1
|
Zhu Y, Chen Z, Niu K, Li M, Deng Y, Zhang J, Wei D, Wang J, Zhao Y. USP33 Regulates DNA Damage Response and Carcinogenesis Through Deubiquitylating and Stabilising p53. Cell Prolif 2024:e13793. [PMID: 39694539 DOI: 10.1111/cpr.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The de-ubiquitinase USP33 has been shown to possess either tumour-promoting or inhibitory effect on human cancer cells. However, all these findings are mainly based on in vitro cell culture models, and the in vivo evidence, which is more plausible to digest the functional role of USP33 in carcinogenic process, is still lacking. Here, we demonstrate that USP33 modulates DNA damage responses including cell cycle arrest and apoptosis induction through associating with p53. It directly interacts with p53 to mediate its de-ubiquitination and further stabilisation under DNA damage condition. Depletion of USP33 induces an enhanced level of p53 ubiquitination, which de-stabilises p53 protein leading to impaired DNA damage responses. Furthermore, USP33 silencing shows either promoted or inhibited effect on cell proliferation in human cancer cells with p53 WT and mutant background, respectively. Consistently, mice with hepatocyte-specific USP33 knockout are more sensitive to nitrosodiethylamine (DEN)-induced hepatocarcinogenesis compared to wild type mice. Thus, our in vitro and in vivo evidences illustrate that USP33 possesses anti-tumour activity via regulating p53 stability and activity.
Collapse
Affiliation(s)
- Yuqi Zhu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zixiang Chen
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Niu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Mengge Li
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuchun Deng
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji Zhang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Wei
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Wang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - YongLiang Zhao
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
3
|
Zhuang H, Ren X, Zhang Y, Li H, Zhou P. β-Hydroxybutyrate enhances chondrocyte mitophagy and reduces cartilage degeneration in osteoarthritis via the HCAR2/AMPK/PINK1/Parkin pathway. Aging Cell 2024; 23:e14294. [PMID: 39126207 PMCID: PMC11561673 DOI: 10.1111/acel.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoarthritis (OA) is widely recognized as the prevailing joint disease associated with aging. The ketogenic diet (KD) has been postulated to impede the advancement of various inflammatory ailments. β-Hydroxybutyrate (βOHB), a prominent constituent of ketone bodies, has recently been proposed to possess crucial signaling capabilities. In this study, we propose to explore the role and mechanism of βOHB in OA. Tissue staining and inflammatory factor assay were employed to evaluate the impacts of KD and βOHB on OA rats. The oxidative stress conditions in chondrocytes were induced using tert-butyl hydroperoxide (TBHP). The mechanisms were determined using the siRNA of hydroxycarboxylic acid receptor 2 (HCAR2), the antagonist of adenosine monophosphate-activated protein kinase (AMPK), and the inhibitor of mitophagy. The administration of KD demonstrated a reduction in pathological damage to cartilage, as well as a decrease in plasma levels of inflammatory factors. Furthermore, it resulted in an increase in the concentration of βOHB in the blood and synovial fluid. In vitro experiments showed that βOHB facilitated mitophagy and adenosine triphosphate production. Besides, βOHB mitigated chondrocyte senescence, inflammatory factors secretion, extracellular matrix degradation, and apoptosis induced by TBHP. Subsequent investigations indicated that the protective effects of βOHB were no longer observed following the knockdown of HCAR2, the antagonist of AMPK, or the inhibitor of mitophagy. Moreover, in vivo studies suggested that βOHB played a protective role by targeting the HCAR2-AMPK-PINK1 axis. In conclusion, βOHB enhanced chondrocyte mitophagy through the HCAR2/AMPK/PINK1/Parkin pathway, offering a potential therapeutic approach for the treatment of OA.
Collapse
Affiliation(s)
- Huangming Zhuang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xunshan Ren
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuelong Zhang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Huajie Li
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Panghu Zhou
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
4
|
Zhou Y, Liao Y, Fan L, Wei X, Huang Q, Yang C, Feng W, Wu Y, Gao X, Shen X, Zhou J, Xia Z, Zhang Z. Lung-Targeted Lipid Nanoparticle-Delivered siUSP33 Attenuates SARS-CoV-2 Replication and Virulence by Promoting Envelope Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406211. [PMID: 39301916 PMCID: PMC11558077 DOI: 10.1002/advs.202406211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
As a structural protein of SARS-CoV-2, the envelope (E) protein not only plays a key role in the formation of viral particles, but also forms ion channels and has pathogenic functions, including triggering cell death and inflammatory responses. The stability of E proteins is controlled by the host ubiquitin-proteasome system. By screening human deubiquitinases, it is found that ubiquitin-specific protease 33 (USP33) can enhance the stability of E proteins depending on its deubiquitinase activity, thereby promoting viral replication. In the absence of USP33, E proteins are rapidly degraded, leading to a reduced viral load and inflammation. Using lipid nanoparticle (LNP) encapsulation of siUSP33 by adjusting the lipid components (ionizable cationic lipids), siUSP33 is successfully delivered to mouse lung tissues, rapidly reducing USP33 expression in the lungs and maintaining knockdown for at least 14 days, effectively suppressing viral replication and virulence. This method of delivery allows efficient targeting of the lungs and a response to acute infections without long-term USP33 deficiency. This research, based on the deubiquitination mechanism of USP33 on the E protein, demonstrates that LNP-mediated siRNA delivery targeting USP33 plays a role in antiviral and anti-inflammatory responses, offering a novel strategy for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuzheng Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yujie Liao
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
| | - Lujie Fan
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Guangzhou LaboratoryGuangzhou510700China
| | - Xiafei Wei
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Qiang Huang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Chuwei Yang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Wei Feng
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yezi Wu
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiang Gao
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiaotong Shen
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Jian Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Zanxian Xia
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
- Hunan Key Laboratory of Animal Models for Human DiseasesHunan Key Laboratory of Medical Genetics & Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangsha410013China
| | - Zheng Zhang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Shenzhen Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesShenzhen518112China
| |
Collapse
|
5
|
Xie J, Jiang J, Wang X, Zuo X, Jia Y. RNA binding protein ELAVL1-mediated USP33 stabilizes HIF1A to promote pathological proliferation, migration and angiogenesis of RECs. Int Ophthalmol 2024; 44:393. [PMID: 39320536 DOI: 10.1007/s10792-024-03311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dysfunction of retinal vascularization plays pathogenic roles in retinopathy of prematurity (ROP). Hypoxia-inducible factor 1 alpha (HIF1A) is activated by hypoxia and contributes to ROP progression. Herein, we clarified the mechanism underlying HIF1A activation in human retinal vascular endothelial cells (HRECs) under hypoxia. METHODS Protein expression was assayed by immunoblot analysis. Cell migration, microtubule formation, invasion, proliferation, and viability were detected by wound-healing, tube formation, transwell, EdU, and CCK-8 assays, respectively. Bioinformatics was used to predict the deubiquitinase-HIF1A interactions and RNA binding proteins (RBPs) bound to USP33. The impact of USP33 on HIF1A deubiquitination was validated by immunoprecipitation (IP) assay. RNA stability analysis was performed with actinomycin D (Act D) treatment. The ELAVL1/USP33 interaction was assessed by RNA immunoprecipitation experiment. RESULTS In hypoxia-exposed HRECs, HIF1A and USP33 protein levels were upregulated. Deficiency of HIF1A or USP33 suppressed cell migration, proliferation and microtubule formation of hypoxia-exposed HRECs. Mechanistically, USP33 deficiency led to an elevation in HIF1A ubiquitination and degradation. USP33 deficiency reduced HIF1A protein levels to suppress the proliferation and microtubule formation of hypoxia-induced HRECs. Moreover, the RBP ELAVL1 stabilized USP33 mRNA to increase USP33 protein levels. ELAVL1 decrease repressed the proliferation and microtubule formation of hypoxia-induced HRECs by reducing USP33. CONCLUSION Our study identifies a novel ELAVL1/USP33/HIF1A regulatory cascade with the ability to affect hypoxia-induced pathological proliferation, angiogenesis, and migration in HRECs.
Collapse
Affiliation(s)
- Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China.
| | - Jun Jiang
- Department of Urology, The First Affiliated Hospital of Xingtai Medical College, Xingtai City, 054001, Hebei, China
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Yuhong Jia
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| |
Collapse
|
6
|
Zhong Y, Xia S, Wang G, Liu Q, Ma F, Yu Y, Zhang Y, Qian L, Hu L, Xie J. The interplay between mitophagy and mitochondrial ROS in acute lung injury. Mitochondrion 2024; 78:101920. [PMID: 38876297 DOI: 10.1016/j.mito.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.
Collapse
Affiliation(s)
- Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Lu Qian
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Li Hu
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, No.1518 North Huancheng Road, Nanhu District, Jiaxing 314000, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China.
| |
Collapse
|
7
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2024:revneuro-2024-0080. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
8
|
Li Y, Dong B, Wang Y, Bi H, Zhang J, Ding C, Wang C, Ding X, Xue W. Inhibition of Usp14 ameliorates renal ischemia-reperfusion injury by reducing Tfap2a stabilization and facilitating mitophagy. Transl Res 2024; 270:94-103. [PMID: 38643868 DOI: 10.1016/j.trsl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. This study aimed to evaluate the impact of ubiquitin-specific peptidase 14 (Usp14), a deubiquitinase, in IR injury by influencing mitophagy. Utilizing a murine model of renal IR injury, Usp14 silencing was found to ameliorate kidney injury, leading to decreased levels of serum creatinine and blood urea nitrogen, alongside diminished oxidative stress and inflammation. In renal epithelial cells subjected to hypoxia/reoxygenation (H/R), Usp14 knockdown increased cell viability and reduced apoptosis. Further mechanistic studies revealed that Usp14 interacted with and deubiquitinated transcription factor AP-2 alpha (Tfap2a), thereby suppressing its downstream target gene, TANK binding kinase 1 (Tbk1), to influence mitophagy. Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.
Collapse
Affiliation(s)
- Yang Li
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China.
| | - Boqing Dong
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Ying Wang
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Huanjing Bi
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Jing Zhang
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Chenguang Ding
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Chenge Wang
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Xiaoming Ding
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| | - Wujun Xue
- Department of renal transplantation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an China
| |
Collapse
|
9
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
10
|
Zhang F, Ye Z, Ran Y, Liu C, Zhang M, Xu X, Song F, Yao L. Ruthenium red alleviates post-resuscitation myocardial dysfunction by upregulating mitophagy through inhibition of USP33 in a cardiac arrest rat model. Eur J Pharmacol 2024; 974:176633. [PMID: 38703975 DOI: 10.1016/j.ejphar.2024.176633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cardiac arrest (CA) remains a leading cause of death, with suboptimal survival rates despite efforts involving cardiopulmonary resuscitation and advanced life-support technology. Post-resuscitation myocardial dysfunction (PRMD) is an important determinant of patient outcomes. Myocardial ischemia/reperfusion injury underlies this dysfunction. Previous reports have shown that ruthenium red (RR) has a protective effect against cardiac ischemia-reperfusion injury; however, its precise mechanism of action in PRMD remains unclear. This study investigated the effects of RR on PRMD and analyzed its underlying mechanisms. Ventricular fibrillation was induced in rats, which were then subjected to cardiopulmonary resuscitation to establish an experimental CA model. At the onset of return of spontaneous circulation, RR (2.5 mg/kg) was administered intraperitoneally. Our study showed that RR improved myocardial function and reduced the production of oxidative stress markers such as malondialdehyde (MDA), glutathione peroxidase (GSSG), and reactive oxygen species (ROS) production. RR also helped maintain mitochondrial structure and increased ATP and GTP levels. Additionally, RR effectively attenuated myocardial apoptosis. Furthermore, we observed downregulation of proteins closely related to mitophagy, including ubiquitin-specific protease 33 (USP33) and P62, whereas LC3B (microtubule-associated protein light chain 3B) was upregulated. The upregulation of mitophagy may play a critical role in reducing myocardial injury. These results demonstrate that RR may attenuate PRMD by promoting mitophagy through the inhibition of USP33. These effects are likely mediated through diverse mechanisms, including antioxidant activity, apoptosis suppression, and preservation of mitochondrial integrity and energy metabolism. Consequently, RR has emerged as a promising therapeutic approach for addressing post-resuscitation myocardial dysfunction.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhou Ye
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yingqi Ran
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Cong Liu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Mingtao Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xiangchang Xu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Fengqing Song
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
11
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
12
|
Xu Y, Wang Y, Zhang D, Zhang H, Wang Y, Wang W, Hu X. An autophagy-associated diagnostic signature based on peripheral blood for antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 84:102021. [PMID: 38452984 DOI: 10.1016/j.trim.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) emerged as a major cause of graft loss in renal transplantation. Needle biopsy is the gold standard for diagnosis of ABMR in renal allografts. Thus, noninvasive diagnosis methods of ABMR with high accuracy are urgently needed to prevent unnecessary biopsies. METHODS We collected peripheral blood transcriptome data from two independent renal transplantation cohorts with patients with ABMR, stable well-functioning transplants (STA), and T-cell mediated rejection (TCMR). Differentially expressed genes (DEGs) were identified by comparing the ABMR group with the STA group. In addition, functional enrichment analysis and gene set enrichment analysis were performed to seek new key underlying mechanisms in ABMR. Subsequently, we utilized a Boruta algorithm and least absolute shrinkage and selection operator logistic algorithm to establish a diagnostic model which was then evaluated and validated in an independent cohort. RESULTS According to functional enrichment analysis, autophagy was found to be the primary upregulated biological process in ABMR. Based on algorithms, three autophagy-associated genes, ubiquitin specific peptidase 33 (USP33), Ras homolog mTORC1 binding (RHEB), and ABL proto-oncogene 2 (ABL2), were selected to establish the diagnostic model in the training cohort. This autophagy-related gene model possessed good diagnostic value in distinguishing ABMR from STA blood samples in the training cohort (AUC = 0.907) and in the validation cohort (AUC = 0.972). In addition, this model also showed good discernibility in distinguishing ABMR from TCMR in the training and validation cohorts (AUCs = 0.908 and 0.833). CONCLUSION We identified and validated an autophagy-associated diagnostic model with high accuracy for renal transplant patients with ABMR. Our study provided a new potential test for the non-invasive diagnosis of ABMR in clinical practice and highlighted the importance of autophagy in ABMR.
Collapse
Affiliation(s)
- Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Yuxuan Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Hao Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Yicun Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
13
|
Chen N, Hu H, Tang J, Zheng F, Guo Z, Lin X, Aschner M, Shao W, Yu G, Cai P, Chou WC, Wu S, Li H. LncRNA NR_030777 promotes mitophagy by targeting CDK1-related mitochondrial fission and ATG12 to attenuate paraquat-induced Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123875. [PMID: 38548152 DOI: 10.1016/j.envpol.2024.123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
With the evidence emerging that abnormal expression of long noncoding RNAs (lncRNAs) are involved in onset of Parkinson's disease (PD), the role of NR_030777 contributing to this disease is of great interest. We recently found that a novel lncRNA "NR_030777" demonstrates protective effects on PQ-induced neurodegeneration. However, the underlying molecular mechanisms of NR_030777 in the regulation of mitochondrial fission and mitophagy involved in PQ-induced neuronal damage remain to be explored. NR_030777 brain conditional overexpressing mice as well as in vitro primary neuronal cells from cerebral cortex and Neuro2a cells were adopted. Immunofluorescence, Immunohistochemistry, qRT-PCR and Western blotting were used to evaluate the expression levels of RNA and proteins. RNA immunoprecipitation and RNA pulldown experiment were used to evaluate the interaction of NR_030777 with its target proteins. NR_030777 and mitophagy were increased, and tyrosine hydroxylase (TH) levels recovered after NR_030777 overexpression upon PQ treatment. The overexpression and knockdown of NR_030777 unveiled that NR_030777 positively regulated mitophagy such as the upregulation of LC3B-II:I, ATG12-ATG5, p62 and NBR1. Moreover, the application of mdivi-1, a DRP-1 inhibitor, in combination with NR_030777 genetic modified cells unveiled that NR_030777 promoted DRP1-mediated mitochondrial fission and mitophagy. Furthermore, NR_030777 were directly bound to CDK1 to increase p-DRP1 levels at the Ser616 site, leading to mitochondrial fission and mitophagy. On the other hand, NR_030777 acted directly on ATG12 within the ATG12-ATG5 complex in the 800-1400 nt region to modulate the membrane formation. Accordingly, NR_030777 deficiency in neuron cells compromised cell mitophagy. Finally, the above findings were confirmed using NR_030777-overexpressing mice. NR_030777 exerted a protective effect on PQ-exposed mice by enhancing mitophagy. Our data provide the first scientific evidence for the precise invention of PQ-induced PD. Our findings further propose a breakthrough for understanding the regulatory relationship between NR_030777, CDK1, ATG12 and mitophagy in PQ-induced PD.
Collapse
Affiliation(s)
- Nengzhou Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianping Tang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Cai
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Wei-Chun Chou
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
14
|
Rong Q, Xi Z, Guo D, Xu W, Zhang L, Wu Q. Regulation of ubiquitination and antiviral activity of Cactin by deubiquitinase Usp14 in Drosophila. J Virol 2024; 98:e0017724. [PMID: 38563731 PMCID: PMC11092352 DOI: 10.1128/jvi.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Cactin, a highly conserved protein, plays a crucial role in various physiological processes in eukaryotes, including innate immunity. Recently, the function of Cactin in the innate immunity of Drosophila has been explored, revealing that Cactin regulates a non-canonical signaling pathway associated with the Toll and Imd pathways via the Cactin-Deaf1 axis. In addition, Cactin exhibits specific antiviral activity against the Drosophila C virus (DCV) in Drosophila, with an unknown mechanism. During DCV infection, it has been confirmed that the protein level and antiviral activity of Cactin are regulated by ubiquitination. However, the precise ubiquitination and deubiquitination mechanisms of Cactin in Drosophila remain unexplored. In this study, we identified ubiquitin-specific protease 14 (Usp14) as a major deubiquitinase for Cactin through comprehensive deubiquitinase screening. Our results demonstrate that Usp14 interacts with the C_Cactus domain of Cactin via its USP domain. Usp14 efficiently removes K48- and K63-linked polyubiquitin chains from Cactin, thereby preventing its degradation through the ubiquitin-proteasome pathway. Usp14 significantly inhibits DCV replication in Drosophila cells by stabilizing Cactin. Moreover, Usp14-deficient fruit flies exhibit increased susceptibility to DCV infection compared to wild-type flies. Collectively, our findings reveal the regulation of ubiquitination and antiviral activity of Cactin by the deubiquitinase Usp14, providing valuable insights into the modulation of Cactin-mediated antiviral activity in Drosophila.IMPORTANCEViral infections pose a severe threat to human health, marked by high pathogenicity and mortality rates. Innate antiviral pathways, such as Toll, Imd, and JAK-STAT, are generally conserved across insects and mammals. Recently, the multi-functionality of Cactin in innate immunity has been identified in Drosophila. In addition to regulating a non-canonical signaling pathway through the Cactin-Deaf1 axis, Cactin exhibits specialized antiviral activity against the Drosophila C virus (DCV) with an unknown mechanism. A previous study emphasized the significance of the Cactin level, regulated by the ubiquitin-proteasome pathway, in modulating antiviral signaling. However, the regulatory mechanisms governing Cactin remain unexplored. In this study, we demonstrate that Usp14 stabilizes Cactin by preventing its ubiquitination and subsequent degradation. Furthermore, Usp14 plays a crucial role in regulating the antiviral function mediated by Cactin. Therefore, our findings elucidate the regulatory mechanism of Cactin in Drosophila, offering a potential target for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Qiqi Rong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Zhichong Xi
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyang Guo
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, University of Science and Technology of China, Hefei, China
| | - Wen Xu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Liqin Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qingfa Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
15
|
Wu Q, Wang Z, Chen S, She X, Zhu S, Li P, Liu L, Zhao C, Li K, Liu A, Huang C, Chen Y, Hu F, Wang G, Hu J. USP26 promotes colorectal cancer tumorigenesis by restraining PRKN-mediated mitophagy. Oncogene 2024; 43:1581-1593. [PMID: 38565942 DOI: 10.1038/s41388-024-03009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Qi Wu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei She
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengyu Zhu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chongchong Zhao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kangdi Li
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anyi Liu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changsheng Huang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuqing Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Junbo Hu
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Wang J, Li M, Wang M, Yang J, Li D, Hao Y. MiR-181c-5p Regulates Lung Adenocarcinoma Progression via Targeting PRKN. Biochem Genet 2024; 62:1103-1114. [PMID: 37532837 DOI: 10.1007/s10528-023-10459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) have a vital effect on lung adenocarcinoma. However, the contributions and possible mechanisms of miR-181c-5p to lung adenocarcinoma remain largely unclear. Our objective is to clarify the potential mechanism by which miR-181c-5p regulates lung adenocarcinoma progression. RT-qPCR was performed to determine the levels of miR-181c-5p in lung adenocarcinoma tissues and cells. CCK-8 and Transwell assays were conducted to evaluate the viability, migration, and invasion of H460 cells, respectively. The putative target association between miR-181c-5p and the Parkin gene (PRKN) was predicted using miRDB and confirmed by dual-luciferase reporter assay. MiR-181c-5p expression was found to be up-regulated in both lung adenocarcinoma tissues and cells. Suppression of miR-181c-5p resulted in the inhibition of viability, migration, and invasion in lung adenocarcinoma cells. PRKN level was negatively related to miR-181c-5p expression and mediated with the miR-181c-5p's functions on lung adenocarcinoma progression. MiR-181c-5p regulates lung adenocarcinoma progression via targeting PRKN, indicating miR-181c-5p is expected to be a diagnostic and predictive marker for lung adenocarcinoma, providing new insights into the development of treatment strategies for lung adenocarcinoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, The Second People's Hospital of Liaocheng, Linqing, 252600, Shandong Province, China
| | - Man Li
- Liaocheng Cancer Prevention and Treatment Hospital, Liaocheng, 252000, Shandong Province, China
| | - Meigui Wang
- Department of Obstetrics, Qingdao Central Hospital, No 127 Siliu South Road, Shibei District, Qingdao, 266013, Shandong, China
| | - Jing Yang
- Department of Radiotherapy, Qingdao Municipal Hospital, Qingdao, 266011, Shandong Province, China
| | - Deguang Li
- Department of Proctology, Rizhao City Central Hospital, Rizhao, 276800, Shandong Province, China
| | - Yunxia Hao
- Department of Oncology, Yantai Municipal Laiyang Central Hospital Affiliated to Weifang Medical College, Yantai, 265200, Shandong Province, China.
| |
Collapse
|
17
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
18
|
Dong W, Chen J, Wang Y, Weng J, Du X, Fang X, Liu W, Long T, You J, Wang W, Peng X. miR-206 alleviates LPS-induced inflammatory injury in cardiomyocytes via directly targeting USP33 to inhibit the JAK2/STAT3 signaling pathway. Mol Cell Biochem 2024; 479:929-940. [PMID: 37256445 PMCID: PMC10230473 DOI: 10.1007/s11010-023-04754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.
Collapse
Affiliation(s)
- Wei Dong
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yadong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Junfei Weng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xingxiang Du
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xu Fang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wenyu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Tao Long
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jiaxiang You
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Wensheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17, Yong Waizheng Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
19
|
Wu Q, Liu R, Yang Y, Peng J, Huang J, Li Z, Huang K, Zhu X. USP5 promotes tumorigenesis by activating Hedgehog/Gli1 signaling pathway in osteosarcoma. Am J Cancer Res 2024; 14:1204-1216. [PMID: 38590401 PMCID: PMC10998757 DOI: 10.62347/jmff8182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
Changes in protein ubiquitination have been linked to cancer. Deubiquitinating enzymes (DUBs) counteract E3 ligase activities and have emerged as promising targets for cancer treatment. Ubiquitin-specific peptidase 5 (USP5) is a member of the DUBs family and has been implicated in promoting tumorigenesis in numerous cancers. However, the clinical significance and biological function of USP5 in osteosarcoma (OS) remains unclear. Here, we found elevated USP5 expression in OS tissues compared with normal bone tissues. Furthermore, we observed significant associations of elevated USP5 levels with increased mortality and more malignant phenotypes in OS patients. Moreover, our results revealed that USP5 could facilitate metastasis and cell progression in OS by activating the hedgehog (Hh) signaling pathway using cultured cells and animal tumor models. Mechanistically, USP5 appeared to stabilize and deubiquitinate Gli1, a key mediator of the Hh signaling pathway. Additionally, the oncogenic effect of USP5 in OS was dependent on Gli1 stability. Our findings support the model where USP5 contributes to OS pathogenesis by activating the Hh/Gli1 signaling pathway, making USP5 a potential diagnostic and therapeutic target for OS.
Collapse
Affiliation(s)
- Qing Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Rui Liu
- The Second Affiliated Hospital, Jianxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Yuting Yang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jingyi Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zhiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
20
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
21
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
22
|
Sun C, Li P, Zhang G, Geng W, Wang C, Bao S, Liu X, Ji M, Guan H. Investigation of Mitochondrial Homeostasis Changes in Lens Epithelium of High-Myopic Cataract. Curr Eye Res 2024; 49:158-167. [PMID: 38078672 DOI: 10.1080/02713683.2023.2276679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE High myopia is demonstrated as a pathogenic factor for nuclear cataract. The main mechanism of high-myopia cataracts (HMC) is oxidative damage, which causes mitochondrial homeostasis imbalance. This study aimed to explore the mitochondrial homeostasis alterations in lens epithelial cells (LECs) of HMC. METHODS The lens epithelium tissues of 20 patients with HMC and 20 control subjects with age-related cataracts (ARC) were collected. The real-time quantitative PCR and western blot assays were performed for gene expressions. Immunofluorescence (IF) assays were performed for mitochondrial marker TOM20, DNA damage marker 15A3, and autophagosome marker LC3. Transmission electron microscopy (TEM) was used to observe the changes in mitochondria morphology. Mitochondrial ROS, and mitochondrial membrane potential were detected by MitoSOX fluorescence, and JC-1 MitoMP staining, respectively. Rat lenses cultured in vitro were pretreated with CCCP and H2O2 (10 and 400 µM) for 24 h. RESULTS The copy number of mtDNA was decreased in HMC patients compared to the ARC patients. Increased mitochondrial-oriented oxidative stress response was detected in LECs of HMC compared to that of ARC. Altered expressions of mitochondrial homeostasis and mitophagy markers, including TFAM, PGC1α, MFN1, MFN2, Drp1, PINK1, Parkin and LC3, were found in HMC patients. Reciprocally, no significant differences in the expression of BNIP3 and FUNDC1 were found between HMC and ARC patients. Importantly, TEM revealed that the obvious mitochondrial fission and mitophagy phenomena occur in the LECs of HMC patients compared to the ARC patients. Moreover, CCCP aggreated the mitoROS production and depolarized mitochondrial membrane potential in the H2O2-treated human lens epithelial cells line (SRA01/04); Most important, rat lens organ culture experiments indicated a significant increase in H2O2-induced lens opacity following mitochondrial uncoupling CCCP treatment. CONCLUSION This study has identified for the first time the abnormal mitochondrial homeostasis in HMC, and provide a new perspective on the potential mechanisms of HMC, which occurs earlier and at a higher incidence rate than ARC.
Collapse
Affiliation(s)
- Chenghao Sun
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Wenjing Geng
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Congyu Wang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xi Liu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
23
|
Liang W, Yang M, Wang X, Qian Y, Gao R, Shi Y, Shi X, Shi L, Xu T, Zhang Q. Deubiquitylase USP31 Induces Autophagy and Promotes the Progression in Lung Squamous Cell Carcinoma Cells by Stabilizing E2F1 Expression. Curr Cancer Drug Targets 2024; 24:975-986. [PMID: 38204265 DOI: 10.2174/0115680096264557231124102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Autophagy exerts a vital role in the progression of lung squamous cell carcinoma (LUSC). Ubiquitin-specific peptidase 31 (USP31) has recently been found to be involved in the development of a variety of cancers. However, whether USP31 modulates autophagy in LUSC remains unclear. METHODS This study revealed that high levels of USP31 were discovered in LUSC tissue samples employing the Gene Expression Profiling Interactive Analysis (GEPIA) database, quantitative real- time PCR (qRT-PCR), and Western blot analysis. Cell proliferation was tested via cell counting kit 8 (CCK-8) as well as colony formation, demonstrating that USP31-stable knockdown reduced cell viability. RESULTS Immunofluorescence analysis illustrated that USP31 knockdown blocked the occurrence of LUSC autophagy. Meanwhile, USP31 has been shown to stabilize the expression of E2F transcription factor 1 (E2F1) through the proteasome pathway. Furthermore, overexpressed E2F1 effectively eliminated the effect of USP31 knockdown on LUSC cell proliferation and autophagy. CONCLUSION In summary, this investigation proved that USP31 promoted LUSC cell growth and autophagy, at least in part by stabilizing E2F1 expression, which provided a potential therapeutic gene for the treatment of LUSC.
Collapse
Affiliation(s)
- Wenjun Liang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Mingxia Yang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Xiaohua Wang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Yan Qian
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Ruichen Gao
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Yujia Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Xuejun Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Lei Shi
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Ting Xu
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| | - Qian Zhang
- Department of Respiratory Medicine, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, P.R. China
| |
Collapse
|
24
|
Liang Y, Zhong G, Ren M, Sun T, Li Y, Ye M, Ma C, Guo Y, Liu C. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease. Neuromolecular Med 2023; 25:471-488. [PMID: 37698835 DOI: 10.1007/s12017-023-08755-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is mainly in middle-aged people and elderly people, and the pathogenesis of PD is complex and diverse. The ubiquitin-proteasome system (UPS) is a master regulator of neural development and the maintenance of brain structure and function. Dysfunction of components and substrates of this UPS has been linked to neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Moreover, UPS can regulate α-synuclein misfolding and aggregation, mitophagy, neuroinflammation and oxidative stress to affect the development of PD. In the present study, we review the role of several related E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) on the pathogenesis of PD such as Parkin, CHIP, USP8, etc. On this basis, we summarize the connections and differences of different E3 ubiquitin ligases in the pathogenesis, and elaborate on the regulatory progress of different DUBs on the pathogenesis of PD. Therefore, we can better understand their relationships and provide feasible and valuable therapeutic clues for UPS-related PD treatment research.
Collapse
Affiliation(s)
- Yu Liang
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Guangshang Zhong
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Mingxin Ren
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China
| | - Tingting Sun
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yangyang Li
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Ming Ye
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Yu Guo
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| | - Changqing Liu
- School of Clinical Medicine, Bengbu Medical College, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
25
|
Fang TSZ, Sun Y, Pearce AC, Eleuteri S, Kemp M, Luckhurst CA, Williams R, Mills R, Almond S, Burzynski L, Márkus NM, Lelliott CJ, Karp NA, Adams DJ, Jackson SP, Zhao JF, Ganley IG, Thompson PW, Balmus G, Simon DK. Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson's disease mouse model. Nat Commun 2023; 14:7295. [PMID: 37957154 PMCID: PMC10643470 DOI: 10.1038/s41467-023-42876-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30. Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties. These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Tracy-Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Yu Sun
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - Andrew C Pearce
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark Kemp
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Christopher A Luckhurst
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Rachel Williams
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Ross Mills
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Sarah Almond
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Laura Burzynski
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | - Nóra M Márkus
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
| | | | | | | | - Stephen P Jackson
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0RE, UK
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul W Thompson
- Mission Therapeutics Ltd. Glenn Berge Building, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| | - Gabriel Balmus
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK.
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191, Cluj-Napoca, Romania.
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Lee SH, Chung KC. USP7 attenuates endoplasmic reticulum stress-induced apoptotic cell death through deubiquitination and stabilization of FBXO7. PLoS One 2023; 18:e0290371. [PMID: 37874827 PMCID: PMC10597484 DOI: 10.1371/journal.pone.0290371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/07/2023] [Indexed: 10/26/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease (NDD) characterized by the loss of dopaminergic neurons in the substantia nigra. Similar to other NDDs, the buildup of toxic protein aggregates in PD leads to progressive neuronal loss, culminating in neurodegeneration. Accumulating evidence indicates that alterations in subcellular organelles, particularly the endoplasmic reticulum (ER), are critically involved in pathological neurodegenerative events in NDDs, including PD. Mutations in the F-box only protein 7 (FBXO7 or PARK15) gene have been found to cause early onset autosomal recessive familiar PD. FBXO7 functions as an adaptor protein in the Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex, which promotes substrate ubiquitination. Although FBXO7 is involved in the ubiquitination of various target proteins, little is known about the upstream regulatory mechanism of FBXO7 and/or its modulator(s). Ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme that regulates the balance between protein synthesis and degradation by removing ubiquitin from target substrates. The role of USP7 in various types of cancer is well-established; however, its role in NDDs has not been elucidated to date. In this study, we identified that USP7 acts as a novel regulator of FBXO7, positively regulating the stability of FBXO7 through Lys48-linked deubiquitination. Moreover, USP7 was found to mitigate ER stress-induced cytotoxicity and apoptosis by preventing the proteasomal degradation of FBXO7. Taken together, our study suggests that the functional relationship between FBXO7 and USP7 may play a crucial role in ER stress-induced apoptosis and the pathogenesis of PD.
Collapse
Affiliation(s)
- Su Hyoun Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
27
|
Chen Y, Li P, Chen X, Yan R, Zhang Y, Wang M, Qin X, Li S, Zheng C, You F, Li T, Liu Y. Endoplasmic reticulum-mitochondrial calcium transport contributes to soft extracellular matrix-triggered mitochondrial dynamics and mitophagy in breast carcinoma cells. Acta Biomater 2023; 169:192-208. [PMID: 37541606 DOI: 10.1016/j.actbio.2023.07.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Although mitochondrial morphology and function are considered to be closely related to matrix stiffness-driven tumor progression, it remains poorly understood how extracellular matrix (ECM) stiffness affects mitochondrial dynamics and mitophagy. Here, we found that soft substrate triggered calcium transport by increasing endoplasmic reticulum (ER) calcium release and mitochondrial (MITO) calcium uptake. ER-MITO calcium transport promoted the recruitment of dynamin-related protein 1 (Drp1) to mitochondria and phosphorylation at the serine 616 site, which induced mitochondrial fragmentation and Parkin/PINK1-mediated mitophagy. Furthermore, in vivo experiments demonstrated that soft ECM enhanced calcium levels in tumor tissue, Drp1 activity was required for soft ECM-induced mitochondrial dynamics impairment, and inhibition of Drp1 activity enhanced soft ECM-induced tumor necrosis. In conclusion, we revealed a new mechanism whereby ER-MITO calcium transport regulated mitochondrial dynamics and mitophagy through Drp1 translocation in response to soft substrates. These findings provide valuable insights into ECM stiffness as a potential target for antitumor therapy. STATEMENT OF SIGNIFICANCE: Here, we examined the relationship between substrate stiffness and mitochondrial dynamics by using polyacrylamide (PAA) substrates to simulate the stages of breast cancer or BAPN to reduce tumor tissue stiffness. The results elucidated that soft substrate triggered the recruitment of DRP1 and subsequent mitochondrial fission and mitophagy by ER-MITO calcium transport. Furthermore, mitophagy partly attenuated soft ECM-mediated tumor tissue necrosis and contributed to tumor survival in vivo. Our discoveries revealed the molecular mechanisms by which mechanical stimulation regulates mitochondrial dynamics, providing valuable insights into ECM stiffness as a target for anti-tumor approaches, which could be beneficial for both biomechanics research and clinical applications.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ping Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiangyan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ran Yan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yixi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Meng Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China.
| |
Collapse
|
28
|
Suresh K, Mattern M, Goldberg MS, Butt TR. The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease. Neuromolecular Med 2023; 25:313-329. [PMID: 36739586 DOI: 10.1007/s12017-023-08738-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/28/2023] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.
Collapse
Affiliation(s)
- Kumar Suresh
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Michael Mattern
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| | - Matthew S Goldberg
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tauseef R Butt
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| |
Collapse
|
29
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
30
|
Liu J, Wang J, Xiong A, Zhang L, Zhang Y, Liu Y, Xiong Y, Li G, He X. Mitochondrial quality control in lung diseases: current research and future directions. Front Physiol 2023; 14:1236651. [PMID: 37538379 PMCID: PMC10395103 DOI: 10.3389/fphys.2023.1236651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Lung diseases are a major global health problem, affecting millions of people worldwide. Recent research has highlighted the critical role that mitochondrial quality control plays in respiratory-related diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF). In this review, we summarize recent findings on the involvement of mitochondrial quality control in these diseases and discuss potential therapeutic strategies. Mitochondria are essential organelles for energy production and other cellular processes, and their dysfunction is associated with various diseases. The quality control of mitochondria involves a complex system of pathways, including mitophagy, mitochondrial biogenesis, fusion/fission dynamics, and regulation of gene expression. In COPD and lung cancer, mitochondrial quality control is often involved in disease development by influencing oxidative stress and apoptosis. In IPF, it appears to be involved in the disease process by participating in the cellular senescence process. Mitochondrial quality control is a promising target for therapeutic interventions in lung diseases. However, there are conflicting reports on different pathological processes, such as the role of mitochondrial autophagy in lung cancer, which pose difficulties in the study of targeted mitochondrial quality control drugs. Additionally, there seems to be a delicate balance between the mitochondrial quality control processes in the physiological state. Emerging evidence suggests that molecules such as PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), dynamin-related protein 1 (DRP1), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), as well as the signaling pathways they affect, play an important role in respiratory-related diseases. Targeting these molecules and pathways could contribute to the development of effective treatments for lung diseases. In conclusion, the involvement of mitochondrial quality control in lung diseases presents a promising new avenue for disease treatment. Further research is needed to better understand the complex mechanisms involved in the pathogenesis of respiratory diseases and to develop targeted therapies that could improve clinical outcomes.
Collapse
Affiliation(s)
- Jiliu Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yi Zhang
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, School of Medicine, Southwest Jiaotong University, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Pulmonary and Critical Care Medicine, Chengdu Third People’s Hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, China
| |
Collapse
|
31
|
Liu X, Xu J, Shen B, Xu J, Jiang J. USP33 promotes pancreatic cancer malignant phenotype through the regulation of TGFBR2/TGFβ signaling pathway. Cell Death Dis 2023; 14:362. [PMID: 37322017 PMCID: PMC10272277 DOI: 10.1038/s41419-023-05871-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer (PC) ranked fourth among cancer-related death worldwide with a survival rate less than 5%. The abnormal proliferation and distant metastasis are major obstacles for the diagnosis and treatment of pancreatic cancer, therefore, it is urgent for researchers to uncover the molecular mechanisms underlying the PC proliferation and metastasis. In current study, we found that USP33, a member of deubiquitinating enzyme family, was upregulated among PC samples and cells, meanwhile, the high expression of USP33 correlated with poor prognosis of patients. Function experiments revealed that USP33 overexpression promoted the proliferation, migration and invasion of PC cells while the inhibition of USP33 expression in PC cells exhibited the opposite effect. The mass spectrum and luciferase complementation assay screened TGFBR2 as the potential binding protein of USP33. Mechanistically, USP33 triggered the deubiquitination of TGFBR2 and prevented its degradation by lysosome, therefore promoted TGFBR2 accumulation in cell membrane and eventually contributed to the sustained activation of TGF-β signaling. Moreover, our results revealed that the activation of TGF-β targeted gene ZEB1 promoted the transcription of USP33. In conclusion, our study found that USP33 contributed to the proliferation and metastasis of pancreatic cancer through a positive feedback loop with TGF-β signaling pathway. Moreover, this study suggested that USP33 may serve as a potential prognostic and therapeutic target in PC.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jichuan Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
32
|
Themistokleous C, Bagnoli E, Parulekar R, M K Muqit M. Role of autophagy pathway in Parkinson's disease and related Genetic Neurological disorders. J Mol Biol 2023:168144. [PMID: 37182812 DOI: 10.1016/j.jmb.2023.168144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.
Collapse
Affiliation(s)
- Christos Themistokleous
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enrico Bagnoli
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ramaa Parulekar
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
33
|
Liang XW, Wang SZ, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Liu H, Wu JC. A review of deubiquitinases and thier roles in tumorigenesis and development. Front Bioeng Biotechnol 2023; 11:1204472. [PMID: 37251574 PMCID: PMC10213685 DOI: 10.3389/fbioe.2023.1204472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Ubiquitin is a small protein that can be added onto target protein for inducing target degradation, thereby modulating the activity and stability of protein. Relatively, deubiquitinases (DUBs), a class catalase that can remove ubiquitin from substrate protein, provide a positive regulation of the protein amount at transcription level, post-translational modification, protein interaction, etc. The reversible and dynamic ubiquitination-deubiquitination process plays an essential role in maintaining protein homeostasis, which is critical to almost all the biological processes. Therefore, the metabolic dysregulation of deubiquitinases often lead to serious consequences, including the growth and metastasis of tumors. Accordingly, deubiquitinases can be served as key drug targets for the treatment of tumors. The small molecule inhibitors targeting deubiquitinases has become one of the hot spots of anti-tumor drug research areas. This review concentrated on the function and mechanism of deubiquitinase system in the proliferation, apoptosis, metastasis and autophagy of tumor cells. The research status of small molecule inhibitors of specific deubiquitinases in tumor treatment is introduced, aiming to provide reference for the development of clinical targeted drugs.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-Ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Hui Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
34
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
35
|
Nielsen PYØ, Okarmus J, Meyer M. Role of Deubiquitinases in Parkinson's Disease-Therapeutic Perspectives. Cells 2023; 12:651. [PMID: 36831318 PMCID: PMC9954239 DOI: 10.3390/cells12040651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins-e.g., through the PINK1/Parkin pathway-which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this paper, along with their function. Of interest, DUBs could be useful as novel therapeutic targets against PD through regulation of PD-associated defects.
Collapse
Affiliation(s)
- Pernille Y. Ø. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
36
|
Mishra E, Thakur MK. Mitophagy: A promising therapeutic target for neuroprotection during ageing and age-related diseases. Br J Pharmacol 2023; 180:1542-1561. [PMID: 36792062 DOI: 10.1111/bph.16062] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria and mitochondria-mediated signalling pathways are known to control synaptic signalling, as well as long-lasting changes in neuronal structure and function. Mitochondrial impairment is linked to synaptic dysfunction in normal ageing and age-associated neurodegenerative ailments, including Parkinson's disease (PD) and Alzheimer's disease (AD). Both proteolysis and mitophagy perform a major role in neuroprotection, by maintaining a healthy mitochondrial population during ageing. Mitophagy, a highly evolutionarily conserved cellular process, helps in the clearance of damaged mitochondria and thereby maintains the mitochondrial and metabolic balance, energy supply, neuronal survival and neuronal health. Besides the maintenance of brain homeostasis, hippocampal mitophagy also helps in synapse formation, axonal development, dopamine release and long-term depression. In contrast, defective mitophagy contributes to ageing and age-related neurodegeneration by promoting the accumulation of damaged mitochondria leading to cellular dysfunction. Exercise, stress management, maintaining healthy mitochondrial dynamics and administering natural or synthetic pharmacological compounds are some of the strategies used for neuroprotection during ageing and age-related neurological diseases. The current review discusses the impact of defective mitophagy in ageing and age-associated neurodegenerative conditions, the underlying molecular pathways and potential therapies based on recently elucidated mitophagy-inducing strategies.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
37
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
38
|
Abstract
Mitochondria are crucial organelles that play a central role in various cell signaling and metabolic pathways. A healthy mitochondrial population is maintained through a series of quality control pathways and requires a fine-tuned balance between mitochondrial biogenesis and degradation. Defective targeting of dysfunctional mitochondria to lysosomes through mitophagy has been linked to several diseases, but the underlying mechanisms and the relative importance of distinct mitophagy pathways in vivo are largely unknown. In this Cell Science at a Glance and the accompanying poster, we describe our current understanding of how parts of, or whole, mitochondria are recognized by the autophagic machinery and targeted to lysosomes for degradation. We also discuss how this might be regulated under different physiological conditions to maintain mitochondrial and cellular health.
Collapse
Affiliation(s)
- Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| |
Collapse
|
39
|
Gonzalez-Santamarta M, Bouvier C, Rodriguez MS, Xolalpa W. Ubiquitin-chains dynamics and its role regulating crucial cellular processes. Semin Cell Dev Biol 2022; 132:155-170. [PMID: 34895814 DOI: 10.1016/j.semcdb.2021.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
The proteome adapts to multiple situations occurring along the life of the cell. To face these continuous changes, the cell uses posttranslational modifications (PTMs) to control the localization, association with multiple partners, stability, and activity of protein targets. One of the most dynamic protein involved in PTMs is Ubiquitin (Ub). Together with other members of the same family, known as Ubiquitin-like (UbL) proteins, Ub rebuilds the architecture of a protein in a few minutes to change its properties in a very efficient way. This capacity of Ub and UbL is in part due to their potential to form complex architectures when attached to target proteins or when forming Ub chains. The highly dynamic formation and remodeling of Ub chains is regulated by the action of conjugating and deconjugating enzymes that determine, in due time, the correct chain architecture for a particular cellular function. Chain remodeling occurs in response to physiologic stimuli but also in pathologic situations. Here, we illustrate well-documented cases of chain remodeling during DNA repair, activation of the NF-κB pathway and autophagy, as examples of this dynamic regulation. The crucial role of enzymes and cofactors regulating chain remodeling is discussed.
Collapse
Affiliation(s)
- Maria Gonzalez-Santamarta
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Corentin Bouvier
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Wendy Xolalpa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
40
|
Jiang H, Chen F, Song D, Zhou X, Ren L, Zeng M. Dynamin-Related Protein 1 Is Involved in Mitochondrial Damage, Defective Mitophagy, and NLRP3 Inflammasome Activation Induced by MSU Crystals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5064494. [PMID: 36338340 PMCID: PMC9627272 DOI: 10.1155/2022/5064494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2023]
Abstract
Excessive generation of reactive oxygen species (ROS) has great impacts on MSU crystal-induced inflammation. Drp1-dependent mitochondrial fission is closely associated with mitochondrial ROS levels. However, whether Drp1 signaling contributes to MSU crystal-induced inflammation remains unclear. Mice bone marrow-derived macrophages (BMDMs) were primed with LPS and then stimulated with MSU suspensions for 12 h. The protein levels associated with mitochondrial dynamics, oxidative stress, and mitophagy were detected by Western blot. BMDMs were loaded with MitoTracker Green probe to detect mitochondrial morphology. To measure mitochondrial reactive oxygen species (ROS) and total ROS levels, cells were loaded, respectively, with MitoSOX and DHE probes. The effects of Mito-TEMPO, an antioxidant that targets the mitochondria or DRP1 inhibitor (Mdivi-1) on MSU crystal-induced peritonitis and arthritis mouse models, were evaluated. Our study revealed that MSU crystal stimulation resulted in elevation of mitochondrial fragmentation of BMDMs. Treatment with Mito-TEMPO or Drp1 knockdown significantly ameliorated the mitochondrial damage induced by MSU crystals. BMDMs exposure to MSU crystals increased the expression of auto/mitophagy marker proteins and promoted the fusion of mitophagosomes with lysosomes, leading to accumulation of mitolysosomes. Drp1 knockdown alleviated defective mitophagy and activation of the NLRP3 inflammasome in MSU crystal-treated BMDMs. This study indicates that there is crosstalk between mitochondrial ROS and Drp1 signaling in MSU crystal-induced inflammation. Drp1 signaling is involved in MSU crystal-induced mitochondrial damage, impaired mitophagy and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
| | - Feng Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
| | - DianZe Song
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
| | - Xiaoqin Zhou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
| | - Long Ren
- The Fifth People's Hospital of Nanchong City, 21# Bajiao Street, Nanchong, 637100 Sichuan, China
| | - Mei Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Nanchong, 637001 Sichuan, China
- The Fifth People's Hospital of Nanchong City, 21# Bajiao Street, Nanchong, 637100 Sichuan, China
| |
Collapse
|
41
|
Liu N, Lin MM, Wang Y. The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Mol Neurobiol 2022; 60:247-263. [PMID: 36260224 DOI: 10.1007/s12035-022-03063-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
Despite annual increases in the incidence and prevalence of neurodegenerative diseases, there is a lack of effective treatment strategies. An increasing number of E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) have been observed to participate in the pathogenesis mechanisms of neurodegenerative diseases, on the basis of which we conducted a systematic literature review of the studies. This review will help to explore promising therapeutic targets from highly dynamic ubiquitination modification processes.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Miao-Miao Lin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
42
|
Tsefou E, Ketteler R. Targeting Deubiquitinating Enzymes (DUBs) That Regulate Mitophagy via Direct or Indirect Interaction with Parkin. Int J Mol Sci 2022; 23:12105. [PMID: 36292958 PMCID: PMC9603086 DOI: 10.3390/ijms232012105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The quality control of mitochondria is critical for the survival of cells, and defects in the pathways required for this quality control can lead to severe disease. A key quality control mechanism in cells is mitophagy, which functions to remove damaged mitochondria under conditions of various stresses. Defective mitophagy can lead to a number of diseases including neurodegeneration. It has been proposed that an enhancement of mitophagy can improve cell survival, enhance neuronal function in neurodegeneration and extend health and lifespans. In this review, we highlight the role of deubiquitinating enzymes (DUBs) in the regulation of mitophagy. We summarise the current knowledge on DUBs that regulate mitophagy as drug targets and provide a list of small molecule inhibitors that are valuable tools for the further development of therapeutic strategies targeting the mitophagy pathway in neurodegeneration.
Collapse
Affiliation(s)
- Eliona Tsefou
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- UCL:Eisai Therapeutic Innovation Group, Translational Research Office, University College London, London W1T 7NF, UK
| | - Robin Ketteler
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
43
|
Aryapour E, Kietzmann T. Mitochondria, mitophagy, and the role of deubiquitinases as novel therapeutic targets in liver pathology. J Cell Biochem 2022; 123:1634-1646. [PMID: 35924961 PMCID: PMC9804494 DOI: 10.1002/jcb.30312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 01/05/2023]
Abstract
Liver diseases such as nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC) have increased over the past few decades due to the absence or ineffective therapeutics. Recently, it has been shown that inappropriate regulation of hepatic mitophagy is linked to the pathogenesis of the above-mentioned liver diseases. As mitophagy maintains cellular homeostasis by removing damaged and nonfunctional mitochondria from the cell, the proper function of the molecules involved are of utmost importance. Thereby, mitochondrial E3 ubiquitin ligases as well as several deubiquitinases (DUBs) appear to play a unique role for the degradation of mitochondrial proteins and for proper execution of the mitophagy process by either adding or removing ubiquitin chains from target proteins. Therefore, these enzymes could be considered as valuable liver disease biomarkers and also as novel targets for therapy. In this review, we focus on the role of different DUBs on mitophagy and their contribution to NAFLD, NASH, alcohol-related liver disease, and especially HCC.
Collapse
Affiliation(s)
- Elham Aryapour
- Faculty of Biochemistry and Molecular Medicine, and Biocenter OuluUniversity of OuluOuluFinland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
44
|
Liu X, Balaraman K, Lynch CC, Hebron M, Shah PK, Hu S, Stevenson M, Wolf C, Moussa C. Inhibition of Ubiquitin-Specific Protease-13 Improves Behavioral Performance in Alpha-Synuclein Expressing Mice. Int J Mol Sci 2022; 23:ijms23158131. [PMID: 35897705 PMCID: PMC9330474 DOI: 10.3390/ijms23158131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/21/2023] Open
Abstract
Ubiquitin-Specific Protease-13 (USP13) promotes protein de-ubiquitination. USP13 levels are upregulated in post-mortem Parkinson's disease, whereas USP13 knockdown via shRNA reduces alpha-synuclein levels in animal models. We studied the role of USP13 in knockout mice expressing lentiviral human alpha-synuclein and investigated the impact of a small molecule inhibitor of USP13, BK50118-C, on alpha-synuclein pathology and animal behavior. Alpha-synuclein was expressed unilaterally in substantia nigra (SN) of USP13 deficient mice that were treated with a daily intraperitoneal injection of 100 mg/kg BK50118-C or DMSO for four consecutive weeks, and behavioral and functional assays were performed. Wild-type USP13+/+ mice expressing lentiviral human alpha-synuclein showed motor and behavioral defects that were not seen in partially (USP13+/-) or completely (USP13-/-) deficient USP13 mice. BK50118-C displayed a wide and favorable therapeutic dose range in vivo. Treatment with BK50118-C significantly reduced ubiquitinated alpha-synuclein, increased dopamine levels, and improved motor and behavioral symptoms in wild-type (USP13+/+), but not USP13 deficient, mice. These data suggest that USP13 is critical to the neuropathology of alpha-synuclein, whereas a novel small molecule inhibitor of USP13 is a potential therapeutic agent of alpha-synucleinopathies.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
- Correspondence: (X.L.); (C.M.); Tel.: +1-202-687-7328 (C.M.); Fax: +1-202-687-7378 (C.M.)
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University & Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; (K.B.); (C.C.L.); (C.W.)
| | - Ciarán C. Lynch
- Department of Chemistry, Georgetown University & Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; (K.B.); (C.C.L.); (C.W.)
| | - Michaeline Hebron
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Priya Ketankumar Shah
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Shicheng Hu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Max Stevenson
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
| | - Christian Wolf
- Department of Chemistry, Georgetown University & Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA; (K.B.); (C.C.L.); (C.W.)
| | - Charbel Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA; (M.H.); (P.K.S.); (S.H.); (M.S.)
- Correspondence: (X.L.); (C.M.); Tel.: +1-202-687-7328 (C.M.); Fax: +1-202-687-7378 (C.M.)
| |
Collapse
|
45
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Atypical Ubiquitination and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23073705. [PMID: 35409068 PMCID: PMC8998352 DOI: 10.3390/ijms23073705] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.
Collapse
|
47
|
Wang F, Gao Y, Zhou L, Chen J, Xie Z, Ye Z, Wang Y. USP30: Structure, Emerging Physiological Role, and Target Inhibition. Front Pharmacol 2022; 13:851654. [PMID: 35308234 PMCID: PMC8927814 DOI: 10.3389/fphar.2022.851654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-specific protease 30 (USP30) is a deubiquitinating enzyme (DUB) belonging to the USP subfamily, which was found localized in the mitochondrial outer membrane and peroxisomes owing to its unique transmembrane domain. Structural study revealed that USP30 employed a unique catalytic triad and molecular architecture to preferentially cleave the Lys6 linked ubiquitin chains. USP30 plays an essential role in several cellular events, such as the PINK1/Parkin-mediated mitophagy, pexophagy, BAX/BAK-dependent apoptosis, and IKKβ–USP30–ACLY-regulated lipogenesis/tumorigenesis, and is tightly regulated by post-translational modification including phosphorylation and mono-ubiquitination. Dysregulation of USP30 is associated with a range of physiological disorders, such as neurodegenerative disease, hepatocellular carcinoma, pulmonary disorders, and peroxisome biogenesis disorders. Nowadays, scientists and many biopharmaceutical companies are making much effort to explore USP30 inhibitors including natural compounds, phenylalanine derivatives, N-cyano pyrrolidines, benzosulphonamide, and other compounds. For the treatment of pulmonary disorders, the study in Mission Therapeutics of USP30 inhibitor is already in the pre-clinical stage. In this review, we will summarize the current knowledge of the structure, regulation, emerging physiological role, and target inhibition of USP30, hoping to prompt further investigation and understanding of it.
Collapse
|
48
|
Zhang A, Huang Z, Tao W, Zhai K, Wu Q, Rich JN, Zhou W, Bao S. USP33 deubiquitinates and stabilizes HIF-2alpha to promote hypoxia response in glioma stem cells. EMBO J 2022; 41:e109187. [PMID: 35191554 PMCID: PMC8982626 DOI: 10.15252/embj.2021109187] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia regulates tumor angiogenesis, metabolism, and therapeutic response in malignant cancers including glioblastoma, the most lethal primary brain tumor. The regulation of HIF transcriptional factors by the ubiquitin-proteasome system is critical in the hypoxia response, but hypoxia-inducible deubiquitinases that counteract the ubiquitination remain poorly defined. While the activation of ERK1/2 also plays an important role in hypoxia response, the relationship between ERK1/2 activation and HIF regulation remains elusive. Here, we identified USP33 as essential deubiquitinase that stabilizes HIF-2alpha protein in an ERK1/2-dependent manner to promote hypoxia response in cancer cells. USP33 is preferentially induced in glioma stem cells by hypoxia and interacts with HIF-2alpha, leading to its stabilization through deubiquitination. The activation of ERK1/2 upon hypoxia promoted HIF-2alpha phosphorylation, enhancing its interaction with USP33. Silencing of USP33 disrupted glioma stem cells maintenance, reduced tumor vascularization, and inhibited glioblastoma growth. Our findings highlight USP33 as an essential regulator of hypoxia response in cancer stem cells, indicating a novel potential therapeutic target for brain tumor treatment.
Collapse
Affiliation(s)
- Aili Zhang
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Zhi Huang
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Weiwei Tao
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Kui Zhai
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Qiulian Wu
- Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Jeremy N Rich
- Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | - Wenchao Zhou
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Shideng Bao
- Department of Cancer BiologyLerner Research InstituteCleveland ClinicClevelandOHUSA,Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOHUSA,Center for Cancer Stem Cell ResearchLerner Research InstituteCleveland ClinicClevelandOHUSA
| |
Collapse
|
49
|
Park GH, Park JH, Chung KC. Precise control of mitophagy through ubiquitin proteasome system and deubiquitin proteases and their dysfunction in Parkinson's disease. BMB Rep 2021. [PMID: 34674795 PMCID: PMC8728543 DOI: 10.5483/bmbrep.2021.54.12.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases in the elderly population and is caused by the loss of dopaminergic neurons. PD has been predominantly attributed to mitochondrial dysfunction. The structural alteration of α-synuclein triggers toxic oligomer formation in the neurons, which greatly contributes to PD. In this article, we discuss the role of several familial PD-related proteins, such as α-synuclein, DJ-1, LRRK2, PINK1, and parkin in mitophagy, which entails a selective degradation of mitochondria via autophagy. Defective changes in mitochondrial dynamics and their biochemical and functional interaction induce the formation of toxic α-synuclein-containing protein aggregates in PD. In addition, these gene products play an essential role in ubiquitin proteasome system (UPS)-mediated proteolysis as well as mitophagy. Interestingly, a few deubiquitinating enzymes (DUBs) additionally modulate these two pathways negatively or positively. Based on these findings, we summarize the close relationship between several DUBs and the precise modulation of mitophagy. For example, the USP8, USP10, and USP15, among many DUBs are reported to specifically regulate the K48- or K63-linked de-ubiquitination reactions of several target proteins associated with the mitophagic process, in turn upregulating the mitophagy and protecting neuronal cells from α-synuclein-derived toxicity. In contrast, USP30 inhibits mitophagy by opposing parkin-mediated ubiquitination of target proteins. Furthermore, the association between these changes and PD pathogenesis will be discussed. Taken together, although the functional roles of several PD-related genes have yet to be fully understood, they are substantially associated with mitochondrial quality control as well as UPS. Therefore, a better understanding of their relationship provides valuable therapeutic clues for appropriate management strategies.
Collapse
Affiliation(s)
- Ga Hyun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Joon Hyung Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
50
|
Diao RY, Gustafsson AB. Mitochondrial Quality Surveillance: Mitophagy in cardiovascular health and disease. Am J Physiol Cell Physiol 2021; 322:C218-C230. [PMID: 34965154 PMCID: PMC8816617 DOI: 10.1152/ajpcell.00360.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective autophagy of mitochondria, known as mitophagy, is a major quality control pathway in the heart that is involved in removing unwanted or dysfunctional mitochondria from the cell. Baseline mitophagy is critical for maintaining fitness of the mitochondrial network by continuous turnover of aged and less-functional mitochondria. Mitophagy is also critical in adapting to stress associated with mitochondrial damage or dysfunction. The removal of damaged mitochondria prevents reactive oxygen species-mediated damage to proteins and DNA and suppresses activation of inflammation and cell death. Impairments in mitophagy are associated with the pathogenesis of many diseases, including cancers, inflammatory diseases, neurodegeneration, and cardiovascular disease. Mitophagy is a highly regulated and complex process that requires the coordination of labeling dysfunctional mitochondria for degradation while simultaneously promoting de novo autophagosome biogenesis adjacent to the cargo. In this review, we provide an update on our current understanding of these steps in mitophagy induction and discuss the physiological and pathophysiological consequences of altered mitophagy in the heart.
Collapse
Affiliation(s)
- Rachel Y Diao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Asa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|