1
|
Baninameh Z, Watzlawik JO, Bustillos BA, Fiorino G, Yan T, Lewicki SL, Zhang H, Dickson DW, Siuda J, Wszolek ZK, Springer W, Fiesel FC. Development and validation of a sensitive sandwich ELISA against human PINK1. Autophagy 2025; 21:1144-1159. [PMID: 39912496 PMCID: PMC12013435 DOI: 10.1080/15548627.2025.2457915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
The ubiquitin kinase and ligase PINK1 and PRKN together label damaged mitochondria for their elimination in lysosomes by selective autophagy (mitophagy). This cytoprotective quality control pathway is genetically linked to familial Parkinson disease but is also altered during aging and in other neurodegenerative disorders. However, the molecular mechanisms of these mitophagy changes remain uncertain. In healthy mitochondria, PINK1 protein is continuously imported, cleaved, and degraded, but swiftly accumulates on damaged mitochondria, where it triggers the activation of the mitophagy pathway by phosphorylating its substrates ubiquitin and PRKN. Levels of PINK1 protein can therefore be used as a proxy for mitochondrial damage and mitophagy initiation. However, validated methodologies to sensitively detect and quantify PINK1 protein are currently not available. Here, we describe the development and thorough validation of a novel immunoassay to measure human PINK1 on the Meso Scale Discovery platform. The final assay showed excellent linearity, parallelism, and sensitivity. Even in the absence of mitochondrial stress (i.e. at basal conditions), when PINK1 protein is usually not detectable by immunoblotting, significant differences were obtained when comparing samples from patient fibroblasts or differentiated neurons with and without PINK1 expression. Of note, PINK1 protein levels were found increased in human postmortem brain with normal aging, but not in brains with Alzheimer disease, suggesting that indeed different molecular mechanisms are at play. In summary, we have developed a novel sensitive PINK1 immunoassay that will complement other efforts to decipher the roles and biomarker potential of the PINK1-PRKN mitophagy pathway in the physiological and pathological context. Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECL: electrochemiluminescence; ELISA: enzyme-linked immunosorbent assay; iPSC: induced pluripotent stem cell; KO: knockout; LLOQ: lower limit of quantification; MSD: Meso Scale Discovery; PD: Parkinson disease; p-S65-Ub: serine-65 phosphorylated ubiquitin; Ub: ubiquitin; ULOQ: upper limit of quantification; WT: wild-type.
Collapse
Affiliation(s)
- Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Haonan Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
2
|
Hou X, Heckman MG, Fiesel FC, Koga S, Soto‐Beasley AI, Watzlawik JO, Zhao J, Valentino RR, Johnson PW, White LJ, Quicksall ZS, Reddy JS, Bras J, Guerreiro R, Zhao N, Bu G, Dickson DW, Ross OA, Springer W. Genome-wide association analysis identifies APOE as a mitophagy modifier in Lewy body disease. Alzheimers Dement 2025; 21:e70198. [PMID: 40309932 PMCID: PMC12044520 DOI: 10.1002/alz.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Phosphorylated ubiquitin (p-S65-Ub) is generated during PINK1-PRKN mitophagy as a specific marker of mitochondrial damage. Despite the widespread deposition of p-S65-Ub in aged and diseased human brain, the genetic contribution to its accumulation remains unclear. METHODS To identify novel mitophagy regulators, we performed a genome-wide association study using p-S65-Ub level as a quantitative trait in 1012 autopsy-confirmed Lewy body disease (LBD) samples. RESULTS We identified a significant genome-wide association with p-S65-Ub for rs429358 (apolipoprotein E ε4 [APOE4]) and a suggestive association for rs6480922 (ZMIZ1). APOE4 was associated with higher p-S65-Ub levels and greater neuropathological burden. Functional validation in mouse and human induced pluripotent stem cell (iPSC) models confirmed APOE4-mediated mitophagy alterations. Intriguingly, ZMIZ1 rs6480922 was associated with lower p-S65-Ub levels, reduced neuropathological load, and increased brain weight, indicating a potential protective role. DISCUSSION Our findings underscore the importance of mitochondrial quality control in LBD pathogenesis and nominate regulators that may contribute to disease risk or resilience. HIGHLIGHTS p-S65-Ub levels were used as a quantitative marker of mitochondrial damage. A GWAS identified two genetic variants that modify mitophagy in LBD autopsy brain. APOE4 was associated with increased p-S65-Ub accumulation and neuropathology. APOE4 altered mitophagy via pathology-dependent and pathology-independent mechanisms. ZMIZ1 was linked to reduced p-S65-Ub and neuropathology indicative of protection.
Collapse
Affiliation(s)
- Xu Hou
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Michael G. Heckman
- Division of Clinical Trials and BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | - Fabienne C. Fiesel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Jing Zhao
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Patrick W. Johnson
- Division of Clinical Trials and BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | - Launia J. White
- Division of Clinical Trials and BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | | | - Joseph S. Reddy
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Jose Bras
- Department of Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Rita Guerreiro
- Department of Neurodegenerative ScienceVan Andel InstituteGrand RapidsMichiganUSA
- Division of Psychiatry and Behavioral MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Na Zhao
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Owen A. Ross
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| |
Collapse
|
3
|
Mansour A, Eldin MH, El-Sherbiny IM. Metallic nanomaterials in Parkinson's disease: a transformative approach for early detection and targeted therapy. J Mater Chem B 2025; 13:3806-3830. [PMID: 40029109 DOI: 10.1039/d4tb02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by substantial loss of dopaminergic neurons in the substantia nigra, leading to both motor and non-motor symptoms that significantly impact quality of life. The prevalence of PD is expected to increase with the aging population, affecting millions globally. Current detection techniques, including clinical assays and neuroimaging, lack the sensitivity and specificity to sense PD in its earliest stages. Despite extensive research, there is no cure for PD, and available treatments primarily focus on symptomatic relief rather than halting disease progression. Conventional treatments, such as levodopa and dopamine agonists, provide limited and often temporary relief, with long-term use associated with significant side effects and diminished efficacy. Nanotechnology, particularly the use of metallic-based nanomaterials (MNMs), offers a promising approach to overcome these limitations. MNMs, due to their unique physicochemical properties, can be engineered to target specific cellular and molecular mechanisms involved in PD. These MNMs can improve drug delivery, enhance imaging and biosensing techniques, and provide neuroprotective effects. For example, gold and silver nanoparticles have shown potential in crossing the blood-brain barrier, providing real-time imaging for early diagnosis and delivering therapeutic agents directly to the affected neurons. This review aims to reveal the current advancements in the use of MNMs for the detection and treatment of PD. It will provide a comprehensive overview of the limitations of conventional detection techniques and therapies, followed by a detailed discussion on how nanotechnology can address these challenges. The review will also highlight recent preclinical research and examine the potential toxicity of MNMs. By emphasizing the potential of MNMs, this review article aims to underscore the transformative impact of nanotechnology in revolutionizing the detection and treatment of PD.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Mariam Hossam Eldin
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| |
Collapse
|
4
|
Richardson T, Hou X, Fiesel FC, Wszolek ZK, Dickson DW, Springer W. Hippocampal mitophagy alterations in MAPT-associated frontotemporal dementia with parkinsonism. Acta Neuropathol Commun 2025; 13:41. [PMID: 39994734 PMCID: PMC11849217 DOI: 10.1186/s40478-025-01955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
The enzyme pair PINK1 and PRKN together orchestrates a cytoprotective mitophagy pathway that selectively tags damaged mitochondria with phospho-serine 65 ubiquitin (pS65-Ub) and directs them for autophagic-lysosomal degradation (mitophagy). We previously demonstrated a significant accumulation of pS65-Ub signals in autopsy brains of sporadic Lewy body disease and Alzheimer's disease cases, which strongly correlated with early tau pathology. In this study, we extended our analysis to a series of pathologically confirmed cases of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) harboring different pathogenic mutations in MAPT, the gene encoding tau. We assessed the morphology, levels, and distribution of the mitophagy tag pS65-Ub in several affected brain regions and hippocampal subregions of these cases. While tau pathological burden was similarly increased across all FTDP-17 cases, pS65-Ub immunopositive signals were strongly accumulated in P301L cases and only weakly present in N279K cases. In the hippocampus of both mutation groups, the density of pS65-Ub positive cells was overall the greatest in the dentate gyrus followed by the subiculum, CA1, and CA2/3, with the CA4 showing only minimal presence. Notably, positive cells in the subiculum carried greater numbers and particularly vacuolar pS65-Ub structures, while cells in the dentate gyrus mostly contained fewer and rather granular pS65-Ub inclusions. Single cell analyses revealed differential co-localization of pS65-Ub with mitochondria, autophagosomes, and lysosomes in these two regions. Together, our study demonstrates distinct mitophagy alteration in different FTDP-17 MAPT cases and hint at selective organelle failure in the hippocampal subregions that was associated with the P301L mutation.
Collapse
Affiliation(s)
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Bagnoli E, Lin YE, Burel S, Jaimon E, Antico O, Themistokleous C, Nikoloff JM, Squires S, Morella I, Watzlawik JO, Fiesel FC, Springer W, Tonelli F, Lis P, Brooks SP, Dunnett SB, Brambilla R, Alessi DR, Pfeffer SR, Muqit MMK. Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain. Proc Natl Acad Sci U S A 2025; 122:e2412029122. [PMID: 39874296 PMCID: PMC11804522 DOI: 10.1073/pnas.2412029122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation. In addition, we observe that a pool of the Rab-specific, protein phosphatase family member 1H phosphatase, is transcriptionally up-regulated and recruited to damaged mitochondria, independent of PINK1 or LRRK2 activity. Parallel signaling of LRRK2 and PINK1 pathways is supported by assessment of motor behavioral studies that show no evidence of genetic interaction in crossed mouse lines. Previously we showed loss of cilia in LRRK2 R1441C mice and herein we show that PINK1 KO mice exhibit a ciliogenesis defect in striatal cholinergic interneurons and astrocytes that interferes with Hedgehog induction of glial derived-neurotrophic factor transcription. This is not exacerbated in double-mutant LRRK2 and PINK1 mice. Overall, our analysis indicates that LRRK2 activation and/or loss of PINK1 function along parallel pathways to impair ciliogenesis, suggesting a convergent mechanism toward PD. Our data suggest that reversal of defects downstream of ciliogenesis offers a common therapeutic strategy for LRRK2 or PINK1 PD patients, whereas LRRK2 inhibitors that are currently in clinical trials are unlikely to benefit PINK1 PD patients.
Collapse
Affiliation(s)
- Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Yu-En Lin
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Sophie Burel
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ebsy Jaimon
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Odetta Antico
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Christos Themistokleous
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jonas M. Nikoloff
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Samuel Squires
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Ilaria Morella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | | | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
- Neuroscience PhD Program, Mayo Clinic, Graduate School of Biomedical Sciences, Jacksonville, FL32224
| | - Francesca Tonelli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Simon P. Brooks
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Stephen B. Dunnett
- The Brain Repair Group, Division of Neuroscience, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Riccardo Brambilla
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia27100, Italy
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, CardiffCF10 3AX, Wales, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Suzanne R. Pfeffer
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305-5307
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
6
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 Inflammasome Activation and Altered Mitophagy Are Key Pathways in Inclusion Body Myositis. J Cachexia Sarcopenia Muscle 2025; 16:e13672. [PMID: 39723571 DOI: 10.1002/jcsm.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM. METHODS The study population consisted of 38 IBM patients and 22 age- and sex-matched controls without a myopathy. Mean age was 62.9 years (SD = 9) in IBM group and 59.7 (10) in controls. Bulk RNA sequencing, Meso Scale Discovery electrochemiluminescence (ECL), western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. RESULTS We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome being the most upregulated pathway on RNA sequencing, along with increased expression of NLRP3 and ASC proteins in IBM group. NLRP3 RNA levels most strongly correlated with TLR7 (correlation coefficient ρ = 0.91) and complement activation-related genes, and inversely correlated with several mitochondria-related genes among others. On muscle histopathology, there was increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibres. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 inflammasome activation. Herein, we showed altered mitophagy, as witnessed by the elevated levels of p-S65-Ubiquitin, a mitophagy marker, in muscle lysates from IBM patients compared to controls (median of 114.3 vs. 81.25 ECL units, p = 0.005). The p-S65-Ubiquitin levels were most significantly elevated in IBM males compared to male controls (136 vs. 83.5 ECL units; p = 0.013), whereas IBM females had milder nonsignificant elevation compared to female controls (97.25 vs. 69 ECL units, p = 0.31). On muscle histopathology, p-S65-Ubiquitin aggregates accumulated in muscle fibres that were mostly Type 2 and devoid of cytochrome-c-oxidase reactivity. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes (males: ρ = 0.48, females: ρ = 0.54) but with loss of muscle strength, as reflected by the manual motor test score, only in males (males: ρ = 0.62, females: ρ = -0.14). Lastly, we identified sex-specific molecular pathways in IBM. Females had upregulation of pathways related to response to stress, which could conceivably offset some of the pathomechanisms of IBM, while males had upregulation of pathways related to cell adhesion and migration. CONCLUSIONS There is activation of the NLRP3 inflammasome in IBM, along with altered mitophagy, particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - William S Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Chai X, Ma X, Sun LL, Hu Y, Zhang W, Zhang S, Zhou J, Zhu L, Han HH, He XP. A Mitochondria-Targeting and Peroxynitrite-Activatable Ratiometric Fluorescent Probe for Precise Tracking of Oxidative Stress-Induced Mitophagy. Anal Chem 2024; 96:20161-20168. [PMID: 39653586 DOI: 10.1021/acs.analchem.4c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Mitochondria are the energy factory of cells and can be easily damaged by reactive oxygen species (ROS) because of the frequent occurrence of oxidative stress. Abnormality in mitophagy is often associated with many diseases including inflammation, cancer, and aging. While previously developed fluorescent probes mainly focus on detecting just ROS or mitophagy, quite rare studies have endeavored to comprehensively capture the entire mitophagic process, encompassing both the production of ROS and the induction of mitophagy. Herein, we report a new ratiometric fluorescent probe NA-DP for tracking peroxynitrite (ONOO-) as well as the subsequent oxidative stress-induced mitophagy. To a naphthalimide-based dye, an ONOO--responsive diphenyl phosphinate moiety and the mitochondria-targeting triphenylphosphonium group were attached. The probe showed a highly selective response to ONOO- through an addition-elimination reaction with diphenyl phosphinate. Owing to its outstanding pH stability and organelle-targeting ability, NA-DP was successfully used to detect mitophagy induced by oxidative stress after the generation of ONOO-. In the meantime, the probe was also used to track starvation-induced mitophagy and indicate that starvation-induced mitophagy is independent of ONOO-. Therefore, NA-DP has the ability to precisely track oxidative stress-induced mitophagy by distinguishing it from starvation-induced mitophagy. This study offers a new chemical tool to study the relationship between ROS generation and mitophagy.
Collapse
Affiliation(s)
- Xianzhi Chai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiuhua Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Lu-Lu Sun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong264117, China
| | - Yuqing Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Weijian Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shiyao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jiaqi Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hai-Hao Han
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong264117, China
- Molecular Imaging Center, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
8
|
Baninameh Z, Watzlawik JO, Hou X, Richardson T, Kurchaba NW, Yan T, Di Florio DN, Fairweather D, Kang L, Nguyen JH, Kanekiyo T, Dickson DW, Noda S, Sato S, Hattori N, Goldberg MS, Ganley IG, Stauch KL, Fiesel FC, Springer W. Alterations of PINK1-PRKN signaling in mice during normal aging. AUTOPHAGY REPORTS 2024; 3:2434379. [PMID: 40008113 PMCID: PMC11855339 DOI: 10.1080/27694127.2024.2434379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/27/2025]
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
Collapse
Affiliation(s)
- Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lu Kang
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin H. Nguyen
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Matthew S. Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
9
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau DD, Shapiro VS, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. Nat Commun 2024; 15:10163. [PMID: 39580479 PMCID: PMC11585635 DOI: 10.1038/s41467-024-54344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Germinal center (GC) formation, which is an integrant part of humoral immunity, involves energy-consuming metabolic reprogramming. Rag-GTPases are known to signal amino acid availability to cellular pathways that regulate nutrient distribution such as the mechanistic target of rapamycin complex 1 (mTORC1) pathway and the transcription factors TFEB and TFE3. However, the contribution of these factors to humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and to generate plasmablasts during both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish the Rag GTPase-TFEB/TFE3 pathway as a likely mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic Rochester, Rochester, MN, USA.
| |
Collapse
|
10
|
Bustillos BA, Cocker LT, Coban MA, Weber CA, Bredenberg JM, Boneski PK, Siuda J, Slawek J, Puschmann A, Narendra DP, Graff-Radford NR, Wszolek ZK, Dickson DW, Ross OA, Caulfield TR, Springer W, Fiesel FC. Structural and Functional Characterization of the Most Frequent Pathogenic PRKN Substitution p.R275W. Cells 2024; 13:1540. [PMID: 39329724 PMCID: PMC11430725 DOI: 10.3390/cells13181540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Mutations in the PINK1 and PRKN genes are the most frequent genetic cause of early-onset Parkinson disease. The pathogenic p.R275W substitution in PRKN is the most frequent substitution observed in patients, and thus far has been characterized mostly through overexpression models that suggest a possible gain of toxic misfunction. However, its effects under endogenous conditions are largely unknown. We used patient fibroblasts, isogenic neurons, and post-mortem human brain samples from carriers with and without PRKN p.R275W to assess functional impact. Immunoblot analysis and immunofluorescence were used to study mitophagy activation, and mitophagy execution was analyzed by flow cytometry of the reporter mitoKeima. The functional analysis was accompanied by structural investigation of PRKN p.R275W. We observed lower PRKN protein in fibroblasts with compound heterozygous p.R275W mutations. Isogenic neurons showed an allele-dose dependent decrease in PRKN protein. Lower PRKN protein levels were accompanied by diminished phosphorylated ubiquitin and decreased MFN2 modification. Mitochondrial degradation was also allele-dose dependently impaired. Consistently, PRKN protein levels were drastically reduced in human brain samples from p.R275W carriers. Finally, structural simulations showed significant changes in the closed form of PRKN p.R275W. Our data suggest that under endogenous conditions the p.R275W mutation results in a loss-of-function by destabilizing PRKN.
Collapse
Affiliation(s)
- Bernardo A. Bustillos
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
| | - Liam T. Cocker
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
| | - Mathew A. Coban
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
| | - Caleb A. Weber
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
| | - Jenny M. Bredenberg
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
| | - Paige K. Boneski
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jaroslaw Slawek
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland;
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Andreas Puschmann
- Department of Clinical Sciences, Neurology, Lund University, 22100 Lund, Sweden;
- Department of Neurology, Skane University Hospital, 22185 Lund, Sweden
| | - Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA;
| | | | - Zbigniew K. Wszolek
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA;
| | - Dennis W. Dickson
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA;
| | - Owen A. Ross
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA;
| | - Thomas R. Caulfield
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
- Mayo Clinic, Department of Neurosurgery, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Cancer Biology, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Biochemistry & Molecular Biology, Jacksonville, FL 32224, USA
- Mayo Clinic, Department of Computational Biology, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA;
| | - Fabienne C. Fiesel
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL 32224, USA; (B.A.B.); (L.T.C.); (M.A.C.); (C.A.W.); (J.M.B.); (D.W.D.); (O.A.R.); (T.R.C.)
- Mayo Clinic, Graduate School of Biomedical, Sciences Neuroscience PhD Program, Jacksonville, FL 32224, USA;
| |
Collapse
|
11
|
Watzlawik JO, Hou X, Richardson T, Lewicki SL, Siuda J, Wszolek ZK, Cook CN, Petrucelli L, DeTure M, Dickson DW, Antico O, Muqit MMK, Fishman JB, Pirani K, Kumaran R, Polinski NK, Fiesel FC, Springer W. Development and characterization of phospho-ubiquitin antibodies to monitor PINK1-PRKN signaling in cells and tissue. Autophagy 2024; 20:2076-2091. [PMID: 38802071 PMCID: PMC11346534 DOI: 10.1080/15548627.2024.2356490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.
Collapse
Affiliation(s)
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | - Nicole K. Polinski
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
12
|
Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJ, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. Circ Res 2024; 135:e39-e56. [PMID: 38873758 PMCID: PMC11264309 DOI: 10.1161/circresaha.124.324285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 (PTEN-induced kinase 1) in mitochondria. CONCLUSIONS These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.
Collapse
Affiliation(s)
- Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Ermin Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Chen Qu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Juan Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Yuan Wen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Md Sadikul Islam
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York 11568, United States
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
13
|
Wang W, Li E, Zou J, Qu C, Ayala J, Wen Y, Islam MS, Weintraub NL, Fulton DJ, Liang Q, Zhou J, Liu J, Li J, Sun Y, Su H. The Ubiquitin Ligase RBX2/SAG Regulates Mitochondrial Ubiquitination and Mitophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581168. [PMID: 38464205 PMCID: PMC10925227 DOI: 10.1101/2024.02.24.581168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.
Collapse
|
14
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 inflammasome activation and altered mitophagy are key pathways in inclusion body myositis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308845. [PMID: 38947067 PMCID: PMC11213039 DOI: 10.1101/2024.06.15.24308845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William S. Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ian R. Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Baninameh Z, Watzlawik JO, Hou X, Richardson T, Kurchaba NW, Yan T, Di Florio DN, Fairweather D, Kang L, Nguyen JH, Kanekiyo T, Dickson DW, Noda S, Sato S, Hattori N, Goldberg MS, Ganley IG, Stauch KL, Fiesel FC, Springer W. Alterations of PINK1-PRKN signaling in mice during normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591753. [PMID: 38746191 PMCID: PMC11092476 DOI: 10.1101/2024.04.29.591753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
Collapse
|
16
|
Watzlawik JO, Fiesel FC, Fiorino G, Bustillos BA, Baninameh Z, Markham BN, Hou X, Hayes CS, Bredenberg JM, Kurchaba NW, Fričová D, Siuda J, Wszolek ZK, Noda S, Sato S, Hattori N, Prasad AA, Kirik D, Fox HS, Stauch KL, Goldberg MS, Springer W. Basal activity of PINK1 and PRKN in cell models and rodent brain. Autophagy 2024; 20:1147-1158. [PMID: 38041584 PMCID: PMC11135862 DOI: 10.1080/15548627.2023.2286414] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN recognizes and transiently labels damaged mitochondria with ubiquitin phosphorylated at Ser65 (p-S65-Ub) to mediate their selective degradation (mitophagy). Complete loss of PINK1 or PRKN function unequivocally leads to early-onset Parkinson disease, but it is debated whether impairments in mitophagy contribute to disease later in life. While the pathway has been extensively studied in cell culture upon acute and massive mitochondrial stress, basal levels of activation under endogenous conditions and especially in vivo in the brain remain undetermined. Using rodent samples, patient-derived cells, and isogenic neurons, we here identified age-dependent, brain region-, and cell type-specific effects and determined expression levels and extent of basal and maximal activation of PINK1 and PRKN. Our work highlights the importance of defining critical risk and therapeutically relevant levels of PINK1-PRKN signaling which will further improve diagnosis and prognosis and will lead to better stratification of patients for future clinical trials.
Collapse
Affiliation(s)
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Gabriella Fiorino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb S. Hayes
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asheeta A. Prasad
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Deniz Kirik
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew S. Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
17
|
Hao N, Jiang Z, Zhou L, Dai X, Kong X. A pH-response-based fluorescent probe for detecting the mitophagy process by tracing changes in colocalization coefficients. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2241-2247. [PMID: 38533543 DOI: 10.1039/d4ay00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria are not only the center of energy metabolism but also involved in regulating cellular activities. Quality and quantity control of mitochondria is therefore essential. Mitophagy is a lysosome-dependent process to clear dysfunctional mitochondria, and abnormal mitophagy can cause metabolic disorders. Therefore, it is necessary to monitor the mitophagy in living cells on a real-time basis. Herein, we developed a pH-responsive fluorescent probe MP for the detection of the mitophagy process using real-time tracing colocalization coefficients. Probe MP showed good pH responses with high selectivity and sensitivity in spectral testing. Probe MP is of positive charge, which is beneficial for accumulating into mitochondrial in living cells. Cells exhibited pH-dependent fluorescence when they were treated with different pH media. Importantly, the changes in the colocalization coefficient between probe MP and Lyso Tracker® Deep Red from 0.4 to 0.8 were achieved in a real-time manner during the mitophagy stimulated by CCCP, starvation and rapamycin. Therefore, combined with the parameter of the colocalization coefficient, probe MP is a potential molecular tool for the real-time tracing of mitophagy to further explore the details of mitophagy.
Collapse
Affiliation(s)
- Nongyi Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zekun Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Lina Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiaoyu Dai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
18
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. Rag-GTPase-TFEB/TFE3 axis controls B cell mitochondrial fitness and humoral immunity independent of mTORC1. RESEARCH SQUARE 2024:rs.3.rs-3957355. [PMID: 38585731 PMCID: PMC10996787 DOI: 10.21203/rs.3.rs-3957355/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 axis as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
19
|
Zhu X, Wu Y, Li Y, Zhou X, Watzlawik JO, Chen YM, Raybuck AL, Billadeau D, Shapiro V, Springer W, Sun J, Boothby MR, Zeng H. The nutrient-sensing Rag-GTPase complex in B cells controls humoral immunity via TFEB/TFE3-dependent mitochondrial fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582122. [PMID: 38463988 PMCID: PMC10925109 DOI: 10.1101/2024.02.26.582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
During the humoral immune response, B cells undergo rapid metabolic reprogramming with a high demand for nutrients, which are vital to sustain the formation of the germinal centers (GCs). Rag-GTPases sense amino acid availability to modulate the mechanistic target of rapamycin complex 1 (mTORC1) pathway and suppress transcription factor EB (TFEB) and transcription factor enhancer 3 (TFE3), members of the microphthalmia (MiT/TFE) family of HLH-leucine zipper transcription factors. However, how Rag-GTPases coordinate amino acid sensing, mTORC1 activation, and TFEB/TFE3 activity in humoral immunity remains undefined. Here, we show that B cell-intrinsic Rag-GTPases are critical for the development and activation of B cells. RagA/RagB deficient B cells fail to form GCs, produce antibodies, and generate plasmablasts in both T-dependent (TD) and T-independent (TI) humoral immune responses. Deletion of RagA/RagB in GC B cells leads to abnormal dark zone (DZ) to light zone (LZ) ratio and reduced affinity maturation. Mechanistically, the Rag-GTPase complex constrains TFEB/TFE3 activity to prevent mitophagy dysregulation and maintain mitochondrial fitness in B cells, which are independent of canonical mTORC1 activation. TFEB/TFE3 deletion restores B cell development, GC formation in Peyer's patches and TI humoral immunity, but not TD humoral immunity in the absence of Rag-GTPases. Collectively, our data establish Rag-GTPase-TFEB/TFE3 pathway as an mTORC1 independent mechanism to coordinating nutrient sensing and mitochondrial metabolism in B cells.
Collapse
Affiliation(s)
- Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yin Maggie Chen
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | | | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center and School of Medicine, Nashville, TN 37232, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
20
|
Markham BN, Ramnarine C, Kim S, Grever WE, Soto-Beasley AI, Heckman M, Ren Y, Osborne AC, Bhagwate AV, Liu Y, Wang C, Kim J, Wszolek ZK, Ross OA, Springer W, Fiesel FC. miRNA family miR-29 inhibits PINK1-PRKN dependent mitophagy via ATG9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576122. [PMID: 38293184 PMCID: PMC10827147 DOI: 10.1101/2024.01.17.576122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.
Collapse
Affiliation(s)
- Briana N Markham
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chloe Ramnarine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Songeun Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Michael Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Andrew C Osborne
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya V Bhagwate
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
21
|
Watzlawik JO, Hou X, Richardson T, Lewicki SL, Siuda J, Wszolek ZK, Cook CN, Petrucelli L, DeTure M, Dickson DW, Antico O, Muqit MMK, Fishman JB, Pirani K, Kumaran R, Polinski NK, Fiesel FC, Springer W. Development and characterization of phospho-ubiquitin antibodies to monitor PINK1-PRKN signaling in cells and tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575715. [PMID: 38293125 PMCID: PMC10827112 DOI: 10.1101/2024.01.15.575715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and ELISA. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Szymon L. Lewicki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-055, Poland
| | | | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | - Karima Pirani
- ImmunoPrecise Antibodies Ltd., Victoria, BC V8Z 7X8, Canada
| | | | - Nicole K. Polinski
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY 10163, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
22
|
Okarmus J, Agergaard JB, Stummann TC, Haukedal H, Ambjørn M, Freude KK, Fog K, Meyer M. USP30 inhibition induces mitophagy and reduces oxidative stress in parkin-deficient human neurons. Cell Death Dis 2024; 15:52. [PMID: 38225227 PMCID: PMC10789816 DOI: 10.1038/s41419-024-06439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Ubiquitination of mitochondrial proteins plays an important role in the cellular regulation of mitophagy. The E3 ubiquitin ligase parkin (encoded by PARK2) and the ubiquitin-specific protease 30 (USP30) have both been reported to regulate the ubiquitination of outer mitochondrial proteins and thereby mitophagy. Loss of E3 ligase activity is thought to be pathogenic in both sporadic and inherited Parkinson's disease (PD), with loss-of-function mutations in PARK2 being the most frequent cause of autosomal recessive PD. The aim of the present study was to evaluate whether mitophagy induced by USP30 inhibition provides a functional rescue in isogenic human induced pluripotent stem cell-derived dopaminergic neurons with and without PARK2 knockout (KO). Our data show that healthy neurons responded to CCCP-induced mitochondrial damage by clearing the impaired mitochondria and that this process was accelerated by USP30 inhibition. Parkin-deficient neurons showed an impaired mitophagic response to the CCCP challenge, although mitochondrial ubiquitination was enhanced. USP30 inhibition promoted mitophagy in PARK2 KO neurons, independently of whether left in basal conditions or treated with CCCP. In PARK2 KO, as in control neurons, USP30 inhibition balanced oxidative stress levels by reducing excessive production of reactive oxygen species. Interestingly, non-dopaminergic neurons were the main driver of the beneficial effects of USP30 inhibition. Our findings demonstrate that USP30 inhibition is a promising approach to boost mitophagy and improve cellular health, also in parkin-deficient cells, and support the potential relevance of USP30 inhibitors as a novel therapeutic approach in diseases with a need to combat neuronal stress mediated by impaired mitochondria.
Collapse
Affiliation(s)
- Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 5000, Odense C, Denmark
| | - Jette Bach Agergaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 5000, Odense C, Denmark
| | - Tina C Stummann
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 7, 1870, Frederiksberg C, Denmark
| | - Malene Ambjørn
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegaardsvej 7, 1870, Frederiksberg C, Denmark
| | - Karina Fog
- Neuroscience, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 5000, Odense C, Denmark.
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense C, Denmark.
- BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.
| |
Collapse
|
23
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
24
|
Hou X, Heckman MG, Fiesel FC, Koga S, Soto-Beasley AI, Watzlawik JO, Zhao J, Valentino RR, Johnson PW, White LJ, Quicksall ZS, Reddy JS, Bras J, Guerreiro R, Zhao N, Bu G, Dickson DW, Ross OA, Springer W. Genome-wide association study identifies APOE and ZMIZ1 variants as mitophagy modifiers in Lewy body disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297100. [PMID: 37905059 PMCID: PMC10615013 DOI: 10.1101/2023.10.16.23297100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; β : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; β : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.
Collapse
|
25
|
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, Zapata-Muñoz J, Villarejo-Zori B, Gómez-Sintes R, Boya P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205. [PMID: 37454969 DOI: 10.1016/j.preteyeres.2023.101205] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Rocío Benítez-Fernández
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
26
|
Hou X, Chen TH, Koga S, Bredenberg JM, Faroqi AH, Delenclos M, Bu G, Wszolek ZK, Carr JA, Ross OA, McLean PJ, Murray ME, Dickson DW, Fiesel FC, Springer W. Alpha-synuclein-associated changes in PINK1-PRKN-mediated mitophagy are disease context dependent. Brain Pathol 2023; 33:e13175. [PMID: 37259617 PMCID: PMC10467041 DOI: 10.1111/bpa.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Alpha-synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic-lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1-PRKN-mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) to mark them for degradation (mitophagy). We found that disease-causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation-induced autophagy activation and by CRISPR/Cas9-mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65-Ub response. We further confirmed increased pS65-Ub-immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65-Ub was associated with neuronal Lewy body-type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1-PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65-Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.
Collapse
Affiliation(s)
- Xu Hou
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Ayman H. Faroqi
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Jonathan A. Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Owen A. Ross
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Pamela J. McLean
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Melissa E. Murray
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Fabienne C. Fiesel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| |
Collapse
|
27
|
Ligezka AN, Budhraja R, Nishiyama Y, Fiesel FC, Preston G, Edmondson A, Ranatunga W, Van Hove JLK, Watzlawik JO, Springer W, Pandey A, Morava E, Kozicz T. Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG. Genes (Basel) 2023; 14:1585. [PMID: 37628636 PMCID: PMC10454768 DOI: 10.3390/genes14081585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.
Collapse
Affiliation(s)
- Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Yurika Nishiyama
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Edmondson
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Johan L. K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80309, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biophysics, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
28
|
Stevens MU, Croteau N, Eldeeb MA, Antico O, Zeng ZW, Toth R, Durcan TM, Springer W, Fon EA, Muqit MM, Trempe JF. Structure-based design and characterization of Parkin-activating mutations. Life Sci Alliance 2023; 6:e202201419. [PMID: 36941054 PMCID: PMC10027901 DOI: 10.26508/lsa.202201419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.
Collapse
Affiliation(s)
- Michael U Stevens
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| | - Mohamed A Eldeeb
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi Wei Zeng
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas M Durcan
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Edward A Fon
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| |
Collapse
|
29
|
Farsi RM. The Role of Mitochondrial Dysfunction in Alzheimer's: Molecular Defects and Mitophagy-Enhancing Approaches. Life (Basel) 2023; 13:life13040970. [PMID: 37109499 PMCID: PMC10142261 DOI: 10.3390/life13040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD), a progressive and chronic neurodegenerative syndrome, is categorized by cognitive and memory damage caused by the aggregations of abnormal proteins, specifically including Tau proteins and β-amyloid in brain tissue. Moreover, mitochondrial dysfunctions are the principal causes of AD, which is associated with mitophagy impairment. Investigations exploring pharmacological therapies alongside AD have explicitly concentrated on molecules accomplished in preventing/abolishing the gatherings of the abovementioned proteins and mitochondria damages. Mitophagy is the removal of dead mitochondria by the autophagy process. Damages in mitophagy, the manner of diversified mitochondrial degeneracy by autophagy resulting in an ongoing aggregation of malfunctioning mitochondria, were also suggested to support AD. Recently, plentiful reports have suggested a link between defective mitophagy and AD. This treaty highlights updated outlines of modern innovations and developments on mitophagy machinery dysfunctions in AD brains. Moreover, therapeutic and nanotherapeutic strategies targeting mitochondrial dysfunction are also presented in this review. Based on the significant role of diminished mitophagy in AD, we suggest that the application of different therapeutic approaches aimed at stimulating mitophagy in AD would be beneficial for targeting or reducing the mitochondrial dysfunction induced by AD.
Collapse
Affiliation(s)
- Reem M Farsi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21462, Saudi Arabia
| |
Collapse
|
30
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
31
|
Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Mol Psychiatry 2023; 28:202-216. [PMID: 35665766 PMCID: PMC9812780 DOI: 10.1038/s41380-022-01631-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions are central players in Alzheimer's disease (AD). In addition, impairments in mitophagy, the process of selective mitochondrial degradation by autophagy leading to a gradual accumulation of defective mitochondria, have also been reported to occur in AD. We provide an updated overview of the recent discoveries and advancements on mitophagic molecular dysfunctions in AD-derived fluids and cells as well as in AD brains. We discuss studies using AD cellular and animal models that have unraveled the contribution of relevant AD-related proteins (Tau, Aβ, APP-derived fragments and APOE) in mitophagy failure. In accordance with the important role of impaired mitophagy in AD, we report on various therapeutic strategies aiming at stimulating mitophagy in AD and we summarize the benefits of these potential therapeutic strategies in human clinical trials.
Collapse
|
32
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
33
|
Usher JL, Sanchez‐Martinez A, Terriente‐Felix A, Chen P, Lee JJ, Chen C, Whitworth AJ. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep 2022; 23:e53552. [PMID: 36250243 PMCID: PMC9724668 DOI: 10.15252/embr.202153552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease-related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1-Parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production, while pS65-Ub accumulates in unstimulated parkin-null flies, consistent with blocked degradation. Additionally, we show that pS65-Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat-induced pS65-Ub in an Atg5-null background. Thus, we have established that pS65-Ub immunodetection can be used to analyse Pink1-Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1-Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.
Collapse
Affiliation(s)
- Joanne L Usher
- MRC Mitochondrial Biology UnitCambridgeUK
- PNAC Division, MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
MSD R&D Innovation CentreLondonUK
| | | | | | - Po‐Lin Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | | - Chun‐Hong Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | |
Collapse
|
34
|
Fiesel FC, Fričová D, Hayes CS, Coban MA, Hudec R, Bredenberg JM, Broadway BJ, Markham BN, Yan T, Boneski PK, Fiorino G, Watzlawik JO, Hou X, McCarty AM, Lewis-Tuffin LJ, Zhong J, Madden BJ, Ordureau A, An H, Puschmann A, Wszolek ZK, Ross OA, Harper JW, Caulfield TR, Springer W. Substitution of PINK1 Gly411 modulates substrate receptivity and turnover. Autophagy 2022:1-22. [PMID: 36469690 DOI: 10.1080/15548627.2022.2151294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.
Collapse
Affiliation(s)
- Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Caleb S Hayes
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mathew A Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Roman Hudec
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Paige K Boneski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Gabriella Fiorino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Laura J Lewis-Tuffin
- Cytometry and Imaging Laboratory, Department of Research, Mayo Clinic, Jacksonville, FL, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin J Madden
- Proteomics Core, Medical Genome Facility, Mayo Clinic, Rochester, MN, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Heeseon An
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Andreas Puschmann
- Department of Neurology, Lund University, Skane University Hospital, Sweden
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
35
|
Systematic Functional Analysis of PINK1 and PRKN Coding Variants. Cells 2022; 11:cells11152426. [PMID: 35954270 PMCID: PMC9367835 DOI: 10.3390/cells11152426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Loss of either PINK1 or PRKN causes an early onset Parkinson’s disease (PD) phenotype. Functionally, PINK1 and PRKN work together to mediate stress-activated mitochondrial quality control. Upon mitochondrial damage, PINK1, a ubiquitin kinase and PRKN, a ubiquitin ligase, decorate damaged organelles with phosphorylated ubiquitin for sequestration and degradation in lysosomes, a process known as mitophagy. While several genetic mutations are established to result in loss of mitophagy function, many others have not been extensively characterized and are of unknown significance. Here, we analyzed a set of twenty variants, ten in each gene, focusing on understudied variants mostly from the Parkinson’s progressive marker initiative, with sensitive assays to define potential functional deficits. Our results nominate specific rare genetic PINK1 and PRKN variants that cause loss of enzymatic function in line with a potential causative role for PD. Additionally, we identify several variants with intermediate phenotypes and follow up on two of them by gene editing midbrain-derived neuronal precursor cells. Thereof derived isogenic neurons show a stability defect of the rare PINK1 D525N mutation, while the common PINK1 Q115L substitution results in reduced kinase activity. Our strategy to analyze variants with sensitive functional readouts will help aid diagnostics and disease treatment in line with current genomic and therapeutic advances.
Collapse
|
36
|
Milanowski LM, Hou X, Bredenberg JM, Fiesel FC, Cocker LT, Soto-Beasley AI, Walton RL, Strongosky AJ, Faroqi AH, Barcikowska M, Boczarska-Jedynak M, Dulski J, Fedoryshyn L, Janik P, Potulska-Chromik A, Karpinsky K, Krygowska-Wajs A, Lynch T, Olszewska DA, Opala G, Pulyk A, Rektorova I, Sanotsky Y, Siuda J, Widlak M, Slawek J, Rudzinska-Bar M, Uitti R, Figura M, Szlufik S, Rzonca-Niewczas S, Podgorska E, McLean PJ, Koziorowski D, Ross OA, Hoffman-Zacharska D, Springer W, Wszolek ZK. Cathepsin B p.Gly284Val Variant in Parkinson's Disease Pathogenesis. Int J Mol Sci 2022; 23:7086. [PMID: 35806091 PMCID: PMC9266886 DOI: 10.3390/ijms23137086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson's disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk.
Collapse
Affiliation(s)
- Lukasz M. Milanowski
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (L.M.M.); (A.J.S.); (J.D.); (R.U.); (Z.K.W.)
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.J.); (A.P.-C.); (M.F.); (S.S.); (D.K.)
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
| | - Jenny M. Bredenberg
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
- Neuroscience PhD Program, Mayo Graduate School, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Liam T. Cocker
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
| | - Alexandra I. Soto-Beasley
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
| | - Ronald L. Walton
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
| | - Audrey J. Strongosky
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (L.M.M.); (A.J.S.); (J.D.); (R.U.); (Z.K.W.)
| | - Ayman H. Faroqi
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
- Neuroscience PhD Program, Mayo Graduate School, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Maria Barcikowska
- Clinical Department of Neurology, Extrapyramidal Disorders and Alzheimer’s Outpatient Clinic, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland;
| | - Magdalena Boczarska-Jedynak
- Department of Neurology and Restorative Medicine, Health Institute dr Boczarska-Jedynak, 32-600 Oswiecim, Poland;
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (L.M.M.); (A.J.S.); (J.D.); (R.U.); (Z.K.W.)
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., 80-462 Gdansk, Poland;
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Lyuda Fedoryshyn
- Lviv Regional Clinical Hospital, 79010 Lviv, Ukraine; (L.F.); (Y.S.)
| | - Piotr Janik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.J.); (A.P.-C.); (M.F.); (S.S.); (D.K.)
| | - Anna Potulska-Chromik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.J.); (A.P.-C.); (M.F.); (S.S.); (D.K.)
| | - Katherine Karpinsky
- Uzhhorod Regional Clinical Centre of Neurosurgery and Neurology, 88018 Uzhhorod, Ukraine;
| | - Anna Krygowska-Wajs
- Department of Neurology, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Tim Lynch
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, D07 W7XF Dublin, Ireland; (T.L.); (D.A.O.)
- School of Medicine and Medical Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Diana A. Olszewska
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, D07 W7XF Dublin, Ireland; (T.L.); (D.A.O.)
- School of Medicine and Medical Science, University College Dublin, D04 V1W8 Dublin, Ireland
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| | - Grzegorz Opala
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (G.O.); (J.S.)
| | | | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, 601-77 Brno, Czech Republic;
- St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, 601-77 Brno, Czech Republic
| | - Yanosh Sanotsky
- Lviv Regional Clinical Hospital, 79010 Lviv, Ukraine; (L.F.); (Y.S.)
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland; (G.O.); (J.S.)
| | | | - Jaroslaw Slawek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL Ltd., 80-462 Gdansk, Poland;
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Monika Rudzinska-Bar
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Cracow, Poland;
| | - Ryan Uitti
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (L.M.M.); (A.J.S.); (J.D.); (R.U.); (Z.K.W.)
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.J.); (A.P.-C.); (M.F.); (S.S.); (D.K.)
| | - Stanislaw Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.J.); (A.P.-C.); (M.F.); (S.S.); (D.K.)
| | | | - Elzbieta Podgorska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 00-927 Warsaw, Poland;
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
- Neuroscience PhD Program, Mayo Graduate School, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.J.); (A.P.-C.); (M.F.); (S.S.); (D.K.)
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
- Neuroscience PhD Program, Mayo Graduate School, Mayo Clinic Florida, Jacksonville, FL 32224, USA
- School of Medicine and Medical Science, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland;
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 00-927 Warsaw, Poland;
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
- Neuroscience PhD Program, Mayo Graduate School, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Zbigniew K. Wszolek
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (L.M.M.); (A.J.S.); (J.D.); (R.U.); (Z.K.W.)
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (X.H.); (J.M.B.); (F.C.F.); (L.T.C.); (A.I.S.-B.); (R.L.W.); (A.H.F.); (P.J.M.); (O.A.R.)
| |
Collapse
|
37
|
Tönges L, Kwon EH, Klebe S. Monogenetic Forms of Parkinson’s Disease – Bridging the Gap Between Genetics and Biomarkers. Front Aging Neurosci 2022; 14:822949. [PMID: 35317530 PMCID: PMC8934414 DOI: 10.3389/fnagi.2022.822949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is still limited to the treatment of symptoms and primarily aimed at compensating for dopaminergic hypofunction. Numerous disease-modifying therapies currently in the pipeline attempt to modify the underlying pathomechanisms. In recent decades, the results of molecular genetics and biomarker research have raised hopes of earlier diagnosis and new neuroprotective therapeutic approaches. As the disease-causing processes in monogenetic forms of PD are better understood than in sporadic PD, these disease subsets are likely to benefit first from disease-modifying therapies. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be assumed that as soon as the first causal therapy for genetic forms of PD is approved, more patients with PD will undergo genetic testing and counseling. Regarding future neuroprotective trials in neurodegenerative diseases and objective parameters such as biomarkers with high sensitivity and specificity for the diagnosis and course of the disease are needed. These biomarkers will also serve to monitor treatment success in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in blood and CSF. This paper provides an overview of the opportunities and current limitations of monogenetic diagnostic and biomarker research in PD and aims to build a bridge between current knowledge and association with PD genetics and biomarkers.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
- *Correspondence: Stephan Klebe,
| |
Collapse
|
38
|
Abstract
Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
Collapse
Affiliation(s)
- Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Wang J, He M, Guo W, Zhang Y, Sui X, Lin J, Liu X, Li H, Li J, Yang Q, Kan M, Zhang Z, Ming S, Qu X, Li N. Microbiome-Metabolomics Reveals Endogenous Alterations of Energy Metabolism by the Dushen Tang to Attenuate D-Galactose-Induced Memory Impairment in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6649085. [PMID: 34136571 PMCID: PMC8175156 DOI: 10.1155/2021/6649085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging affects the brain function in elderly individuals, and Dushen Tang (DST) is widely used for the treatment of senile diseases. In this study, the protective effect of DST against memory impairment was evaluated through the Morris water maze (MWM) test and transmission electron microscopy (TEM). A joint analysis was also performed using LC-MS metabolomics and the microbiome. The MWM test showed that DST could significantly improve the spatial memory and learning abilities of rats with memory impairment, and the TEM analysis showed that DST could reduce neuronal damage in the hippocampus of rats with memory impairment. Ten potential biomarkers involving pyruvate metabolism, the synthesis and degradation of ketone bodies, and other metabolic pathways were identified by the metabolomic analysis, and it was found that 3-hydroxybutyric acid and lactic acid were involved in the activation of cAMP signaling pathways. The 16S rDNA sequencing results showed that DST could regulate the structure of the gut microbiota in rats with memory impairment, and these effects were manifested as changes in energy metabolism. These findings suggest that DST exerts a good therapeutic effect on rats with memory impairment and that this effect might be mainly achieved by improving energy metabolism. These findings might lead to the potential development of DST as a drug for the treatment of rats with memory impairment.
Collapse
Affiliation(s)
- Jifeng Wang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Min He
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
- Leiden University—European Center for Chinese Medicine, Leiden University, 2333CC Leiden, Netherlands
| | - Wenjun Guo
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Yanhong Zhang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xin Sui
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Jianan Lin
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xiaoran Liu
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, Jilin 130117, China
| | - Jing Li
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Qing Yang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Mo Kan
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zhuang Zhang
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Sitong Ming
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xiaobo Qu
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Na Li
- Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| |
Collapse
|
40
|
Milanowski LM, Oshinaike O, Broadway BJ, Lindemann JA, Soto-Beasley AI, Walton RL, Hanna Al-Shaikh R, Strongosky AJ, Fiesel FC, Ross OA, Springer W, Ogun SA, Wszolek ZK. Early-Onset Parkinson Disease Screening in Patients From Nigeria. Front Neurol 2021; 11:594927. [PMID: 33519679 PMCID: PMC7841006 DOI: 10.3389/fneur.2020.594927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Nigeria is one of the most populated countries in the world; however, there is a scarcity of studies in patients with age-related neurodegenerative diseases, such as Parkinson disease (PD). The aim of this study was to screen patients with PD including a small cohort of early-onset PD (EOPD) cases from Nigeria for PRKN, PINK1, DJ1, SNCA multiplication, and LRRK2 p.G2019S. Methods: We assembled a cohort of 109 Nigerian patients with PD from the four main Nigerian tribes: Yoruba, Igbo, Edo, and Hausa. Fifteen cases [14 from the Yoruba tribe (93.3%)] had EOPD (defined as age-at-onset <50 years). All patients with EOPD were sequenced for the coding regions of PRKN, PINK1, and DJ1. Exon dosage analysis was performed with a multiplex ligation-dependent probe amplification assay, which also included a SNCA probe and LRRK2 p.G2019S. We screened for LRRK2 p.G2019S in the entire PD cohort using a genotyping assay. The PINK1 p.R501Q functional analysis was conducted. Results: In 15 patients with EOPD, 22 variants were observed [PRKN, 9 (40.9%); PINK1, 10 (45.5%); and DJ1, 3 (13.6%)]. Three (13.6%) rare, nonsynonymous variants were identified, but no homozygous or compound heterozygous carriers were found. No exonic rearrangements were present in the three genes, and no carriers of SNCA genomic multiplications or LRRK2 p.G2019S were identified. The PINK1 p.R501Q functional analysis revealed pathogenic loss of function. Conclusion: More studies on age-related neurodegenerative diseases are needed in sub-Saharan African countries, including Nigeria. Population-specific variation may provide insight into the genes involved in PD in the local population but may also contribute to larger studiesperformed in White and Asian populations.
Collapse
Affiliation(s)
- Lukasz M Milanowski
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Olajumoke Oshinaike
- Department of Neurology, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Benjamin J Broadway
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Jennifer A Lindemann
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States
| | | | - Audrey J Strongosky
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States.,Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, United States
| | | | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| |
Collapse
|
41
|
Clark EH, Vázquez de la Torre A, Hoshikawa T, Briston T. Targeting mitophagy in Parkinson's disease. J Biol Chem 2021; 296:100209. [PMID: 33372898 PMCID: PMC7948953 DOI: 10.1074/jbc.rev120.014294] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The genetics and pathophysiology of Parkinson's disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signaling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1-Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving preclinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.
Collapse
Affiliation(s)
- Emily H Clark
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | | | - Tamaki Hoshikawa
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | - Thomas Briston
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom.
| |
Collapse
|
42
|
Hou X, Watzlawik JO, Cook C, Liu C, Kang SS, Lin W, DeTure M, Heckman MG, Diehl NN, Al‐Shaikh FSH, Walton RL, Ross OA, Melrose HL, Ertekin‐Taner N, Bu G, Petrucelli L, Fryer JD, Murray ME, Dickson DW, Fiesel FC, Springer W. Mitophagy alterations in Alzheimer's disease are associated with granulovacuolar degeneration and early tau pathology. Alzheimers Dement 2020; 17:417-430. [PMID: 33090691 PMCID: PMC8048674 DOI: 10.1002/alz.12198] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The cytoprotective PTEN-induced kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase (PRKN) pathway selectively labels damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) for their autophagic removal (mitophagy). Because dysfunctions of mitochondria and degradation pathways are early features of Alzheimer's disease (AD), mitophagy impairments may contribute to the pathogenesis. METHODS Morphology, levels, and distribution of the mitophagy tag pS65-Ub were evaluated by biochemical analyses combined with tissue and single cell imaging in AD autopsy brain and in transgenic mouse models. RESULTS Analyses revealed significant increases of pS65-Ub levels in AD brain, which strongly correlated with granulovacuolar degeneration (GVD) and early phospho-tau deposits, but were independent of amyloid beta pathology. Single cell analyses revealed predominant co-localization of pS65-Ub with mitochondria, GVD bodies, and/or lysosomes depending on the brain region analyzed. DISCUSSION Our study highlights mitophagy alterations in AD that are associated with early tau pathology, and suggests that distinct mitochondrial, autophagic, and/or lysosomal failure may contribute to the selective vulnerability in disease.
Collapse
Affiliation(s)
- Xu Hou
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Casey Cook
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Chia‐Chen Liu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Silvia S. Kang
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Wen‐Lang Lin
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Michael DeTure
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Michael G. Heckman
- Division of Biomedical Statistics and InformaticsMayo ClinicJacksonvilleFloridaUSA
| | - Nancy N. Diehl
- Division of Biomedical Statistics and InformaticsMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Owen A. Ross
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Leonard Petrucelli
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - John D. Fryer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Melissa E. Murray
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| |
Collapse
|