1
|
Badhe MR, Das P, Sahoo S, Paul A, Sahoo PK, Reddy RRK, Suryawanshi AR, Nandanpawar PC, Das Mahapatra K, Nagpure NS, Goswami M, Mohanty J. Physiological Responses to Acute Heat Stress in Rohu, Labeo rohita: Insights from Liver Proteomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1129-1142. [PMID: 39207653 DOI: 10.1007/s10126-024-10360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Heat stress is a major problem in aquaculture species, causing changes in physiology such as decreased feed intake, growth rate, reproduction, and internal cellular damage, thereby affecting fish's health. The effects of an acute heat stress simulating a daily rise and fall in temperature on summer days were evaluated in the liver proteome of rohu (Labeo rohita) fingerlings in the present study. The fish maintained at 30 °C were gradually exposed to a higher temperature of 36 °C at an increment rate of 1 °C per 1.5 h, and after 3 h at that temperature, it was gradually reduced to 30 °C. The liver tissue samples were collected at 5 am, 5 pm, and 5 am the next day from the exposed and control fish. Protein samples were prepared from the liver tissues, and the extracted proteins were compared using 2-dimensional (2D) gel electrophoresis (2DGE) and mass spectrometry (MS) using a MALDI-TOF/TOF mass spectrometer. A total of 44 differentially expressed protein spots were visualized in 2D gel analysis from heat stress exposed fish at three time points, out of which 21 proteins including one hypothetical protein could be identified by MS. The abundance of five selected differentially expressed proteins (DEPs) was validated using qPCR. The majority of DEPs were found to be involved primarily in lipid, protein and energy metabolism, immune system regulation, cytoskeletal stability, and ROS management. The findings of this study would help in the development of strategies to mitigate heat stress in L. rohita.
Collapse
Affiliation(s)
- Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Priyanka Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | | | | | - Kanta Das Mahapatra
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Naresh S Nagpure
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mukunda Goswami
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
2
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Savitri CMA, Fauzia KA, Alfaray RI, Aftab H, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. Opportunities for Helicobacter pylori Eradication beyond Conventional Antibiotics. Microorganisms 2024; 12:1986. [PMID: 39458296 PMCID: PMC11509656 DOI: 10.3390/microorganisms12101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to be associated with a significant risk of gastric cancer in addition to chronic gastritis, peptic ulcer, and MALT lymphoma. Although only a small percentage of patients infected with H. pylori develop gastric cancer, Gastric cancer causes more than 750,000 deaths worldwide, with 90% of cases being caused by H. pylori. The eradication of this bacterium rests on multiple drug regimens as guided by various consensus. However, the efficacy of empirical therapy is decreasing due to antimicrobial resistance. In addition, biofilm formation complicates eradication. As the search for new antibiotics lags behind the bacterium's ability to mutate, studies have been directed toward finding new anti-H. pylori agents while also optimizing current drug functions. Targeting biofilm, repurposing outer membrane vesicles that were initially a virulence factor of the bacteria, phage therapy, probiotics, and the construction of nanoparticles might be able to complement or even be alternatives for H. pylori treatment. This review aims to present reports on various compounds, either new or combined with current antibiotics, and their pathways to counteract H. pylori resistance.
Collapse
Affiliation(s)
- Camilia Metadea Aji Savitri
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Kartika Afrida Fauzia
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Research Centre for Preclinical and Clinical Medicine, National Research and Innovation Agency, Cibinong Science Center, Bogor 16915, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka 1000, Bangladesh;
| | - Ari Fahrial Syam
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Masrul Lubis
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan; (C.M.A.S.); (R.I.A.)
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Genome-Wide Microbiology, Research Center for Global and Local Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Oita, Japan
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Miftahussurur
- Helicobacter Pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60286, Indonesia;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya 60286, Indonesia
| |
Collapse
|
4
|
Shao BZ, Zhang WG, Liu ZY, Linghu EQ. Autophagy and its role in gastrointestinal diseases. World J Gastroenterol 2024; 30:4014-4020. [PMID: 39351250 PMCID: PMC11439115 DOI: 10.3748/wjg.v30.i36.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Gastrointestinal disorders encompass a spectrum of conditions affecting various organs within the digestive system, such as the esophagus, stomach, colon, rectum, pancreas, liver, small intestine, and bile ducts. The role of autophagy in the etiology and progression of gastrointestinal diseases has garnered significant attention. This paper seeks to evaluate the impact and mechanisms of autophagy in gastrointestinal disorders by synthesizing recent research findings. Specifically, we delve into inflammation-related gastrointestinal conditions, including ul-cerative colitis, Crohn's disease, and pancreatitis, as well as gastrointestinal cancers such as esophageal, gastric, and colorectal cancers. Additionally, we provide commentary on a recent publication by Chang et al in the World Journal of Gastroenterology. Our objective is to offer fresh perspectives on the mechanisms and therapeutic approaches for these gastrointestinal ailments. This review aims to offer new perspectives on the mechanisms and therapeutic strategies for gastrointestinal disorders by critically analyzing relevant publications. As discussed, the role of autophagy in gastrointestinal diseases is complex and, at times, contentious. To harness the full therapeutic potential of autophagy in treating these conditions, more in-depth research is imperative.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Wen-Gang Zhang
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Zhen-Yu Liu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Weng C, Xu J, Ying X, Sun S, Hu Y, Wang X, He C, Lu B, Li M. The PDIA3-STAT3 protein complex regulates IBS formation and development via CTSS/MHC-II pathway-mediated intestinal inflammation. Heliyon 2024; 10:e36357. [PMID: 39286134 PMCID: PMC11403428 DOI: 10.1016/j.heliyon.2024.e36357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/06/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a persistent functional gastrointestinal disorder characterised by abdominal pain and altered patterns of defecation. This study aims to clarify an increase in the expression and interaction of protein disulfide-isomerase A3 (PDIA3) and Signal Transducer and Activator of Transcription 3 (STAT3) within the membrane of dendritic cells (DCs) from individuals with IBS. Mechanistically, the heightened interaction between PDIA3 and STAT3 at the DC membrane results in reduced translocation of phosphorylated STAT3 (p-STAT3) into the nucleus. The reduction of p-STAT3 to nuclear transport subsequently increased the levels of cathepsin S (CTSS) and major histocompatibility complex class II (MHC-II). Consequently, activated DCs promote CD4+ T cell proliferation and cytokine secretion, including interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-9 (IL-9), and tumour necrosis factor-alpha (TNF-α), thereby contributing to the development of IBS. Importantly, the downregulation of PDIA3 and the administration of punicalagin (Pun), a crucial active compound found in pomegranate peel, alleviate IBS symptoms in rats, such as increased visceral hypersensitivity and abnormal stool characteristics. Collectively, these findings highlight the involvement of the PDIA3-STAT3 protein complex in IBS, providing a novel perspective on the modulation of immune and inflammatory responses. Additionally, this research advances our understanding of the role and mechanisms of PDIA3 inhibitors, presenting new therapeutic possibilities for managing IBS.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Xiao Ying
- Department of Gastroenterology, The First People's Hospital of Yongkang, Jinhua 321300, Zhejiang Province, China
| | - Shaopeng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Yue Hu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Xi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Chenghai He
- Department of Internal Medicine, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang Province, China
| | - Bin Lu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
6
|
Yang Y, Zhang T, Li Q, Ling Y, Ma Y, Tao S. SQSTM1 improves acute lung injury via inhibiting airway epithelium ferroptosis in a vitamin D receptor/autophagy-mediated manner. Free Radic Biol Med 2024; 222:588-600. [PMID: 38996820 DOI: 10.1016/j.freeradbiomed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Emerging evidence has reported that acute lung injury (ALI), characterized by inflammation and oxidative stress in airway epithelium, is regulated by programmed cell death. Ferroptosis, a regulated form of cell death spurred by uncontrolled lipid peroxidation, has been proven to implicate various diseases. Inhibiting ferroptosis represents a feasible strategy for ALI through the suppression of lipid peroxidation, while the mechanism remains to be further elucidated. Here, we identified Sequestosome 1 (SQSTM1) as a negative regulator of airway epithelium ferroptosis during ALI. SQSTM1 knockdown cells manifested higher sensitivity to ferroptosis. Mechanistically, SQSTM1 was found to directly interact with vitamin D receptor (VDR) through its nuclear receptor (NR) box motif, facilitating its nuclear translocation and initiating autophagy at the transcriptional level. To further validate these findings, an in vivo preventive model utilizing spermidine, a proven inducer of SQSTM1 was established. The results consistently demonstrated that spermidine supplementation significantly induced SQSTM1 and ameliorated ALI by mitigating airway epithelial ferroptosis. Notably, these effects were abrogated in the absence of SQSTM1. Taken together, this study identified SQSTM1 as a negative regulator of airway epithelium ferroptosis in a VDR-mediated autophagy manner, making it a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| | - Tao Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Qianmin Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Shasha Tao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
7
|
Yuan T, Wang Y, Wang H, Lu Q, Zhang X, Li Z, Sun S. Suppressing ERp57 diminishes osteoclast activity and ameliorates ovariectomy-induced bone loss via the intervention in calcium oscillation and the calmodulin/calcineurin/Nfatc1 pathway. Heliyon 2024; 10:e35374. [PMID: 39170388 PMCID: PMC11336591 DOI: 10.1016/j.heliyon.2024.e35374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Increased osteoclast activity constitutes the primary etiology of excessive bone erosion in postmenopausal osteoporosis. ERp57, otherwise referred to as protein disulfide isomerase A3 (PDIA3), plays a crucial role in the regulation of intracellular calcium signaling. This is documented to exert a profound impact on osteoclast differentiation and functionality. Methods To ascertain the potential role of ERp57 in disease progression, prevention, and treatment, network pharmacology and bioinformatics analyses were conducted in relation to postmenopausal osteoporosis and ERp57 inhibitor (Loc14). Then, subsequent experimental verifications were employed in vitro on osteoclast and osteoblast, and in vivo on ovariectomy (OVX) mice models. Results Multiple enrichment analyses suggested that the "calcium signaling pathway" may constitute a potential avenue for therapeutic intervention by Loc14 in the treatment of postmenopausal osteoporosis. In vitro experiments demonstrated inhibition of ERp57 could block osteoclast differentiation and function by interfering with the expression of osteoclast marker genes (Traf6, Nfatc1, and Ctsk). Further mechanisms studies based on calcium imaging, qPCR, and WB established that ERp57 inhibitor (Loc14) could obstruct calcium oscillation in osteoclast precursor cells (OPCs) by limiting the entry sources of cytosolic Ca2+ and interfering with calmodulin/calcineurin/Nfatc1 pathway. Evidence from Micro-CT scanning and double calcein labeling confirmed that the application of Loc14 in vivo could alleviate bone loss and partially reversed the osteogenic impairment caused by OVX in mice. Conclusions Our findings proved the suppressive effects of Loc14 on osteoclastogenesis via attenuating calcium oscillation and associated singling pathways, providing ERp57 as a potential therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
8
|
Lai Y, Zhang T, Yin X, Zhu C, Du Y, Li Z, Gao J. An antibiotic-free platform for eliminating persistent Helicobacter pylori infection without disrupting gut microbiota. Acta Pharm Sin B 2024; 14:3184-3204. [PMID: 39027245 PMCID: PMC11252519 DOI: 10.1016/j.apsb.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 07/20/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection remains the leading cause of gastric adenocarcinoma, and its eradication primarily relies on the prolonged and intensive use of two antibiotics. However, antibiotic resistance has become a compelling health issue, leading to H. pylori eradication treatment failure worldwide. Additionally, the powerlessness of antibiotics against biofilms, as well as intracellular H. pylori and the long-term damage of antibiotics to the intestinal microbiota, have also created an urgent demand for antibiotic-free approaches. Herein, we describe an antibiotic-free, multifunctional copper-organic framework (HKUST-1) platform encased in a lipid layer comprising phosphatidic acid (PA), rhamnolipid (RHL), and cholesterol (CHOL), enveloped in chitosan (CS), and loaded in an ascorbyl palmitate (AP) hydrogel: AP@CS@Lip@HKUST-1. This platform targets inflammatory sites where H. pylori aggregates through electrostatic attraction. Then, hydrolysis by matrix metalloproteinases (MMPs) releases CS-encased nanoparticles, disrupting bacterial urease activity and membrane integrity. Additionally, RHL disperses biofilms, while PA promotes lysosomal acidification and activates host autophagy, enabling clearance of intracellular H. pylori. Furthermore, AP@CS@Lip@HKUST-1 alleviates inflammation and enhances mucosal repair through delayed Cu2+ release while preserving the intestinal microbiota. Collectively, this platform presents an advanced therapeutic strategy for eradicating persistent H. pylori infection without inducing drug resistance.
Collapse
Affiliation(s)
- Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xiaojing Yin
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chunping Zhu
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai 200433, China
| |
Collapse
|
9
|
Xia C, Chen Z, Chen Y, Wei F, Wu S, Zhou Q, Li P, Gu Q. Effects of Latilactobacillus sakei LZ217 on Gastric Mucosal Colonization, Metabolic Interference, and Urease Expression in Helicobacter pylori Infection. Helicobacter 2024; 29:e13130. [PMID: 39152663 DOI: 10.1111/hel.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Emerging evidence suggests differential antagonism of lactic acid-producing bacteria (LAB) to Helicobacter pylori, posing challenges to human health and food safety due to unclear mechanisms. This study assessed 21 LAB strains from various sources on H. pylori growth, urease activity, and coaggregation. Composite scoring revealed that Latilactobacillus sakei LZ217, derived from fresh milk, demonstrates strong inhibitory effects on both H. pylori growth and urease activity. L. sakei LZ217 significantly reduced H. pylori adherence of gastric cells in vitro, with inhibition ratios of 47.62%. Furthermore, in vivo results showed that L. sakei LZ217 alleviated H. pylori-induced gastric mucosa damage and inflammation in mice. Metabolomic exploration revealed metabolic perturbations in H. pylori induced by L. sakei LZ217, including reduced amino acid levels (e.g., isoleucine, leucine, glutamate, aspartate, and phenylalanine) and impaired carbohydrate and nucleotide synthesis, contributing to the suppression of ureA (28.30%), ureE (84.88%), and ureF (59.59%) expressions in H. pylori. This study underscores the efficacy of LAB against H. pylori and highlights metabolic pathways as promising targets for future interventions against H. pylori growth and colonization.
Collapse
Affiliation(s)
- Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| |
Collapse
|
10
|
Gao B, Zhang C, Wang D, Li B, Shan Z, Teng W, Li J. Causal association between low vitamin D and polycystic ovary syndrome: a bidirectional mendelian randomization study. J Ovarian Res 2024; 17:95. [PMID: 38715063 PMCID: PMC11077756 DOI: 10.1186/s13048-024-01420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Recent studies have revealed the correlation between serum vitamin D (VD) level and polycystic ovary syndrome (PCOS), but the causality and specific mechanisms remain uncertain. OBJECTIVE We aimed to investigate the cause-effect relationship between serum VD and PCOS, and the role of testosterone in the related pathological mechanisms. METHODS We assessed the causality between serum VD and PCOS by using genome-wide association studies (GWAS) data in a bidirectional two-sample Mendelian randomization (TS-MR) analysis. Subsequently, a MR mediation analysis was conducted to examine the mediating action of testosterone in the causality between serum VD and PCOS. Ultimately, we integrated GWAS data with cis-expression quantitative loci (cis-eQTLs) data for gene annotation, and used the potentially related genes for functional enrichment analysis to assess the involvement of testosterone and the potential mechanisms. RESULTS TS-MR analysis showed that individuals with lower level of serum VD were more likely to develop PCOS (OR = 0.750, 95% CI: 0.587-0.959, P = 0.022). MR mediation analysis uncovered indirect causal effect of serum VD level on the risk of PCOS via testosterone (OR = 0.983, 95% CI: 0.968-0.998, P = 0.025). Functional enrichment analysis showed that several pathways may be involved in the VD-testosterone-PCOS axis, such as steroid hormone biosynthesis and autophagy process. CONCLUSION Our findings suggest that genetically predicted lower serum VD level may cause a higher risk of developing PCOS, which may be mediated by increased testosterone production.
Collapse
Affiliation(s)
- Bingrui Gao
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China
| | - Chenxi Zhang
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China
| | - Deping Wang
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China
- Department of Endocrinology and Metabolism, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, Heilongjiang, 157011, P.R. China
| | - Bojuan Li
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China
| | - Jing Li
- Department of Endocrinology and Metabolism, The Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, P.R. China.
| |
Collapse
|
11
|
Liu S, Zhao T, Liu Q. Vitamin D effects on Chlamydia trachomatis infection: a case-control and experimental study. Front Cell Infect Microbiol 2024; 14:1366136. [PMID: 38698906 PMCID: PMC11063265 DOI: 10.3389/fcimb.2024.1366136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Vitamin D deficiency is the most common nutritional deficiency worldwide. Chronic vitamin D deficiency causes immune system dysfunction, which increases susceptibility to pathogens such as bacteria, especially intracellular parasites, and viruses. Chlamydia trachomatis (C. t) is an obligate intracellular parasitic bacterium that causes a variety of sequelae. We speculated that vitamin D might be associated with C. t infection. This study aimed to address this gap in knowledge by investigating the relationship between vitamin D and C. t infection using both in vitro and in vivo models. Methods and results The addition of calcitriol to McCoy cell culture in vitro delayed and reduced the quantity and volume of inclusions compared to the control group. Macrophages of peritoneally lavaged mice co-cultured with McCoy decreased the infection rate and delayed the appearance of inclusions. In mice models of vitamin D deficiency, mice in the VD-group exhibited more severe genital tract inflammation and a longer duration of infection after inoculation with C. t in the genital tract. Supplementing these mice with vitamin D3 during treatment enhanced the therapeutic effect of antibiotics. We also conducted a case-control study involving 174 C. t-positive patients (95 males and 79 females) and 380 healthy volunteers (211 males and 169 females) aged 20-49 from January 2016 to March 15, 2017. Serum 25-(OH)D concentration was measured by assessing morning fasting blood samples of healthy volunteers and C. t-positive patients 1 day before antibiotic treatment and the next day after one course of treatment. The patients were followed up for 1 month and evaluated for recovery. The results showed that vitamin D deficiency was a risk factor for C. t infection and treatment failure. Conclusion In summary, findings from experimental and clinical studies indicate a close association between vitamin D levels and C. t infection and treatment outcomes. Given the affordability and safety of vitamin D, both healthy individuals and patients should focus on vitamin D intake. Vitamin D supplementation could enhance treatment success and should be used as an adjunctive therapy alongside antibiotic therapy for C. t infections, pending confirmation in larger, prospective, randomized controlled trials.
Collapse
Affiliation(s)
- Sijia Liu
- Institute of Sexually Transmitted Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianwei Zhao
- Department of Dermatology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Quanzhong Liu
- Institute of Sexually Transmitted Diseases, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
12
|
Hu W, Zhai ZY, Huang ZY, Chen ZM, Zhou P, Li XX, Yang GH, Bao CJ, You LJ, Cui XB, Xia GL, Ou Yang MP, Zhang L, Wu WKK, Li LF, Zhang YX, Xiao ZG, Gong W. Dual RNA sequencing of Helicobacter pylori and host cell transcriptomes reveals ontologically distinct host-pathogen interaction. mSystems 2024; 9:e0020624. [PMID: 38514462 PMCID: PMC11019886 DOI: 10.1128/msystems.00206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Long Fei Li
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yu Xuan Zhang
- Department of Pharmacology and Therapeutics, King’s College London, London, United Kingdom
| | - Zhan Gang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Laboratory of Personalized Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Yang M, Li Q, Yang H, Li Y, Lu L, Wu X, Liu Y, Li W, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li X, Li M. Downregulation of PDIA3 inhibits gastric cancer cell growth through cell cycle regulation. Biomed Pharmacother 2024; 173:116336. [PMID: 38412717 DOI: 10.1016/j.biopha.2024.116336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE Protein disulfide isomerase A3 (PDIA3) promotes the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum. PDIA3 is overexpressed in most tumors, and it may become a biomarker of cancer prognosis and immunotherapy. Our study aims to detect the expression level of PDIA3 in gastric cancer (GC) and its association with GC development as wells as the underlying mechanisms. METHODS GC cell lines with PDIA3 knockdown by siRNA, CRISPR-cas9 sgRNAs or a pharmacological inhibitor of LOC14 were prepared and used. PDIA3 knockout GC cells were established by CRISPR-cas9-PDIA3 system. The proliferation, migration, invasion and cell cycle of GC cells were analyzed by cell counting kit-8 assay, wound healing assay, transwell assay and flow cytometry, respectively. Immunodeficient nude mice was used to evaluate the role of PDIA3 in tumor formation. Quantitative PCR and western blot were used for examining gene and protein expressions. RNA sequencing was performed to see the altered gene expression. RESULTS The expressions of PDIA3 in GC tissues and cells were increased significantly, and its expression was negatively correlated with the three-year survival rate of GC patients. Down-regulation of PDIA3 by siRNA, LOC14 or CRISPR-cas9 significantly inhibited proliferation, invasion and migration of GC cells TMK1 and AGS, with cell cycle arrested at G2/M phase. Meanwhile, decreased PDIA3 significantly inhibited growth of tumor xenograft in vivo. It was found that cyclin G1 (encoded by CCNG1 gene) expression was decreased by downregulation of PDIA3 in GC cells both in vitro and in vivo. In addition, protein levels of other cell cycle related factors including cyclin D1, CDK2, and CDK6 were also significantly decreased. Further study showed that STAT3 was associated with PDIA3-mediated cyclin G1 regulation. CONCLUSION PDIA3 plays an oncogenic role in GC. Our findings unfolded the functional role of PDIA3 in GC development and highlighted a novel target for cancer therapeutic strategy.
Collapse
Affiliation(s)
- Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Nanbu people's Hospital, Ministry of Pharmacy, Nanchong, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
14
|
Chang YF, Li JJ, Liu T, Wei CQ, Ma LW, Nikolenko VN, Chang WL. Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases. World J Gastroenterol 2024; 30:1524-1532. [PMID: 38617452 PMCID: PMC11008416 DOI: 10.3748/wjg.v30.i11.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes. Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation. A large number of studies have shown that autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal (GI) cells. However, the role of autophagy in GI diseases remains controversial. This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases, in order to provide new ideas for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Fan Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jia-Jing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Tao Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chong-Qing Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Li-Wei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Wei-Long Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
15
|
Brown G, Marchwicka A, Marcinkowska E. Vitamin D and immune system. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:1-41. [PMID: 38777411 DOI: 10.1016/bs.afnr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The active metabolite of vitamin D 1,25(OH)2D is well known for its role in regulating calcium-phosphate homeostasis of the human body. However, the immunomodulating activity of 1,25(OH)2D has been known for many years. There are numerous reports correlating low vitamin D levels in blood serum with the onset of autoimmune diseases and with the severe course of acute infections. In this chapter, we address the role of 1,25(OH)2D in these diseases, and we discuss the possible mechanisms of action of 1,25(OH)2D in immune cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aleksandra Marchwicka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Marcinkowska
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
16
|
Zhang X, He Y, Zhang X, Fu B, Song Z, Wang L, Fu R, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J, Du X, Ge Z, Chen Z, Li C. Sustained exposure to Helicobacter pylori induces immune tolerance by desensitizing TLR6. Gastric Cancer 2024; 27:324-342. [PMID: 38310631 PMCID: PMC10896808 DOI: 10.1007/s10120-023-01461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1β and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Yang He
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
- School of Nursing, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaolu Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Bo Fu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zidai Song
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Liang Wang
- Peking University Ninth School of Clinical Medicine, Beijing, People's Republic of China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Jianyi Lv
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Meng Guo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xueyun Huo
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xin Liu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Jing Lu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Du
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, USA
| | - Zhenwen Chen
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Changlong Li
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Laboratory for Clinical Medicine, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Ma PF, Zhuo L, Yuan LP, Qi XH. Recent Advances in Vitamin D3 Intervention to Eradicate Helicobacter pylori Infection. J Multidiscip Healthc 2024; 17:825-832. [PMID: 38434485 PMCID: PMC10906669 DOI: 10.2147/jmdh.s454605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Helicobacter pylori (HP) infections affect approximately one-third of children worldwide. In China, the incidence of HP infection in children ranges from approximately 30% to 60%. In addition to damaging the gastrointestinal tract mucosa, HP infection in children can negatively affect their growth and development, hematology, respiratory and hepatobiliary system, skin, nutritional metabolism, and autoimmune system. However, the rate of HP eradication also fell considerably from the previous rate due to the presence of drug-resistant HP strains and the limited types of antibiotics that can be used in young patients. Vitamin D3 (VitD3) is a steroid hormone that can reduce inflammation in the stomach mucosa induced by HP and can alleviate and eradicate HP through a variety of pathways and mechanisms, including immune regulation and the stimulation of antimicrobial peptide (AMP) secretion and Ca2+ influx, to reestablish lysosomal acidification; thus, these results provide new strategies and ideas for the eradication of drug-resistant HP strains.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Lin Zhuo
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao-Hui Qi
- Department of Pediatrics, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
18
|
Zeng J, Xie C, Huang Z, Cho CH, Chan H, Li Q, Ashktorab H, Smoot DT, Wong SH, Yu J, Gong W, Liang C, Xu H, Chen H, Liu X, Wu JCY, Ip M, Gin T, Zhang L, Chan MTV, Hu W, Wu WKK. LOX-1 acts as an N 6-methyladenosine-regulated receptor for Helicobacter pylori by binding to the bacterial catalase. Nat Commun 2024; 15:669. [PMID: 38253620 PMCID: PMC10803311 DOI: 10.1038/s41467-024-44860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.
Collapse
Affiliation(s)
- Judeng Zeng
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Chuan Xie
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Ziheng Huang
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hung Chan
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Qing Li
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC, USA
- Cancer Center, Howard University, Washington, DC, USA
- Howard University Hospital, Howard University, Washington, DC, USA
| | - Duane T Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jun Yu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Cong Liang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Institute for Microbial Ecology, School of Medicine, Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Huarong Chen
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Justin C Y Wu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Margaret Ip
- CUHK Shenzhen Research Institute, Shenzhen, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Lin Zhang
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| | - William K K Wu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
19
|
Zheng H, Zhang T, Zhang J, Ning J, Fu W, Wang Y, Shi Y, Wei G, Zhang J, Chen X, Ding S. AUF1-mediated inhibition of autophagic lysosomal degradation contributes to CagA stability and Helicobacter pylori-induced inflammation. Gut Microbes 2024; 16:2382766. [PMID: 39068523 PMCID: PMC11285221 DOI: 10.1080/19490976.2024.2382766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
CagA, a virulence factor of Helicobacter pylori (H. pylori), is known to drive inflammation in gastric epithelial cells and is typically degraded through autophagy. However, the molecular mechanism by which CagA evades autophagy-mediated degradation remains elusive. This study found that H. pylori inhibits autophagic flux by upregulating the expression of AU-rich element RNA-binding factor 1 (AUF1). We confirmed that AUF1 does not affect autophagy initiation but instead hampers lysosomal clearance, as evidenced by treatments with 3-MA, CQ and BafA1. Upregulated AUF1 stabilizes CagA protein levels by inhibiting the autolysosomal degradation of intracellular CagA in H. pylori-infected gastric epithelial cells. Knocking down AUF1 promotes CagA degradation, an effect that can be reversed by the lysosome inhibitor BafA1 and CQ. Transcriptome analysis of AUF1-knockdown gastric epithelial cells infected with H. pylori indicated that AUF1 regulates the expression of lysosomal-associated hydrolase genes, specifically CTSD, to inhibit autolysosomal degradation. Moreover, we observed that knockdown of AUF1 enhanced the stability of CTSD mRNA and identified AUF1 binding to the 3'UTR region of CTSD mRNA. AUF1-mediated downregulation of CTSD expression contributes to CagA stability, and AUF1 overexpression leads to an increase in CagA levels in exosomes, thus promoting extracellular inflammation. In clinical gastric mucosa, the expression of AUF1 and its cytoplasmic translocation are associated with H. pylori-associated gastritis, with CagA being necessary for the translocation of AUF1 into the cytoplasm. Our findings suggest that AUF1 is a novel host-positive regulator of CagA, and dysregulation of AUF1 expression increases the risk of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ye Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, P.R. China
| | - Guochao Wei
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|
20
|
Nowak JI, Olszewska AM, Wierzbicka JM, Gebert M, Bartoszewski R, Żmijewski MA. VDR and PDIA3 Are Essential for Activation of Calcium Signaling and Membrane Response to 1,25(OH) 2D 3 in Squamous Cell Carcinoma Cells. Cells 2023; 13:11. [PMID: 38201216 PMCID: PMC10778127 DOI: 10.3390/cells13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The genomic activity of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), whilst non-genomic is associated with protein disulfide isomerase family A member 3 (PDIA3). Interestingly, our recent studies documented that PDIA3 is also involved, directly or indirectly, in the modulation of genomic response to 1,25(OH)2D3. Moreover, PDIA3 was also shown to regulate cellular bioenergetics, possibly through the modulation of STAT signaling. Here, the role of VDR and PDIA3 proteins in membrane response to 1,25(OH)2D3 and calcium signaling was investigated in squamous cell carcinoma A431 cell line with or without the deletion of VDR and PDIA3 genes. Calcium influx was assayed by Fura-2AM or Fluo-4AM, while calcium-regulated element (NFAT) activation was measured using a dual luciferase assay. Further, the levels of proteins involved in membrane response to 1,25(OH)2D3 in A431 cell lines were analyzed via Western blot analysis. The deletion of either PDIA3 or VDR resulted in the decreased baseline levels of Ca2+ and its responsiveness to 1,25(OH)2D3; however, the effect was more pronounced in A431∆PDIA3. Furthermore, the knockout of either of these genes disrupted 1,25(OH)2D3-elicited membrane signaling. The data presented here indicated that the VDR is essential for the activation of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A), while PDIA3 is required for 1,25(OH)2D3-induced calcium mobilization in A431 cells. Taken together, those results suggest that both VDR and PDIA3 are essential for non-genomic response to this powerful secosteroid.
Collapse
Affiliation(s)
- Joanna I. Nowak
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.); (J.M.W.)
| | - Anna M. Olszewska
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.); (J.M.W.)
| | - Justyna M. Wierzbicka
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.); (J.M.W.)
| | - Magdalena Gebert
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland;
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Michał A. Żmijewski
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.I.N.); (A.M.O.); (J.M.W.)
| |
Collapse
|
21
|
Liu D, Ren L, Zhong D, Zhang W, Li WW, Liu J, Han C. Association of serum vitamin D levels on Helicobacter pylori infection: a retrospective study with real-world data. BMC Gastroenterol 2023; 23:391. [PMID: 37957555 PMCID: PMC10644572 DOI: 10.1186/s12876-023-03037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE The aim of this study was to determine whether serum vitamin D levels are associated with H. pylori infection and whether low serum vitamin D levels are an independent risk factor for H. pylori infection. METHODS We conducted a retrospective analysis of a multicenter cohort study from 2017 to 2019. A total of 415 H. pylori+ patients and 257 H. pylori- patients aged between 18 and 75 years with both 13 C-urea breath test and serum vitamin D level results were included from four hospitals. A questionnaire was used to collect information on potential factors influencing H. pylori infection. RESULTS Serum vitamin D levels were significantly lower in the H. pylori+ group than in the H. pylori- group (16.7 ± 6.6 ng/ml vs. 19.2 ± 8.0 ng/ml, p < 0.05). Using a cutoff value of 20 ng/ml, the H. pylori infection rate was significantly higher in the vitamin D-deficient group (< 20 ng/ml) than in the vitamin D-nondeficiency group (≥ 20 ng/ml) (66.5% vs. 51.0%, p < 0.001). Ordered logistic regression analysis showed that serum vitamin D levels < 20 ng/ml (OR: 1.652, 95% CI: 1.160-2.351, p = 0.005), higher education levels (OR: 1.774, 95% CI: 1.483-2.119, p < 0.001), family size ≥ 4 (OR: 1.516, 95% CI: 1.081-2.123, p = 0.016), and lower annual income (OR: 1.508, 95% CI: 1.289-1.766, p < 0.001) were independent risk factors for H. pylori infection. CONCLUSION Lower serum vitamin D levels may be associated with an increased risk of H. pylori infection, and lower serum vitamin D levels are an independent risk factor for increasing H. pylori infection rates. Randomized controlled trials are needed to determine whether supplementation with vitamin D can reduce H. pylori infection rates.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology, General Hospital of the Western Theater Command, No 270, Tianhui Road, Chengdu, Sichuan Province, 610036, China
| | - Li Ren
- Department of Endocrinology, General Hospital of the Western Theater Command, No 270, Tianhui Road, Chengdu, Sichuan Province, 610036, China
| | - Dapeng Zhong
- Department of Endocrinology, General Hospital of the Western Theater Command, No 270, Tianhui Road, Chengdu, Sichuan Province, 610036, China
| | - Wei Zhang
- Department of Endocrinology, General Hospital of the Western Theater Command, No 270, Tianhui Road, Chengdu, Sichuan Province, 610036, China
| | - Wen Wen Li
- Department of Endocrinology, General Hospital of the Western Theater Command, No 270, Tianhui Road, Chengdu, Sichuan Province, 610036, China
| | - Jie Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi Province, 710000, China
| | - Chuan Han
- Department of Endocrinology, General Hospital of the Western Theater Command, No 270, Tianhui Road, Chengdu, Sichuan Province, 610036, China.
| |
Collapse
|
22
|
Sun P, Cui M, Jing J, Kong F, Wang S, Tang L, Leng J, Chen K. Deciphering the molecular and cellular atlas of immune cells in septic patients with different bacterial infections. J Transl Med 2023; 21:777. [PMID: 37919720 PMCID: PMC10621118 DOI: 10.1186/s12967-023-04631-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by abnormal immune responses to various, predominantly bacterial, infections. Different bacterial infections lead to substantial variation in disease manifestation and therapeutic strategies. However, the underlying cellular heterogeneity and mechanisms involved remain poorly understood. METHODS Multiple bulk transcriptome datasets from septic patients with 12 types of bacterial infections were integrated to identify signature genes for each infection. Signature genes were mapped onto an integrated large single-cell RNA (scRNA) dataset from septic patients, to identify subsets of cells associated with different sepsis types, and multiple omics datasets were combined to reveal the underlying molecular mechanisms. In addition, an scRNA dataset and spatial transcriptome data were used to identify signaling pathways in sepsis-related cells. Finally, molecular screening, optimization, and de novo design were conducted to identify potential targeted drugs and compounds. RESULTS We elucidated the cellular heterogeneity among septic patients with different bacterial infections. In Escherichia coli (E. coli) sepsis, 19 signature genes involved in epigenetic regulation and metabolism were identified, of which DRAM1 was demonstrated to promote autophagy and glycolysis in response to E. coli infection. DRAM1 upregulation was confirmed in an independent sepsis cohort. Further, we showed that DRAM1 could maintain survival of a pro-inflammatory monocyte subset, C10_ULK1, which induces systemic inflammation by interacting with other cell subsets via resistin and integrin signaling pathways in blood and kidney tissue, respectively. Finally, retapamulin was identified and optimized as a potential drug for treatment of E. coli sepsis targeting the signature gene, DRAM1, and inhibiting E. coli protein synthesis. Several other targeted drugs were also identified in other types of sepsis, including nystatin targeting C1QA in Neisseria sepsis and dalfopristin targeting CTSD in Streptococcus viridans sepsis. CONCLUSION Our study provides a comprehensive overview of the cellular heterogeneity and underlying mechanisms in septic patients with various bacterial infections, providing insights to inform development of stratified targeted therapies for sepsis.
Collapse
Affiliation(s)
- Ping Sun
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Mintian Cui
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Fanyu Kong
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shixi Wang
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Lunxian Tang
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Junling Leng
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Jaratsittisin J, Sornjai W, Chailangkarn T, Jongkaewwattana A, Smith DR. The vitamin D receptor agonist EB1089 can exert its antiviral activity independently of the vitamin D receptor. PLoS One 2023; 18:e0293010. [PMID: 37847693 PMCID: PMC10581485 DOI: 10.1371/journal.pone.0293010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR. To undertake this, VDR was successively overexpressed, knocked down and retargeted through mutation of the nuclear localization signal. In no case was an effect seen on the level of the antiviral activity induced by EB1089, strongly indicating that the antiviral activity of EB1089 is not exerted through VDR. To further explore the antiviral activity of EB1089 in a more biologically relevant system, human neural progenitor cells were differentiated from induced pluripotent stem cells, and infected with Zika virus (ZIKV). EB1089 exerted a significant antiviral effect, reducing virus titers by some 2Log10. In support of the results seen with DENV, no expression of VDR at the protein level was observed. Collectively, these results show that the vitamin D receptor agonist EB1089 exerts its antiviral activity independently of VDR.
Collapse
Affiliation(s)
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| |
Collapse
|
24
|
Nabavi-Rad A, Yadegar A, Sadeghi A, Aghdaei HA, Zali MR, Klionsky DJ, Yamaoka Y. The interaction between autophagy, Helicobacter pylori, and gut microbiota in gastric carcinogenesis. Trends Microbiol 2023; 31:1024-1043. [PMID: 37120362 PMCID: PMC10523907 DOI: 10.1016/j.tim.2023.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Chronic infection with Helicobacter pylori is the primary risk factor for the development of gastric cancer. Hindering our ability to comprehend the precise role of autophagy during H. pylori infection is the complexity of context-dependent autophagy signaling pathways. Recent and ongoing progress in understanding H. pylori virulence allows new frontiers of research for the crosstalk between autophagy and H. pylori. Novel approaches toward discovering autophagy signaling networks have further revealed their critical influence on the structure of gut microbiota and the metabolome. Here we intend to present a holistic view of the perplexing role of autophagy in H. pylori pathogenesis and carcinogenesis. We also discuss the intermediate role of autophagy in H. pylori-mediated modification of gut inflammatory responses and microbiota structure.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA; Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan.
| |
Collapse
|
25
|
Săsăran MO, Mărginean CO, Lupu A, Koller AM. Vitamin D and Its Association with H. pylori Prevalence and Eradication: A Comprehensive Review. Nutrients 2023; 15:3549. [PMID: 37630738 PMCID: PMC10459106 DOI: 10.3390/nu15163549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Taking into account previous data that sustain a relationship between vitamin D deficiency and higher H. pylori infection positivity rates, this review aims to assess the influence of vitamin D deficiency and/or insufficiency upon the prevalence of H. pylori infection and its eradication success. Three major databases were searched for articles that analyzed a relationship between vitamin D status and H. pylori infection. The literature search retrieved a total of 37 reports, after the article selection process. Hypovitaminosis D emerged as a potential risk factor for H. pylori infection, given the higher prevalence of vitamin D deficiency and/or insufficiency among H. pylori-positive subjects. Furthermore, the same type of micronutrient deficiency has been directly linked to H. pylori eradication failure. An inverse linear relationship between vitamin D status and gastric cancer risk exists, but the additional involvement of H. pylori in this correlation is still in question. The potential benefit of oral supplements in enhancing the success of classical therapeutic regimens of H. pylori still requires future research. Future population-based studies from larger geographical areas are warranted to address this subject in more depth.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics 1, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| | - Ancuta Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No. 16, 700115 Iași, Romania;
| | - Ana Maria Koller
- Clinics of Pediatrics, Emergency County Clinical Hospital, Gheorghe Marinescu Street No. 50, 540136 Târgu Mureș, Romania;
| |
Collapse
|
26
|
Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The Synaptic and Circuit Functions of Vitamin D in Neurodevelopment Disorders. Neuropsychiatr Dis Treat 2023; 19:1515-1530. [PMID: 37424961 PMCID: PMC10327924 DOI: 10.2147/ndt.s407731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Vitamin D deficiency/insufficiency is a public health issue around the world. According to epidemiological studies, low vitamin D levels have been associated with an increased risk of some neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). Animal models reveal that vitamin D has a variety of impacts on the synapses and circuits in the brain. A lack of vitamin D affects the expression of synaptic proteins, as well as the synthesis and metabolism of various neurotransmitters. Depending on where vitamin D receptors (VDRs) are expressed, vitamin D may also regulate certain neuronal circuits through the endocannabinoid signaling, mTOR pathway and oxytocin signaling. While inconsistently, some data suggest that vitamin D supplementation may be able to reduce the core symptoms of ASD and ADHD. This review emphasizes vitamin D's role in the synaptic and circuit mechanisms of neurodevelopmental disorders including ASD and ADHD. Future application of vitamin D in these disorders will depend on both basic research and clinical studies, in order to make the transition from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaoshan Ye
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| | - Qionglin Zhou
- International School of Public Health and One Health, Hainan Medical University, Haikou, People’s Republic of China
| | - Pengcheng Ren
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, People’s Republic of China
| | - Wei Xiang
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, People’s Republic of China
| | - Le Xiao
- Hainan Women and Children’s Medical Center, School of Pediatrics, Hainan Medical University, Haikou, People’s Republic of China
| |
Collapse
|
27
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
28
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
29
|
Nabavi-Rad A, Jamshidizadeh S, Azizi M, Yadegar A, Robinson K, Monaghan TM, Zali MR. The synergistic effect of Levilactobacillus brevis IBRC-M10790 and vitamin D3 on Helicobacter pylori-induced inflammation. Front Cell Infect Microbiol 2023; 13:1171469. [PMID: 37216180 PMCID: PMC10196258 DOI: 10.3389/fcimb.2023.1171469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background Owing to the emergence and spread of multidrug resistance mechanisms in Helicobacter pylori, achieving a successful eradication has become exceedingly difficult. Thus, this study for the first time determines the effect of a combination of vitamin D3 and probiotic on the pathogenesis and treatment of H. pylori. Methods We established an in vitro experimental system using AGS human gastric carcinoma cells and explored the synergistic effect of Levilactobacillus brevis IBRC-M10790 and vitamin D3 on H. pylori. Live and pasteurized L. brevis, L. brevis-derived membrane vesicles (MVs), and L. brevis cell-free supernatant (CFS), as well as their combination with vitamin D3 were used during this study. We assessed the anti-inflammatory and anti-oxidative effects of these combinations using RT-qPCR and ELISA, respectively. We further performed an adhesion assay to evaluate the influence of L. brevis and vitamin D3 on the adherence rate of H. pylori to AGS cells. Results Our results demonstrated that L. brevis and vitamin D3 possess anti-inflammatory and anti-oxidative effects against H. pylori infection in AGS cells. The combination of vitamin D3 with the probiotic strain (particularly live L. brevis and its CFS) can more efficiently reduce the expression of pro-inflammatory cytokines IL-6, IL-8, IFN-γ, and TNF-α in the AGS cells. Moreover, vitamin D3 and L. brevis exhibited an additive impact preserving the integrity of the epithelial barrier by increasing the expression of the tight junction protein ZO-1. Furthermore, this combination can potentially reduce H. pylori adherence to AGS cells. Conclusions This study indicates the advantage of combining vitamin D3 and probiotic to attenuate H. pylori-induced inflammation and oxidative stress. Consequently, probiotic and vitamin D3 co-supplementation can be considered as a novel therapeutic approach to manage and prevent H. pylori infection.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Jamshidizadeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azizi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karen Robinson
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Khan U, Karmakar BC, Basak P, Paul S, Gope A, Sarkar D, Mukhopadhyay AK, Dutta S, Bhattacharya S. Glycyrrhizin, an inhibitor of HMGB1 induces autolysosomal degradation function and inhibits Helicobacter pylori infection. Mol Med 2023; 29:51. [PMID: 37038107 PMCID: PMC10088177 DOI: 10.1186/s10020-023-00641-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a key agent for causing gastric complications linked with gastric disorders. In response to infection, host cells stimulate autophagy to maintain cellular homeostasis. However, H. pylori have evolved the ability to usurp the host's autophagic machinery. High mobility group box1 (HMGB1), an alarmin molecule is a regulator of autophagy and its expression is augmented during infection and gastric cancer. Therefore, this study aims to explore the role of glycyrrhizin (a known inhibitor of HMGB1) in autophagy during H. pylori infection. MAIN METHODS Human gastric cancer (AGS) cells were infected with the H. pylori SS1 strain and further treatment was done with glycyrrhizin. Western blot was used to examine the expression of autophagy proteins. Autophagy and lysosomal activity were monitored by fluorescence assays. A knockdown of HMGB1 was performed to verify the effect of glycyrrhizin. H. pylori infection in in vivo mice model was established and the effect of glycyrrhizin treatment was studied. RESULTS The autophagy-lysosomal pathway was impaired due to an increase in lysosomal membrane permeabilization during H. pylori infection in AGS cells. Subsequently, glycyrrhizin treatment restored the lysosomal membrane integrity. The recovered lysosomal function enhanced autolysosome formation and concomitantly attenuated the intracellular H. pylori growth by eliminating the pathogenic niche. Additionally, glycyrrhizin treatment inhibited inflammation and improved gastric tissue damage in mice. CONCLUSION This study showed that inhibiting HMGB1 restored lysosomal activity to ameliorate H. pylori infection. It also demonstrated the potential of glycyrrhizin as an antibacterial agent to address the problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Uzma Khan
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Bipul Chandra Karmakar
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Priyanka Basak
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Sangita Paul
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Animesh Gope
- Division of Clinical Medicine, ICMR-NICED, ICMR- National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Deotima Sarkar
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India
| | - Sushmita Bhattacharya
- Division of Biochemistry ICMR-NICED, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, 700010, India.
| |
Collapse
|
31
|
Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. NANOSCALE 2023; 15:4781-4794. [PMID: 36779877 DOI: 10.1039/d2nr05421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing emergence and dissemination of antibiotic resistance pose a severe threat to overwhelming healthcare practices worldwide. The lack of new antibacterial drugs urgently calls for alternative therapeutic strategies to combat multidrug-resistant (MDR) bacterial pathogens, especially those that survive and replicate in host cells, causing relapse and recurrence of infections. Intracellular drug delivery is a direct efficient strategy to combat invasive pathogens by increasing the accumulation of antibiotics. However, the increased accumulation of antibiotics in the infected host cells does not mean high efficacy. The difficulty of treatment lies in the efficient intracellular delivery of antibiotics to the pathogen-containing compartments. Here, we first briefly review the survival mechanisms of intracellular bacteria to facilitate the exploration of potential antibacterial targets for precise delivery. Furthermore, we provide an overview of endocytosis-mediated drug delivery systems, including the biomedical and physicochemical properties modulating the endocytosis and intracellular redistribution of antibiotics. Lastly, we summarize the targets and payloads of recently described intracellular delivery systems and their modes of action against diverse pathogenic bacteria-associated infections. This overview of endocytosis-mediated redistribution of antibiotics sheds light on the development of novel delivery platforms and alternative strategies to combat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
- Engineering Research Center of Animal Innovative drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Yuan S, Jiang SC, Zhang ZW, Fu YF, Yang XY, Li ZL, Hu J. Rethinking of Alzheimer's disease: Lysosomal overloading and dietary therapy. Front Aging Neurosci 2023; 15:1130658. [PMID: 36861123 PMCID: PMC9968973 DOI: 10.3389/fnagi.2023.1130658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China,*Correspondence: Shu Yuan ✉
| | - Si-Cong Jiang
- Haisco Pharmaceutical Group Comp. Ltd., Chengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi'an, China
| | - Jing Hu
- School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
33
|
Visalli G, Laganà A, Lo Giudice D, Calimeri S, Caccamo D, Trainito A, Di Pietro A, Facciolà A. Towards a Future of Personalized Vaccinology: Study on Individual Variables Influencing the Antibody Response to the COVID-19 Vaccine. Vaccines (Basel) 2023; 11:217. [PMID: 36851095 PMCID: PMC9961107 DOI: 10.3390/vaccines11020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The COVID-19 pandemic has hugely impacted many different aspects of human health, and vaccination is one of the most effective weapons to manage it. However, many different factors, such as age, gender, comorbidities and lifestyles, play a role in the response to infections and vaccines. We carried out this study to evaluate the potential role played by some individual factors in the production of anti-COVID-19 antibodies in the light of personalized and future vaccinology. We conducted an observational study consisting of a retrospective phase, exploiting previous data about anti-COVID-19 antibody responses, with a prospective phase to investigate individual variables through the use of a questionnaire. The antibody response after the COVID-19 vaccination was inversely related to old age, increased BMI and the number of smoking years, while a positive correlation was found with moderate alcohol consumption and especially with circulating levels of vitamin D, as clearly shown by the multivariate regression analysis. Our study showed that a number of variables are involved in the COVID-19 vaccine antibody response. These findings are very important and can be considered in the light of a future and personalized vaccinology.
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche S.p.A., 98124 Messina, Italy
| | - Daniela Lo Giudice
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Calimeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Alessandra Trainito
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| |
Collapse
|
34
|
Ma PF, Dai Q, Chu J, Zhuo L, Chen Y, Cheng R, Wu C, Yuan LP. 25-hydroxyvitamin D levels in children of different ages and with varying degrees of Helicobacter pylori infection and immunological features. Front Pediatr 2023; 11:1157777. [PMID: 37138564 PMCID: PMC10149923 DOI: 10.3389/fped.2023.1157777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Helicobacter pylori (HP) is a major cause of upper digestive tract diseases. However, the relationship between HP infection and 25-hydroxyvitamin D [25(OH)D] levels in children has not been fully elucidated. This study investigated the levels of 25(OH)D in children of different ages and with varying degrees of HP infection and immunological features as well as the correlations between 25(OH)D levels in children infected with HP and their ages and degrees of infection. Materials and methods Ninety-four children who underwent upper digestive endoscopy were divided into an HP-positive group without peptic ulcers (Group A), an HP-positive group with peptic ulcers (Group B) and an HP-negative control group (Group C). The serum levels of 25(OH)D and immunoglobulin and the percentages of lymphocyte subsets were determined. HP colonization, the degree of inflammation, and the degree of activity were further evaluated by HE staining and immunohistochemical staining in gastric mucosal biopsy. Results The 25(OH)D level of the HP-positive groups (50.93 ± 16.51 nmol/L) was significantly lower than that of the HP-negative group (62.89 ± 19.18 nmol/L). The 25(OH)D level of Group B (47.79 ± 14.79 nmol/L) was lower than that of Group A (51.53 ± 17.05 nmol/L) and was significantly lower than that of Group C (62.89 ± 19.18 nmol/L). The 25(OH)D level decreased with increasing age, and there was a significant difference between Group C subjects who were ≤5 years old and those who were aged 6-9 years and ≥10 years. The 25(OH)D level was negatively correlated with HP colonization (r = -0.411, P < 0.01) and the degree of inflammation (r = -0.456, P < 0.01). The percentages of lymphocyte subsets and immunoglobulin levels among Groups A, B and C were not significantly different. Conclusions The 25(OH)D level was negatively correlated with HP colonization and the degree of inflammation. As the age of the children increased, the level of 25(OH)D decreased, and the susceptibility to HP infection increased.
Collapse
Affiliation(s)
- Peng-fei Ma
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Qun Dai
- Department of Pathology, The Third People's Hospital of Hefei, Anhui Medical University Hefei Third Clinical College, Hefei, China
| | - Jing Chu
- Department of Pathology, Children'sHospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Lin Zhuo
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Yi Chen
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Cheng Wu
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Correspondence: Li-Ping Yuan
| |
Collapse
|
35
|
Zhang Y, Wang C, Zhang L, Yu J, Yuan W, Li L. Vitamin D 3 eradicates Helicobacter pylori by inducing VDR-CAMP signaling. Front Microbiol 2022; 13:1033201. [PMID: 36569092 PMCID: PMC9772467 DOI: 10.3389/fmicb.2022.1033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background Vitamin D3 [VitD3, 1,25 (OH)2D3] is known to have immunomodulatory and anti-microbial properties; however, its activity against Helicobacter pylori is unclear. In this study, we established H. pylori infection models in wild-type and VitD3 receptor (VDR) knockdown mice and analyzed the effects of VitD3 and their underlying mechanisms. Methods VDR+/+ and VDR+/- mice were intragastrically infected with the H. pylori SS1 strain. After confirmation of H. pylori infection, mice were treated with different doses of VitD3. The infection levels in stomach tissues were quantified using the colony-forming assay, and the expression levels of the VDR and cathelicidin antimicrobial peptide (CAMP) in the gastric mucosa were analyzed by immunohistochemistry and western blotting. Results The gastric mucosa of VDR+/- mice was more susceptible to H. pylori colonization and had lower levels of VDR and CAMP expression than that of VDR+/+ mice. H. pylori infection upregulated VDR and CAMP expression in the stomach of both wild-type and mutant mice, and VitD3 treatment resulted in further increase of VDR and CAMP levels, while significantly and dose-dependently decreasing the H. pylori colonization rate in both mouse groups, without affecting blood calcium or phosphorus levels. Conclusion Our data indicate that oral administration of VitD3 reduces the H. pylori colonization rate and upregulates VDR and CAMP expression in the gastric mucosa, suggesting a role for VitD3/VDR/CAMP signaling in the eradication of H. pylori in the stomach. These findings provide important insights into the mechanism underlying the anti-H. pylori activity of VitD3 and should be useful in the development of measures to eradicate H. pylori.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chunya Wang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Li Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jie Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Wenjie Yuan
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lei Li
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, China,*Correspondence: Lei Li,
| |
Collapse
|
36
|
Żmijewski MA. Nongenomic Activities of Vitamin D. Nutrients 2022; 14:nu14235104. [PMID: 36501134 PMCID: PMC9737885 DOI: 10.3390/nu14235104] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin D shows a variety of pleiotropic activities which cannot be fully explained by the stimulation of classic pathway- and vitamin D receptor (VDR)-dependent transcriptional modulation. Thus, existence of rapid and nongenomic responses to vitamin D was suggested. An active form of vitamin D (calcitriol, 1,25(OH)2D3) is an essential regulator of calcium-phosphate homeostasis, and this process is tightly regulated by VDR genomic activity. However, it seems that early in evolution, the production of secosteroids (vitamin-D-like steroids) and their subsequent photodegradation served as a protective mechanism against ultraviolet radiation and oxidative stress. Consequently, direct cell-protective activities of vitamin D were proven. Furthermore, calcitriol triggers rapid calcium influx through epithelia and its uptake by a variety of cells. Subsequently, protein disulfide-isomerase A3 (PDIA3) was described as a membrane vitamin D receptor responsible for rapid nongenomic responses. Vitamin D was also found to stimulate a release of secondary massagers and modulate several intracellular processes-including cell cycle, proliferation, or immune responses-through wingless (WNT), sonic hedgehog (SSH), STAT1-3, or NF-kappaB pathways. Megalin and its coreceptor, cubilin, facilitate the import of vitamin D complex with vitamin-D-binding protein (DBP), and its involvement in rapid membrane responses was suggested. Vitamin D also directly and indirectly influences mitochondrial function, including fusion-fission, energy production, mitochondrial membrane potential, activity of ion channels, and apoptosis. Although mechanisms of the nongenomic responses to vitamin D are still not fully understood, in this review, their impact on physiology, pathology, and potential clinical applications will be discussed.
Collapse
Affiliation(s)
- Michał A Żmijewski
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, PL-80211 Gdańsk, Poland
| |
Collapse
|
37
|
Zhao S, Wan D, Zhong Y, Xu X. 1α, 25-Dihydroxyvitamin D3 protects gastric mucosa epithelial cells against Helicobacter pylori-infected apoptosis through a vitamin D receptor-dependent c-Raf/MEK/ERK pathway. PHARMACEUTICAL BIOLOGY 2022; 60:801-809. [PMID: 35587225 PMCID: PMC9122358 DOI: 10.1080/13880209.2022.2058559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 05/19/2023]
Abstract
CONTEXT Due to the resistance of Helicobacter pylori to antibiotics, it is difficult to eradicate this pathogenic bacterium from the host. The role of 1α, 25-dihydroxyvitamin D3 (1,25-D3) in H. pylori-infected gastric mucosa epithelial cells remains unknown. OBJECTIVE This study investigates the protective property of 1,25-D3 against H. pylori-infected apoptosis in gastric mucosa epithelial cells and its potential molecular mechanisms. MATERIALS AND METHODS GES-1 cells were infected with H. pylori SS1 strain (MOI: 100) and treated with 1,25-D3 at 100, 200, and 300 nM for 24 h. Mice were orally gavaged with 108 CFUs of H. pylori and 25 µg/kg 1,25-D3 every other day for 1 month. CCK-8, LDH assay, TUNEL assay and western blot were used to determine the effect of 1,25-D3 on H. pylori-induced apoptosis. RESULTS H. pylori infection decreased cell viability to 59.2%, while 100-300 nM 1,25-D3 increased cell viability to 62.2%, 78.4% and 87.1%, respectively. Compared with positive control (4.53-fold), 1,25-D3 reduced caspase-3 activity to 4.49-, 2.88- and 1.49-fold, reduced caspase-6 activity to 2.36-, 1.88- and 1.50-fold, reduced caspase-9 activity to 4.55-, 2.91- and 2.01-fold. 1,25-D3 alters Bcl-2 family, caspase protein expression and c-Raf/MEK/ERK phosphorylation levels in vivo and in vitro. Suppression of 1,25-D3 in apoptosis was reliant on binding to vitamin D receptor. The pharmacological inhibition of c-Raf/MEK/ERK phosphorylation blocked the anti-apoptotic effect of 1,25-D3. DISCUSSION AND CONCLUSION 1,25-D3 protected gastric mucosa epithelial cells against H. pylori-infected apoptosis through a VDR-dependent c-Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Pediatric Department of Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Daihong Wan
- Pediatric Department of Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yaoyao Zhong
- Pediatric Department of Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Xiwei Xu
- Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- CONTACT Xiwei Xu Department of Gastroenterology, Beijing Children’s Hospital, Capital Medical Universtiy, National Center for Children’s Health, Beijing100045, China
| |
Collapse
|
38
|
Almeida RS, Wisnieski F, Takao Real Karia B, Smith MAC. CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Genes (Basel) 2022; 13:2029. [PMID: 36360266 PMCID: PMC9690943 DOI: 10.3390/genes13112029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/09/2023] Open
Abstract
Gastric cancer is the subject of clinical and basic studies due to its high incidence and mortality rates worldwide. Due to the diagnosis occurring in advanced stages and the classic treatment methodologies such as gastrectomy and chemotherapy, they are extremely aggressive and limit the quality of life of these patients. CRISPR/Cas9 is a tool that allows gene editing and has been used to explore the functions of genes related to gastric cancer, in addition to being used in the treatment of this neoplasm, greatly increasing our understanding of cancer genomics. In this mini-review, we seek the current status of the CRISPR/Cas9 gene-editing technology in gastric cancer research and clinical research.
Collapse
Affiliation(s)
- Renata Sanches Almeida
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Fernanda Wisnieski
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
- Discipline of Gastroenterology, Department of Medicine, Federal University of São Paulo, Rua Loefgreen, 1726, São Paulo 04040002, Brazil
| | - Bruno Takao Real Karia
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| | - Marilia Arruda Cardoso Smith
- Discipline of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, Rua Botucatu, 740, São Paulo 04023900, Brazil
| |
Collapse
|
39
|
Xu X, He C, Zhu Y. Treatment of refractory Helicobacter pylori infection: A new challenge for clinicians. Front Microbiol 2022; 13:998240. [PMID: 36329840 PMCID: PMC9623003 DOI: 10.3389/fmicb.2022.998240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Patients who have failed two or more attempts to eradicate Helicobacter pylori are commonly referred to as refractory. Although the incidence of refractory Helicobacter pylori infection is only 10–20%, with the increasing rate of antibiotic resistance in various regions, the treatment of refractory Helicobacter pylori infection has gradually become a difficult problem faced by clinicians. When choosing a rescue therapy, the physician must consider numerous factors. A longer treatment duration, higher doses of proton pump inhibitors (PPIs), or the use of potassium-competitive acid blocker (P-CAB) may increase the efficacy of triple therapy or bismuth quadruple therapy. Rescue treatment based on bismuth quadruple therapy usually achieves better results. At the same time, treatment based on drug susceptibility tests or genotypic resistance is recommended where available. Of course, appropriate empiric treatment can also be selected according to local drug resistance, a patient’s previous medication history and compliance. It is the best choice if it can improve the success rate of the first treatment and reduce the occurrence of refractory Helicobacter pylori infection. This review aims to summarize the articles related to refractory Helicobacter pylori in recent years and to explore a better remedial treatment plan for clinicians.
Collapse
|
40
|
Wherry TLT, Dassanayake RP, Bannantine JP, Mooyottu S, Stabel JR. Vitamin D3 alters macrophage phenotype and endosomal trafficking markers in dairy cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Front Cell Infect Microbiol 2022; 12:1021657. [PMID: 36275033 PMCID: PMC9579537 DOI: 10.3389/fcimb.2022.1021657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Macrophages are important host defense cells in ruminant paratuberculosis (Johne’s Disease; JD), a chronic enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). Classical macrophage functions of pathogen trafficking, degradation, and antigen presentation are interrupted in mycobacterial infection. Immunologic stimulation by 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) enhances bovine macrophage function. The present study aimed to investigate the role of vitamin D3 on macrophage phenotype and endosomal trafficking of MAP in monocyte-derived macrophages (MDMs) cultured from JD-, JD+ subclinical, and JD+ clinically infected cattle. MDMs were pre-treated 100 ng/ml 25(OH)D3 or 4 ng/ml 1,25(OH)2D3 and incubated 24 hrs with MAP at 10:1 multiplicity of infection (MOI). In vitro MAP infection upregulated pro-inflammatory (M1) CD80 and downregulated resolution/repair (M2) CD163. Vitamin D3 generally decreased CD80 and increased CD163 expression. Furthermore, early endosomal marker Rab5 was upregulated 140× across all stages of paratuberculosis infection following in vitro MAP infection; however, Rab5 was reduced in MAP-activated MDMs from JD+ subclinical and JD+ clinical cows compared to healthy controls. Rab7 expression decreased in control and clinical cows following MDM infection with MAP. Both forms of vitamin D3 reduced Rab5 expression in infected MDMs from JD- control cows, while 1,25(OH)2D3 decreased Rab7 expression in JD- and JD+ subclinical animals regardless of MAP infection in vitro. Vitamin D3 promoted phagocytosis in MDMs from JD- and JD+ clinical cows treated with either vitamin D3 analog. Results from this study show exogenous vitamin D3 influences macrophage M1/M2 polarization and Rab GTPase expression within MDM culture.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | - Shankumar Mooyottu
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Ames, IA, United States
- *Correspondence: Judith R. Stabel,
| |
Collapse
|
41
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
42
|
Yu ZH, Cao M, Wang YX, Yan SY, Qing LT, Wu CM, Li S, Li TY, Chen Q, Zhao J. Urolithin A Attenuates Helicobacter pylori-Induced Damage In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11981-11993. [PMID: 36106620 DOI: 10.1021/acs.jafc.2c03711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Urolithin A (UA) is a metabolite produced in the gut following the consumption of ellagic acid (EA) rich foods. EA has shown anti-inflammatory, antioxidant, and anticancer properties. Because EA is poorly absorbed in the gastrointestinal tract, urolithins are considered to play a major role in bioactivity. Helicobacter pylori (H. pylori) infection is the most common chronic bacterial infection all over the world. It is potentially hazardous to humans because of its relationship to various gastrointestinal diseases. In this study, we investigated the effect of UA on inflammation by H. pylori. The results indicated that UA attenuated H. pylori-induced inflammation in vitro and in vivo. UA also reduced the secretion of H. pylori virulence factors and tissue injuries in mice. Furthermore, UA decreased the relative abundance of Helicobacteraceae in feces of H. pylori-infected mice. In summary, taking UA effectively inhibited the injury caused by H. pylori.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan-Xiao Wang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shi-Ying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Ting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cheng-Meng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shu Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tian-Yi Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Chen
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
43
|
Tang J, Gu L, Luo J, Luo H, Zeng Q, Jiang Y. 1,25(OH) 2D 3 promotes the elimination of Klebsiella pneumoniae infection by inducing autophagy through the VDR-ATG16L1 pathway. Int Immunopharmacol 2022; 112:109266. [PMID: 36174418 DOI: 10.1016/j.intimp.2022.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Previous studies have shown that vitamin D has regulatory functions in both innate and adaptive immune responses, indicating that it can perform essential roles in host resistance to pathogen infections. This study aimed to verify its effects on Klebsiella pneumoniae (Kp) infection and explore the underlying mechanisms. METHODS THP-1-derived macrophages were infected with Kp and then incubated with 1,25(OH)2D3. Autophagy induced by 1,25(OH)2D3 was investigated by western blotting and immunofluorescence. Real-time PCR (qPCR) was performed to determine the expression of inflammatory mediators. Baf A1 and 3-MA were used to inhibit autophagy. The intracellular killing of Kp was measured using qPCR and colony-forming unit assays. RNA interference assays were used to silence VDR or ATG16L1. The lungs of C57BL/6 mice were infected with Kp via intratracheal instillation, and the established pneumonia models were used for in vivo validation experiments. RESULTS Treatment with 1,25(OH)2D3 enhanced the bactericidal activity of macrophages and concomitantly reduced the expression of the pro-inflammatory mediators TNF-α and IL-6. Kp infection led to a lower expression level of VDR in macrophages than in the control, whereas co-treatment with 1,25(OH)2D3 up-regulated VDR expression and robustly induced autophagy via the VDR signaling pathway. Silencing ATG16L1 significantly counteracted autophagy induced by 1,25(OH)2D3 in Kp-infected macrophages. Furthermore, we found that when autophagy activity was diminished by ATG16L1 siRNA or blocked by Baf A1, the ability of 1,25(OH)2D3 to promote macrophages to eliminate Kp infection was obviously impaired, as were its anti-inflammatory effects. These protective efficacies of 1,25(OH)2D3 against Kp infection were also validated in vivo using a mouse model of pneumonia. CONCLUSIONS The present study demonstrated the protective features of 1,25(OH)2D3 in macrophages against Kp infection and may provide evidence for further exploration of its potential as an adjunctive therapy agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Jinhui Tang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, and State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Liwen Gu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jieyu Luo
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, and State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Qingli Zeng
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, and State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
44
|
Antifungal activity of vitamin D 3 against Candida albicans in vitro and in vivo. Microbiol Res 2022; 265:127200. [PMID: 36162148 DOI: 10.1016/j.micres.2022.127200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/04/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
The incidence of intra-abdominal candidiasis (IAC), characterized by high morbidity and mortality, has become a serious concern. The limitations of current antifungal drugs on the market underscores the importance of the development of novel antifungal agents. In the present study, the antifungal activity of vitamin D3 (VD3) against various Candida species was investigated. In vitro, the broth microdilution method and solid plate assay confirmed that VD3 inhibited the growth of Candida spp. in a broad-spectrum, dose-dependent manner. VD3 also had a significant antifungal effect on the initiation, development, and maturation phases of biofilm formation in Candida albicans. The mechanism of VD3 action was explored by transcriptomics and reverse transcription quantitative PCR (RT-qPCR) analysis, and showed that VD3 affects ribosome biogenesis, coenzyme metabolism, and carbon metabolism. These results suggested that VD3 may have multitarget effects against C. albicans. In the murine IAC model, VD3 reduced the fungal burden in the liver, kidneys, and small intestine. Further histopathological analysis and quantification of plasma cytokine levels confirmed that VD3 treatment significantly decreased the infiltration of inflammatory cells and the levels of plasma interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Taken together, these findings suggest a new antifungal mechanism for VD3 and indicate that VD3 could be an effective therapeutic agent for use in IAC treatment.
Collapse
|
45
|
Host Cell Antimicrobial Responses against Helicobacter pylori Infection: From Biological Aspects to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms231810941. [PMID: 36142852 PMCID: PMC9504325 DOI: 10.3390/ijms231810941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023] Open
Abstract
The colonization of Helicobacter pylori (H. pylori) in human gastric mucosa is highly associated with the occurrence of gastritis, peptic ulcer, and gastric cancer. Antibiotics, including amoxicillin, clarithromycin, furazolidone, levofloxacin, metronidazole, and tetracycline, are commonly used and considered the major treatment regimens for H. pylori eradication, which is, however, becoming less effective by the increasing prevalence of H pylori resistance. Thus, it is urgent to understand the molecular mechanisms of H. pylori pathogenesis and develop alternative therapeutic strategies. In this review, we focus on the virulence factors for H. pylori colonization and survival within host gastric mucosa and the host antimicrobial responses against H. pylori infection. Moreover, we describe the current treatments for H. pylori eradication and provide some insights into new therapeutic strategies for H. pylori infection.
Collapse
|
46
|
Wherry TLT, Stabel JR. Bovine Immunity and Vitamin D 3: An Emerging Association in Johne's Disease. Microorganisms 2022; 10:1865. [PMID: 36144467 PMCID: PMC9500906 DOI: 10.3390/microorganisms10091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is an environmentally hardy pathogen of ruminants that plagues the dairy industry. Hallmark clinical symptoms include granulomatous enteritis, watery diarrhea, and significant loss of body condition. Transition from subclinical to clinical infection is a dynamic process led by MAP which resides in host macrophages. Clinical stage disease is accompanied by dysfunctional immune responses and a reduction in circulating vitamin D3. The immunomodulatory role of vitamin D3 in infectious disease has been well established in humans, particularly in Mycobacterium tuberculosis infection. However, significant species differences exist between the immune system of humans and bovines, including effects induced by vitamin D3. This fact highlights the need for continued study of the relationship between vitamin D3 and bovine immunity, especially during different stages of paratuberculosis.
Collapse
Affiliation(s)
- Taylor L. T. Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| | - Judith R. Stabel
- Infectious Bacterial Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), National Animal Disease Center, Ames, IA 50010, USA
| |
Collapse
|
47
|
Shao BZ, Chai NL, Yao Y, Li JP, Law HKW, Linghu EQ. Autophagy in gastrointestinal cancers. Front Oncol 2022; 12:975758. [PMID: 36091106 PMCID: PMC9459114 DOI: 10.3389/fonc.2022.975758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancers are a group of cancers occurred in gastrointestinal tissues with high morbidity and mortality rate. Although numerous studies were conducted on the investigation of gastrointestinal cancers, the real mechanisms haven’t been discovered, and no effective methods of prevention and treatment of gastrointestinal cancers have been developed. Autophagy, a vital catabolic process in organisms, have been proven to participate in various mechanisms and signaling pathways, thus producing a regulatory effect on various diseases. The role of autophagy in gastrointestinal cancers remains unclear due to its high complexity. In this review, firstly, the biological features of autophagy will be introduced. Secondly, the role of autophagy in three popular gastrointestinal cancers, namely esophageal cancer, gastric cancer, and colorectal cancer will be described and discussed by reviewing the related literature. We aimed to bring novel insights in exploring the real mechanisms for gastrointestinal cancers and developing effective and efficient therapeutic methods to treat gastrointestinal cancers.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
- *Correspondence: En-Qiang Linghu, ; Helen Ka Wai Law, ; Bo-Zong Shao,
| | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yi Yao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin-Ping Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
- *Correspondence: En-Qiang Linghu, ; Helen Ka Wai Law, ; Bo-Zong Shao,
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
- *Correspondence: En-Qiang Linghu, ; Helen Ka Wai Law, ; Bo-Zong Shao,
| |
Collapse
|
48
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Basak P, Maitra P, Khan U, Saha K, Bhattacharya SS, Dutta M, Bhattacharya S. Capsaicin Inhibits Shigella flexneri Intracellular Growth by Inducing Autophagy. Front Pharmacol 2022; 13:903438. [PMID: 35873583 PMCID: PMC9298657 DOI: 10.3389/fphar.2022.903438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic treatment plays an essential role in preventing Shigella infection. However, incidences of global rise in antibiotic resistance create a major challenge to treat bacterial infection. In this context, there is an urgent need for newer approaches to reduce S. flexneri burden. This study largely focuses on the role of the herbal compound capsaicin (Caps) in inhibiting S. flexneri growth and evaluating the molecular mechanism behind bacterial clearance. Here, we show for the first time that Caps inhibits intracellular S. flexneri growth by inducing autophagy. Activation of autophagy by Caps is mediated through transcription factor TFEB, a master regulator of autophagosome biogenesis. Caps induced the nuclear localization of TFEB. Activation of TFEB further induces the gene transcription of autophagosomal genes. Our findings revealed that the inhibition of autophagy by silencing TFEB and Atg5 induces bacterial growth. Hence, Caps-induced autophagy is one of the key factors responsible for bacterial clearance. Moreover, Caps restricted the intracellular proliferation of S. flexneri-resistant strain. The efficacy of Caps in reducing S. flexneri growth was confirmed by an animal model. This study showed for the first time that S. flexneri infection can be inhibited by inducing autophagy. Overall observations suggest that Caps activates TFEB to induce autophagy and thereby combat S. flexneri infection.
Collapse
Affiliation(s)
- Priyanka Basak
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Priyanka Maitra
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Uzma Khan
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Kalyani Saha
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Moumita Dutta
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sushmita Bhattacharya
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
50
|
Liu YC, Yang YD, Liu WQ, Du TT, Wang R, Ji M, Yang BB, Li L, Chen XG. Benzobis(imidazole) derivatives as STAT3 signal inhibitors with antitumor activity. Bioorg Med Chem 2022; 65:116757. [PMID: 35504209 DOI: 10.1016/j.bmc.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic systems have been considered good biological probes, but some may also be good scaffolds for drug development. In this study, a series of benzobis(imidazole) derivatives were identified as STAT3 signal inhibitors, among which compound 24 showed significant inhibition of IL-6 induced JAK/STAT3 signalling pathway activation. Moreover, 24 inhibited cancer cell growth and migration, and induced cell apoptosis as well as cycle arrest in human hepatocellular carcinoma cells (HepG2) and oesophageal carcinoma cells (EC109). Compound 24 also displayed obvious antitumor activity in a mouse HepG2 cell xenograft tumor model without affecting the body weight. These results confirmed that 24 was a potential STAT3 signal inhibitor with certain antitumor activity.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|