydration in db/db mice. Our results show cystathionine‐r‐lyase expression, and H2S level in skeletal muscle of db/db mice was reduced. Simultaneously, exogenous H2S could alleviate ROS production and reverse expression of ER stress protein markers. Exogenous H2S could decrease the ubiquitination level of MYOM1 and MYH4 in db/db mice. In addition, exogenous H2S reduced the interaction between MuRF1 with MYOM1 and MYH4 via MuRF1 S‐sulfhydration. Based on these results, we establish that H2S prevented the degradation of skeletal muscle via MuRF1 S‐sulfhydration at the site of Cys44 in db/db mice.
Collapse
Affiliation(s)
- Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Baoling Lu
- Department of Infectious, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Linxue Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - JingChen Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Qianzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Feng Shu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shuo Peng
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Pott A, Rottbauer W, Just S. Streamlining drug discovery assays for cardiovascular disease using zebrafish. Expert Opin Drug Discov 2019; 15:27-37. [PMID: 31570020 DOI: 10.1080/17460441.2020.1671351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, our armamentarium of cardiovascular drug therapy has expanded significantly. Using innovative functional genomics strategies such as genome editing by CRISPR/Cas9 as well as high-throughput assays to identify bioactive small chemical compounds has significantly facilitated elaboration of the underlying pathomechanism in various cardiovascular diseases. However, despite scientific progress approvals for cardiovascular drugs has stagnated significantly compared to other fields of drug discovery and therapy during the past years.Areas covered: In this review, the authors discuss the aspects and pitfalls during the early phase of cardiovascular drug discovery and describe the advantages of zebrafish as an in vivo organism to model human cardiovascular diseases (CVD) as well as an in vivo platform for high-throughput chemical compound screening. They also highlight the emerging, promising techniques of automated read-out systems during high-throughput screening (HTS) for the evaluation of important cardiac functional parameters in zebrafish with the potential to streamline CVD drug discovery.Expert opinion: The successful identification of novel drugs to treat CVD is a major challenge in modern biomedical and clinical research. In this context, the definition of the etiologic fundamentals of human cardiovascular diseases is the prerequisite for an efficient and straightforward drug discovery.
Collapse
Affiliation(s)
- Alexander Pott
- Internal Medicine II, Ulm University Medical Center, Ulm, Germany.,Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
34
|
Meng T, Lin S, Zhuang H, Huang H, He Z, Hu Y, Gong Q, Feng D. Recent progress in the role of autophagy in neurological diseases. Cell Stress 2019; 3:141-161. [PMID: 31225510 PMCID: PMC6551859 DOI: 10.15698/cst2019.05.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy (here refers to macroautophagy) is a catabolic pathway by which large protein aggregates and damaged organelles are first sequestered into a double-membraned structure called autophago-some and then delivered to lysosome for destruction. Recently, tremen-dous progress has been made to elucidate the molecular mechanism and functions of this essential cellular metabolic process. In addition to being either a rubbish clearing system or a cellular surviving program in response to different stresses, autophagy plays important roles in a large number of pathophysiological conditions, such as cancer, diabetes, and especially neurodegenerative disorders. Here we review recent progress in the role of autophagy in neurological diseases and discuss how dysregulation of autophagy initiation, autophagosome formation, maturation, and/or au-tophagosome-lysosomal fusion step contributes to the pathogenesis of these disorders in the nervous system.
Collapse
Affiliation(s)
- Tian Meng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haixia Zhuang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haofeng Huang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhengjie He
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
35
|
Arhzaouy K, Papadopoulos C, Schulze N, Pittman SK, Meyer H, Weihl CC. VCP maintains lysosomal homeostasis and TFEB activity in differentiated skeletal muscle. Autophagy 2019; 15:1082-1099. [PMID: 30654731 DOI: 10.1080/15548627.2019.1569933] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Differentiated tissue is particularly vulnerable to alterations in protein and organelle homeostasis. The essential protein VCP, mutated in hereditary inclusion body myopathy, amyotrophic lateral sclerosis and frontotemporal dementia, is critical for efficient clearance of misfolded proteins and damaged organelles in dividing cells, but its role in terminally differentiated tissue affected by disease mutations is less clear. To understand the relevance of VCP in differentiated tissue, we inactivated it in skeletal muscle of adult mice. Surprisingly, knockout muscle demonstrated a necrotic myopathy with increased macroautophagic/autophagic proteins and damaged lysosomes. This was not solely due to a defect in autophagic degradation because age-matched mice with muscle inactivation of the autophagy essential protein, ATG5, did not demonstrate a myopathy. Notably, myofiber necrosis was preceded by upregulation of LGALS3/Galectin-3, a marker of damaged lysosomes, and TFEB activation, suggesting early defects in the lysosomal system. Consistent with that, myofiber necrosis was recapitulated by chemical induction of lysosomal membrane permeabilization (LMP) in skeletal muscle. Moreover, TFEB was activated after LMP in cells, but activation and nuclear localization of TFEB persisted upon VCP inactivation or disease mutant expression. Our data identifies VCP as central mediator of both lysosomal clearance and biogenesis in skeletal muscle. Abbreviations: AAA: ATPases Associated with diverse cellular Activities; TUBA1A/α-tubulin: tubulin alpha 1a; ATG5: autophagy related 5; ATG7: autophagy related 7; ACTA1: actin alpha 1, skeletal muscle; CLEAR: coordinated lysosomal expression and regulation; CTSB/D: cathepsin B/D; Ctrl: control; DAPI: diamidino-2-phenylindole; EBSS: Earle's balanced salt solution; ELDR: endolysosomal damage response; ESCRT: endosomal sorting complexes required for transport; Gastroc/G: gastrocnemius; H&E: hematoxylin and eosin; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBMPFD/ALS: inclusion body myopathy associated with Paget disease of the bone, frontotemporal dementia and amyotrophic lateral sclerosis; i.p.: intraperitoneal; LAMP1/2: lysosomal-associated membrane protein 1/2; LLOMe: Leu-Leu methyl ester hydrobromide; LGALS3/Gal3: galectin 3; LMP: lysosomal membrane permeabilization; MTOR: mechanistic target of rapamycin kinase; MYL1: myosin light chain 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MSP: multisystem proteinopathy; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; Quad/Q: quadriceps; RHEB: Ras homolog, mTORC1 binding; SQSTM1: sequestosome 1; TFEB: transcription factor EB; TA: tibialis anterior; siRNA: small interfering RNA; SQSTM1/p62, sequestosome 1; TARDBP/TDP-43: TAR DNA binding protein; TBS: Tris-buffered saline; TXFN, tamoxifen; UBXN6/UBXD1: UBX domain protein 6; VCP: valosin containing protein; WT: wild-type.
Collapse
Affiliation(s)
- Khalid Arhzaouy
- a Department of Neurology, Hope Center for Neurological Diseases , Washington University School of Medicine , St Louis , MO , USA
| | - Chrisovalantis Papadopoulos
- b Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology , University of Duisburg-Essen , Essen , Germany
| | - Nina Schulze
- c Imaging Centre Campus Essen (ICCE), Centre for Medical Biotechnology (ZMB) , University of Duisburg-Essen , Essen , Germany
| | - Sara K Pittman
- a Department of Neurology, Hope Center for Neurological Diseases , Washington University School of Medicine , St Louis , MO , USA
| | - Hemmo Meyer
- b Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology , University of Duisburg-Essen , Essen , Germany
| | - Conrad C Weihl
- a Department of Neurology, Hope Center for Neurological Diseases , Washington University School of Medicine , St Louis , MO , USA
| |
Collapse
|
36
|
Semantic Multi-Classifier Systems Identify Predictive Processes in Heart Failure Models across Species. Biomolecules 2018; 8:biom8040158. [PMID: 30486323 PMCID: PMC6315933 DOI: 10.3390/biom8040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
Genetic model organisms have the potential of removing blind spots from the underlying gene regulatory networks of human diseases. Allowing analyses under experimental conditions they complement the insights gained from observational data. An inevitable requirement for a successful trans-species transfer is an abstract but precise high-level characterization of experimental findings. In this work, we provide a large-scale analysis of seven weak contractility/heart failure genotypes of the model organism zebrafish which all share a weak contractility phenotype. In supervised classification experiments, we screen for discriminative patterns that distinguish between observable phenotypes (homozygous mutant individuals) as well as wild-type (homozygous wild-types) and carriers (heterozygous individuals). As the method of choice we use semantic multi-classifier systems, a knowledge-based approach which constructs hypotheses from a predefined vocabulary of high-level terms (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or Gene Ontology (GO) terms). Evaluating these models leads to a compact description of the underlying processes and guides the screening for new molecular markers of heart failure. Furthermore, we were able to independently corroborate the identified processes in Wistar rats.
Collapse
|