1
|
Zhang Y, Qin L, Liu J. Bioinformatics and machine learning approaches to explore key biomarkers in muscle aging linked to adipogenesis. BMC Musculoskelet Disord 2025; 26:285. [PMID: 40121419 PMCID: PMC11929359 DOI: 10.1186/s12891-025-08528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Adipogenesis is intricately linked to the onset and progression of muscle aging; however, the relevant biomarkers remain unclear. This study sought to identify key genes associated with adipogenesis in the context of muscle aging. Firstly, gene expression profiles from biopsies of the vastus lateralis muscle in both young and elderly population were retrieved from the GEO database. After intersecting with the results of differential gene analysis, weighted gene co-expression network analysis, and sets of adipogenesis-related genes, 29 adipogenesis-related differential expressed genes (ARDEGs) were selected. Connectivity Map (cMAP) analysis identified tamsulosin, fraxidin, and alaproclate as key target compounds. In further, using three machine learning algorithms and the friends analysis, four hub ARDEGs, ESRRA, RXRG, GADD45A, and CEBPB were identified and verified in vivo aged mice muscles. Immune infiltration analysis showed a strong link between several immune cells and hub ARDEGs. In all, these findings suggested that ESRRA, RXRG, GADD45A, and CEBPB could serve as adipogenesis related biomarkers in muscle aging.
Collapse
Affiliation(s)
- Yumin Zhang
- Division of Geriatric Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Li Qin
- Division of Geriatric Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Juan Liu
- Division of Geriatric Endocrinology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Gupta P, Sakthivel S, Jiemin N, Arul K, Tikno K, Park SH, Wu Y, Wang L, Bay BH, Ho L, Giguere V, Ghosh S, McDonnell DP, Yen PM, Singh BK. ESRRA (estrogen related receptor, alpha) induces ribosomal protein RPLP1-mediated adaptive hepatic translation during prolonged starvation. Autophagy 2025:1-15. [PMID: 39936615 DOI: 10.1080/15548627.2025.2465183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, ESRRA (estrogen related receptor, alpha) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating Rplp1 (ribosomal protein lateral stalk subunit P1) gene expression. Overexpression or siRNA knockdown of Esrra in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome and macroautophagy/autophagy protein translation, and autophagy activity. Remarkably, we have found that ESRRA had dual functions by not only regulating transcription but also controlling adaptive translation via the ESRRA-RPLP1-lysosome-autophagy pathway during prolonged starvation.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Karine Gauthier
- Département de Biologie, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Lyon, Cedex, France
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Priyanka Gupta
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Suganya Sakthivel
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Nah Jiemin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- Pennington Biomedical Research Center, Laboratory of Bioinformatics and Computational Biology, Baton Rouge, LA, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Brijesh K Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Feng C, Kong D, Tong B, Liang Y, Xu F, Yang Y, Wu Y, Chi X, Wei P, Yang Y, Zhang G, Tian G, Xu Z. Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion. Cell Death Dis 2025; 16:23. [PMID: 39820331 PMCID: PMC11739407 DOI: 10.1038/s41419-025-07345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted. The results demonstrated that ERRα promoted the proliferation and tumorigenesis of RCC cells by maintaining lysosome-dependent autophagy flux. ERRα inhibition impaired the transcriptional expression of LAMP2 and VAMP8 and blocked the fusion of autophagosomes with lysosomes, causing the impairment of the autophagy-lysosome pathway and tumor repression in RCC. Moreover, VHL mutant-induced hyperactive hypoxia signaling in RCC triggered p300/CBP-mediated acetylation at the DNA-binding domain of ERRα, and this acetylation promoted its affinity toward targeting DNA and Parkin-mediated ubiquitination and proteasome-dependent degradation. This regulatory model enhanced ERRα transactivation on the expression of LAMP2 and VAMP8, which then maintained autophagy flux and RCC progression. Pharmaceutical inhibition on ERRα acetylation-mediated autophagy-lysosome pathway led to growth repression and sunitinib sensitivity of RCC cells. Taken together, this study uncovered a novel regulatory mechanism of acetylation contributing to the transcriptional performance and the oncogenic role of ERRα in RCC progression by modulating the autophagy-lysosome pathway. These findings might provide a novel approach for the clinical diagnosis and resolution of sunitinib resistance of RCC.
Collapse
Affiliation(s)
- Chun Feng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
- The Second Medical College, Binzhou Medical University, Yantai, China
| | - Demin Kong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Binghua Tong
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yonghui Liang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yangyang Yang
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yingying Wu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaodong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Pengfei Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yang Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Guilong Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| | - Zhaowei Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Watson A, Harris RA, Engevik AC, Oezguen N, Nicholson MR, Dooley S, Stubler R, Satter LF, Karam LB, Kellermayer R. MYO5B and the Polygenic Landscape of Very Early-Onset Inflammatory Bowel Disease in an Ethnically Diverse Population. Inflamm Bowel Dis 2025; 31:189-199. [PMID: 39096520 DOI: 10.1093/ibd/izae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Genetic discovery in very early-onset inflammatory bowel disease (VEO-IBD) can elucidate not only the origins of VEO-IBD, but also later-onset inflammatory bowel disease. We aimed to investigate the polygenic origins of VEO-IBD in a cohort with a high proportion of Hispanic patients. METHODS Patients with VEO-IBD who underwent whole exome sequencing at our center were included. Genes were categorized as genes of interest (GOIs) (129 genes previously described to be associated with VEO-IBD) or non-GOIs. VEO-IBD "susceptibility" single nucleotide variants (SNVs) were identified through enrichment compared with gnomAD (Genome Aggregation Database) and ALFA (Allele Frequency Aggregator) and were scored by Combined Annotation Dependent Depletion for deleteriousness. Gene networks carrying susceptibility SNVs were created. Myosin 5b immunofluorescence was also studied. RESULTS Fifty-six patients met inclusion criteria, and 32.1% identified as Hispanic. Monogenic disease was infrequent (8.9%). Significant enrichment of GOI susceptibility SNVs was observed, notably in MYO5B, especially in Hispanics. MEFV, TNFAIP3, SH3TC2, and NCF2 were also central participants in the GOI networks. Myosin 5b immunofluorescence in colonic mucosa was significantly reduced in those with MYO5B susceptibility SNVs compared with control subjects. Seven genes (ESRRA, HLA-DQ1, RETSAT, PABPC1, PARP4, CCDC102A, and SUSD2) were central participants in the non-GOI networks. CONCLUSIONS Our results support the polygenic nature of VEO-IBD, in which key participants, like MYO5B, were identified through network analytics. Rare variant load within susceptibility genes may be relevant not only for the genetic origins of inflammatory bowel disease, but also for the age of disease onset. Our findings could guide future work in precision medicine.
Collapse
Affiliation(s)
- Ashleigh Watson
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Amy C Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Numan Oezguen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
| | - Maribeth R Nicholson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sarah Dooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel Stubler
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lisa Forbes Satter
- Department of Pediatric Allergy and Immunology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lina B Karam
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Richard Kellermayer
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Children's Nutrition and Research Center, U.S. Department of Agriculture Agricultural Research Service, Houston, TX, USA
| |
Collapse
|
5
|
Kim S, Kim KH, Jung HW, Jeong EO, Lee HJ, Kwon J, Kwon HJ, Choi SW, Koh HS, Kim SH. Elevated Serum IL-6 as a Negative Prognostic Biomarker in Glioblastoma: Integrating Bioinformatics and Clinical Validation. J Cancer 2025; 16:802-811. [PMID: 39781345 PMCID: PMC11705068 DOI: 10.7150/jca.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Methods: Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high IL-6 expression. The Tumor IMmune Estimation Resource database was used to analyze the association between IL-6 expression and immune cell infiltration. To validate the role of IL-6 in a clinical setting, a retrospective cohort study was conducted on newly diagnosed GBM patients. Serum IL-6 levels were repeatedly measured at key milestone time points, and their correlation with survival data was analyzed. Results: Bioinformatics analysis revealed that high IL-6 expression is associated with the activation of procancer pathways, that there is a positive correlation between IL-6 expression and immune cell infiltration in GBM. Between March 2021 and September 2023, 36 GBM patients and their serum IL-6 measurements at various time points were included in the clinical data analyses. Elevated serum IL-6 levels at baseline, with a cutoff of 7pg/mL, were identified in 11 patients (30.6%). In the multivariate analyses for overall survival (OS), elevated IL-6 was a significant risk factor (p = 0.048), along with unfavorable surgical resection (p = 0.039) and O6-methylguanine-DNA methyltransferase promotor unmethylation (p = 0.027). The median actuarial OS of the high initial IL-6 group was significantly shorter than that of the low initial IL-6 group (6.4 vs. 19.7 months, p < 0.001). However, IL-6 levels at other time points were not related to patient prognosis. Conclusion: Elevated IL-6 mRNA expression is correlated with the activation of procancer pathways, increased immune cell infiltration, and poor prognosis in GBM patients. In addition, elevated serum IL-6 at baseline is a negative prognostic factor confirmed in a clinical study. Serum IL-6 may be a potential prognostic biomarker enhancing the management of GBM.
Collapse
Affiliation(s)
- Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyung Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hee-won Jung
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Oh Jeong
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Han-Joo Lee
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jeanny Kwon
- Department of Radiation Oncology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyon-jo Kwon
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seung-Won Choi
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon-Song Koh
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
6
|
Xing Y, Huang B, Cui Z, Zhang Q, Ma H. Dioscin improves fatty liver hemorrhagic syndrome by promoting ERα-AMPK mediated mitophagy in laying hens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156056. [PMID: 39342780 DOI: 10.1016/j.phymed.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Mitochondria play a crucial role in upholding metabolic homeostasis. Mitochondrial damage closely associated with the pathogenesis of fatty liver hemorrhagic syndrome (FLHS), while mitophagy being among the most effective methods for eliminating the damaged mitochondria. Dioscin, a natural extract, can activate autophagy; however, its effects on FLHS regarding mitophagy regulation remain unelucidated. PURPOSE We explored the impact of dioscin on FLHS induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focused the protective effects of dioscin on mitochondrial injury. METHOD To investigate the impact of dioscin on fatty liver syndrome in laying hens, we first induced the condition by feeding them a high-energy and low-protein diet. Then, we assessed lipid metabolism-related markers using oil red staining and a commercial detection kit. In addition, the role of dioscin on fatty liver syndrome in laying hens was confirmed by assessing the activation of hepatocyte fat deposition and hepatocyte apoptosis; and the mechanism of dioscin in FLHS was investigated through LMH cell experiment in vitro. Furthermore, CETSA and molecular docking were conducted for additional confirmation. RESULT The results showed that dioscin alleviated mitochondrial damage, relieved the excessive deposition of hepatic lipid droplets and oxidative stress induced by HELP diet in laying hens. Furthermore, dioscin regulated the mitophagy by activating the estrogen receptor α (ERα)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway, thus mitigating mitochondria injury and apoptosis in hepatocytes. In addition, we found that dioscin promoted the translocation of nuclear transcription factor into nucleus by activating ERα-AMPK signaling, facilitating autophagic flux in the liver of laying hens and LMH cells. Furthermore, cells pretreated with the lysosomal acidification inhibitor bafilomycin A1 blocked the inhibitory effect of dioscin on the apoptosis induced by palmitic acid (PA)-stimulation in LMH cells, suggesting that dioscin reduces PA-induced apoptosis by activating mitophagy. Moreover, dioscin-induced lysosomal acidification and mitochondrial biogenesis were reversed in PA-induced LMH cells pretreated with ERα-specific inhibitor methylpiperidino pyrazole. CONCLUSION This study firstly demonstrated that dioscin alleviates fatty liver syndrome induced by HELP diet in laying hens. The findings from this study illustrated that dioscin plays a significant role in reducing mitochondrial damage and apoptosis, and these beneficial effects mainly achieve through promotion of ERα-AMPK signaling, which mediates autophagy within the liver of laying hens fed a HELP-diets. These findings provide a theoretical basis for considering dioscin as a possible treatment option for mitigating FLHS in egg-laying hens.
Collapse
Affiliation(s)
- Yuxiao Xing
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Yang H. The causality between gut microbiota and endometriosis: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1434582. [PMID: 39650192 PMCID: PMC11621931 DOI: 10.3389/fmed.2024.1434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Background Observational studies and animal experiments had suggested a potential relationship between gut microbiota abundance and pathogenesis of endometriosis (EMs), but the relevance of this relationship remains to be clarified. Methods We perform a two-sample bidirectional Mendelian randomization (MR) analysis to explore whether there is a causal correlation between the abundance of the gut microbiota and EMs and the direction of causality. Genome-wide association study (GWAS) data ukb-d-N80, finn-b-N14-EM, and MiBinGen were selected. Inverse variance weighted (IVW), weighted median, and MR Egger are selected for causal inference. The Cochran Q test, Egger intercept test, and leave-one-out analysis are performed for sensitivity analyses. Results In the primary outcome, we find that a higher abundance of class Negativicutes, genus Dialister, genus Enterorhabdus, genus Eubacterium xylanophilum group, genus Methanobrevibacter and order Selenomonadales predict a higher risk of EMs, and a higher abundance of genus Coprococcus and genus Senegalimassilia predict a lower risk of EMs. During verifiable outcomes, we find that a higher abundance of phylum Cyanobacteria, genus Ruminococcaceae UCG002, and genus Coprococcus 3 predict a higher risk of EMs, and a higher abundance of genus Flavonifracto, genus Bifidobacterium, and genus Rikenellaceae RC9 predict a lower risk of EMs. In primary reverse MR analysis, we find that EMs predict a lower abundance of the genus Eubacterium fissicatena group, genus Prevotella7, genus Butyricicoccus, family Lactobacillaceae, and a higher abundance of genus Ruminococcaceae UCG009. In verifiable reverse MR analysis, we find that EMs predict a lower abundance of the genus Ruminococcaceae UCG004 and a higher abundance of the genus Howardella. Conclusion Our study implies a mutual causality between gut microbiota abundance and the pathogenesis of EMs, which may provide a novel direction for EMs diagnosis, prevention, and treatment, may promote future functional or clinical analysis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
9
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
10
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
11
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
12
|
Fang W, Qu J, Zhao W, Cao X, Liu J, Han Q, Chen D, Lv W, Xie Y, Sun Y. Monkey multi-organ cell atlas exposed to estrogen. LIFE MEDICINE 2024; 3:lnae012. [PMID: 39872660 PMCID: PMC11749546 DOI: 10.1093/lifemedi/lnae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/21/2024] [Indexed: 01/30/2025]
Abstract
Awareness of estrogen's effects on health is broadening rapidly. The effects of long-term high levels of estrogen on the body involve multiple organs. Here, we used both single-cell chromatin accessibility and RNA sequencing data to analyze the potential effect of estrogen on major organs. The integrated cell map enabled in-depth dissection and comparison of molecular dynamics, cell-type compositions, and cellular heterogeneity across multiple tissues and organs under estrogen stimulation. We also inferred pseudotime cell trajectories and cell-cell communications to uncover key molecular signatures underlying their cellular processes in major organs in response to estrogen. For example, estrogen could induce the differentiation of IFIT3 + neutrophils into S100A9 + neutrophils involved in the function of endosome-to-lysosome transport and the multivesicular body sorting pathway in liver tissues. Furthermore, through integration with human genome-wide association study data, we further identified a subset of risk genes during disease development that were induced by estrogen, such as AKT1 (related to endometrial cancer), CCND1 (related to breast cancer), HSPH1 (related to colorectal cancer), and COVID-19 and asthma-related risk genes. Our work uncovers the impact of estrogen on the major organs, constitutes a useful resource, and reveals the contribution and mechanism of estrogen to related diseases.
Collapse
Affiliation(s)
- Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wanjun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinran Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Quan Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Yicheng Xie
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
13
|
Xia Q, Zheng H, Li Y, Xu W, Wu C, Xu J, Li S, Zhang L, Dong L. SMURF1 controls the PPP3/calcineurin complex and TFEB at a regulatory node for lysosomal biogenesis. Autophagy 2024; 20:735-751. [PMID: 37909662 PMCID: PMC11062382 DOI: 10.1080/15548627.2023.2267413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
Macroautophagy/autophagy is a homeostatic process in response to multiple signaling, such as the lysosome-dependent recycling process of cellular components. Starvation-induced MTOR inactivation and PPP3/calcineurin activation were shown to promote the nuclear translocation of TFEB. However, the mechanisms via which signals from endomembrane damage are transmitted to activate PPP3/calcineurin and orchestrate autophagic responses remain unknown. This study aimed to show that autophagy regulator SMURF1 controlled TFEB nuclear import for transcriptional activation of the lysosomal biogenesis. We showed that blocking SMURF1 affected lysosomal biogenesis in response to lysosomal damage by preventing TFEB nuclear translocation. It revealed galectins recognized endolysosomal damage, and led to recruitment of SMURF1 and the PPP3/calcineurin apparatus on lysosomes. SMURF1 interacts with both LGALS3 and PPP3CB to form the LGALS3-SMURF1-PPP3/calcineurin complex. Importantly, this complex further stabilizes TFEB, thereby activating TFEB for lysosomal biogenesis. We determined that LLOMe-mediated TFEB nuclear import is dependent on SMURF1 under the condition of MTORC1 inhibition. In addition, SMURF1 is required for PPP3/calcineurin activity as a positive regulator of TFEB. SMURF1 controlled the phosphatase activity of the PPP3CB by promoting the dissociation of its autoinhibitory domain (AID) from its catalytic domain (CD). Overexpression of SMURF1 showed similar effects as the constitutive activation of PPP3CB. Thus, SMURF1, which bridges environmental stress with the core autophagosomal and autolysosomal machinery, interacted with endomembrane sensor LGALS3 and phosphatase PPP3CB to control TFEB activation.Abbreviations: ATG: autophagy-related; LLOMe: L-Leucyl-L-Leucine methyl ester; ML-SA1: mucolipin synthetic agonist 1; MTOR: mechanistic target of rapamycin kinase; PPP3CB: protein phosphatase 3 catalytic subunit beta; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Qin Xia
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hanfei Zheng
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wanting Xu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chengwei Wu
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Gong ZZ, Li T, Yan H, Xu MH, Lian Y, Yang YX, Wei W, Liu T. Exploring the autophagy-related pathogenesis of active ulcerative colitis. World J Clin Cases 2024; 12:1622-1633. [PMID: 38576744 PMCID: PMC10989433 DOI: 10.12998/wjcc.v12.i9.1622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The pathogenesis of ulcerative colitis (UC) is complex, and recent therapeutic advances remain unable to fully alleviate the condition. AIM To inform the development of novel UC treatments, bioinformatics was used to explore the autophagy-related pathogenesis associated with the active phase of UC. METHODS The GEO database was searched for UC-related datasets that included healthy controls who met the screening criteria. Differential analysis was conducted to obtain differentially expressed genes (DEGs). Autophagy-related targets were collected and intersected with the DEGs to identiy differentially expressed autophagy-related genes (DEARGs) associated with active UC. DEARGs were then subjected to KEGG, GO, and DisGeNET disease enrichment analyses using R software. Differential analysis of immune infiltrating cells was performed using the CiberSort algorithm. The least absolute shrinkage and selection operator algorithm and protein-protein interaction network were used to narrow down the DEARGs, and the top five targets in the Dgree ranking were designated as core targets. RESULTS A total of 4822 DEGs were obtained, of which 58 were classified as DEARGs. SERPINA1, BAG3, HSPA5, CASP1, and CX3CL1 were identified as core targets. GO enrichment analysis revealed that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy. KEGG enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and other signaling pathways. Disease enrichment analysis indicated that DEARGs were significantly linked to diseases such as malignant glioma and middle cerebral artery occlusion. Immune infiltration analysis demonstrated a higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC patients than in healthy controls. CONCLUSION Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this study may provide new insight into the treatment of active UC patients.
Collapse
Affiliation(s)
- Zhuo-Zhi Gong
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Teng Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - He Yan
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Min-Hao Xu
- College of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Beijing 100102, China
| | - Yue Lian
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Yi-Xuan Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Tao Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| |
Collapse
|
15
|
Li S, Chen T, Zhou Y, Li X. Palmitic acid and trans-4-hydroxy-3-methoxycinnamate, the active ingredients of Yaobishu formula, reduce inflammation and pain by regulating gut microbiota and metabolic changes after lumbar disc herniation to activate autophagy and the Wnt/β-catenin pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166972. [PMID: 38016505 DOI: 10.1016/j.bbadis.2023.166972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The imbalance in gut microbiota triggers an inflammatory response that spreads from the gut to the discs and is associated with lumbar disc herniation (LDH). In this study, we investigated the mechanism of palmitic acid (PA) and trans-4-hydroxy-3-methoxycinnamic acid (THMC) on microbiota, metabolic homeostasis, and autophagy after LDH. The LDH rat model was established by puncturing the exposed intervertebral disc. 16S rDNA was used to assess the gut microbiome composition. The microbial metabolites were analyzed by UPLC-MS. The mechanism of PA and THMC in LDH was explored by fecal microbiota transplantation (FMT). We found that Yaobishu, PA, THMC, and the positive control drug Celebrex attenuated intervertebral disc damage in LDH rats and downregulated TRPV1, IL-1β, and IL-18 expression. In addition, Yaobishu reduced Oscillospirales and Ruminococcaceae abundances after LDH. PA increased Bacilli's abundance while decreasing Negativicutes and Ruminococcaceae abundances. Metabolomics showed that Yaobishu increased 2-hexanone, methyl isobutyl ketone, 2-methylpentan-3-one, and nonadecanoic acid levels but decreased pantetheine and urocanate levels. PA and THMC reduced uridine and urocanate levels. Yaobishu, PA, and THMC activated autophagy and the Wnt/β-catenin pathway in LDH rats. Moreover, antibiotics abrogated these effects. FMT-PA and FMT-THMC activated autophagy and decreased IL-1β, IL-18, Wnt1, β-catenin, and TRPV1 expression. FMT-PA and FMT-THMC partially reversed the effects of 3-MA. Taken together, our data suggest that Yaobishu, PA, and THMC relieve inflammation and pain by remodeling the gut microbiota and restoring metabolic homeostasis after LDH to activate autophagy and the Wnt/β-catenin pathway, which provide a new therapeutic target for LDH in the clinic.
Collapse
Affiliation(s)
- ShuoQi Li
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - TieZhu Chen
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - YiZhao Zhou
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China
| | - XiaoSheng Li
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, China.
| |
Collapse
|
16
|
Chen J, Ren T, Xie L, Hu H, Li X, Maitusong M, Zhou X, Hu W, Xu D, Qian Y, Cheng S, Yu K, Wang JA, Liu X. Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation. Nat Commun 2024; 15:557. [PMID: 38228638 PMCID: PMC10792006 DOI: 10.1038/s41467-024-44726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.
Collapse
Affiliation(s)
- Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200030, Shanghai, P.R. China
| | - Miribani Maitusong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Dilin Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Yi Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Si Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Kaixiang Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Jian An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, P.R. China.
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| |
Collapse
|
17
|
Tripathi M, Gauthier K, Sandireddy R, Zhou J, Gupta P, Sakthivel S, Jiemin N, Arul K, Tikno K, Park SH, Wang L, Ho L, Giguere V, Ghosh S, McDonnell DP, Yen PM, Singh BK. Estrogen receptor-related receptor (Esrra) induces ribosomal protein Rplp1-mediated adaptive hepatic translation during prolonged starvation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574937. [PMID: 38260502 PMCID: PMC10802477 DOI: 10.1101/2024.01.09.574937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, estrogen-related receptor alpha (Esrra) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating 60S acidic ribosomal protein P1 (Rplp1) gene expression. Overexpression or siRNA knockdown of Esrra expression in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome/autophagy protein translation, and autophagy. Remarkably, we have found that Esrra had dual functions by not only regulating transcription but also controling adaptive translation via the Esrra/Rplp1/lysosome/autophagy pathway during prolonged starvation.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Reddemma Sandireddy
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Jin Zhou
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Priyanka Gupta
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Suganya Sakthivel
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Nah Jiemin
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Kabilesh Arul
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Keziah Tikno
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Sung-Hee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Lijin Wang
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Vincent Giguere
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Sujoy Ghosh
- Centre for Computational Biology, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, C238A Levine Science Research Center, Durham, NC 27710, USA
| | - Paul M. Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
- Duke Molecular Physiology Institute and Dept. of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brijesh K. Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore (NUS) Medical School, Singapore 169857, Singapore
| |
Collapse
|
18
|
Yuan Y, Wang F, Liu X, Shuai B, Fan H. The Role of AMPK Signaling in Ulcerative Colitis. Drug Des Devel Ther 2023; 17:3855-3875. [PMID: 38170149 PMCID: PMC10759424 DOI: 10.2147/dddt.s442154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulcer formation of the intestinal mucosa. Due to its high recurrence rate, prolonged course, limited curative options, and significant impact on patients' quality of life, along with a notable potential for malignant transformation, UC is designated as a refractory global health challenge by the World Health Organization (WHO). The elucidation of the pathogenesis and therapeutic strategies for UC requires further in-depth investigation. AMP-activated protein kinase (AMPK) serves as a central regulator of cellular energy metabolic homeostasis. Emerging evidence indicates that interventions involving traditional Chinese medicine (TCM) components, as well as other pharmacological measures, exert beneficial effects on the intestinal mucosal inflammation and epithelial barrier dysfunction in UC by modulating AMPK signaling, thereby influencing biological processes such as cellular autophagy, apoptosis, inflammatory responses, macrophage polarization, and NLRP3 inflammasome-mediated pyroptosis. The role of AMPK in UC is of significant importance. This manuscript provides a comprehensive overview of the mechanisms through which AMPK is involved in UC, as well as a compilation of pharmacological agents capable of activating the AMPK signaling pathway within the context of UC. The primary objective is to facilitate a deeper comprehension of the pivotal role of AMPK in UC among researchers and clinical practitioners, thereby advancing the identification of novel therapeutic targets for interventions in UC.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Fang Wang
- Department of Rehabilitation Medicine, Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Jingshan, Hubei, 431800, People’s Republic of China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
19
|
Zhou QM, Zheng L. Research progress on the relationship between Paneth cells-susceptibility genes, intestinal microecology and inflammatory bowel disease. World J Clin Cases 2023; 11:8111-8125. [PMID: 38130785 PMCID: PMC10731169 DOI: 10.12998/wjcc.v11.i34.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.
Collapse
Affiliation(s)
- Qi-Ming Zhou
- Department of Nephrology, Lanxi Hospital of Traditional Chinese Medicine, Lanxi 321100, Zhejiang Province, China
| | - Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
20
|
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E, López-Gómez C. Role of Mitochondria in Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2023; 24:17124. [PMID: 38069446 PMCID: PMC10707203 DOI: 10.3390/ijms242317124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are key cellular organelles whose main function is maintaining cell bioenergetics by producing ATP through oxidative phosphorylation. However, mitochondria are involved in a much higher number of cellular processes. Mitochondria are the home of key metabolic pathways like the tricarboxylic acid cycle and β-oxidation of fatty acids, as well as biosynthetic pathways of key products like nucleotides and amino acids, the control of the redox balance of the cell and detoxifying the cell from H2S and NH3. This plethora of critical functions within the cell is the reason mitochondrial function is involved in several complex disorders (apart from pure mitochondrial disorders), among them inflammatory bowel diseases (IBD). IBD are a group of chronic, inflammatory disorders of the gut, mainly composed of ulcerative colitis and Crohn's disease. In this review, we present the current knowledge regarding the impact of mitochondrial dysfunction in the context of IBD. The role of mitochondria in both intestinal mucosa and immune cell populations are discussed, as well as the role of mitochondrial function in mechanisms like mucosal repair, the microbiota- and brain-gut axes and the development of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisco J. Rodríguez-González
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Alejandra Fernández-Castañer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
21
|
Gopinath P, Oviya RP, Gopisetty G. Oestrogen receptor-independent actions of oestrogen in cancer. Mol Biol Rep 2023; 50:9497-9509. [PMID: 37731028 DOI: 10.1007/s11033-023-08793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Oestrogen, the primary female sex hormone, plays a significant role in tumourigenesis. The major pathway for oestrogen is via binding to its receptor [oestrogen receptor (ERα or β)], followed by nuclear translocation and transcriptional regulation of target genes. Almost 70% of breast tumours are ER + , and endocrine therapies with selective ER modulators (tamoxifen) have been successfully applied. As many as 25% of tamoxifen-treated patients experience disease relapse within 5 years upon completion of chemotherapy. In such cases, the ER-independent oestrogen actions provide a plausible explanation for the resistance, as well as expands the existing horizon of available drug targets. ER-independent oestrogen signalling occurs via one of the following pathways: signalling through membrane receptors, oxidative catabolism giving rise to genotoxic metabolites, effects on mitochondria and redox balance, and induction of inflammatory cytokines. The current review focuses on the non-classical oestrogen signalling, its role in cancer, and its clinical significance.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020, India
| | - Revathi Paramasivam Oviya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020, India.
| |
Collapse
|
22
|
Wang Y, Lai H, Zhang T, Wu J, Tang H, Liang X, Ren D, Huang J, Li W. Mitochondria of intestinal epithelial cells in depression: Are they at a crossroads of gut-brain communication? Neurosci Biobehav Rev 2023; 153:105403. [PMID: 37742989 DOI: 10.1016/j.neubiorev.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
The role of gut dysbiosis in depression is well established. However, recent studies have shown that gut microbiota is regulated by intestinal epithelial cell (IEC) mitochondria, which has yet to receive much attention. This review summarizes the recent developments about the critical role of IEC mitochondria in actively maintaining gut microbiota, intestinal metabolism, and immune homeostasis. We propose that IEC mitochondrial dysfunction alters gut microbiota composition, participates in cell fate, mediates oxidative stress, activates the peripheral immune system, causes peripheral inflammation, and transmits peripheral signals through the vagus and enteric nervous systems. These pathological alterations lead to brain inflammation, disruption of the blood-brain barrier, activation of the hypothalamic-pituitary-adrenal axis, activation of microglia and astrocytes, induction of neuronal loss, and ultimately depression. Furthermore, we highlight the prospect of treating depression through the mitochondria of IECs. These new findings suggest that the mitochondria of IECs may be a newly found important factor in the pathogenesis of depression and represent a potential new strategy for treating depression.
Collapse
Affiliation(s)
- Yi Wang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Han Lai
- School of Foreign Languages, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Tian Zhang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jing Wu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Huiling Tang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Xuanwei Liang
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Dandan Ren
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China
| | - Jinzhu Huang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610000, PR China.
| |
Collapse
|
23
|
Harris RA, Bush AH, Eagar TN, Qian J, Greenwood MP, Opekun AR, Baldassano R, Guthery SL, Noe JD, Otley A, Rosh JR, Kugathasan S, Kellermayer R. Exome Sequencing Implicates DGKZ , ESRRA , and GXYLT1 for Modulating Granuloma Formation in Crohn Disease. J Pediatr Gastroenterol Nutr 2023; 77:354-357. [PMID: 37347142 PMCID: PMC10528115 DOI: 10.1097/mpg.0000000000003873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Non-caseating granulomas may indicate a more aggressive phenotype of Crohn disease (CD). Genetic associations of granulomatous CD (GCD) may help elucidate disease pathogenesis. Whole-exome sequencing was performed on peripheral blood-derived DNA from 17 pediatric patients with GCD and 19 with non-GCD (NGCD), and from an independent validation cohort of 44 GCD and 19 NGCD cases. PLINK (a tool set for whole-genome association and population-based linkage analyses) analysis was used to identify single nucleotide polymorphisms (SNPs) differentiating between groups, and subgroup allele frequencies were also compared to a public genomic database (gnomAD). The Combined Annotation Dependent Depletion scoring tool was used to predict deleteriousness of SNPs. Human leukocyte antigen (HLA) haplotype findings were compared to a control group (n = 8496). PLINK-based analysis between GCD and NGCD groups did not find consistently significant hits. gnomAD control comparisons, however, showed consistent subgroup associations with DGKZ , ESRRA , and GXYLT1 , genes that have been implicated in mammalian granulomatous inflammation. Our findings may guide future research and precision medicine.
Collapse
Affiliation(s)
- R. Alan Harris
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- contributed equally
| | - Allyson H Bush
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
- contributed equally
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Justin Qian
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
| | - Michael P Greenwood
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Antone R Opekun
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
| | - Robert Baldassano
- Division of Gastroenterology, Hepatology and Nutrition, University of Pennsylvania, Children’s Hospital of Philadelphia, PA
| | - Stephen L Guthery
- Department of Pediatrics, University of Utah and Intermountain Primary Children’s Hospital, Salt Lake City, UT
| | - Joshua D Noe
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | - Anthony Otley
- IWK Health/Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joel R. Rosh
- Goryeb Children’s Hospital/Atlantic Children’s Health, Morristown, NJ
| | - Subra Kugathasan
- Departments of Pediatrics and Human Genetics at Emory University School of Medicine, Atlanta, GA
| | - Richard Kellermayer
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX
- Children’s Nutrition and Research Center, Houston, TX
| |
Collapse
|
24
|
Fracas E, Costantino A, Vecchi M, Buoli M. Depressive and Anxiety Disorders in Patients with Inflammatory Bowel Diseases: Are There Any Gender Differences? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6255. [PMID: 37444101 PMCID: PMC10340762 DOI: 10.3390/ijerph20136255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Gender differences were identified in the frequency and clinical presentations of inflammatory bowel disease (IBD) and depressive and anxiety disorders, which are more common in IBD patients than in the general population. The present manuscript provides a critical overview of gender differences in the frequency and clinical course of mood and anxiety disorders in IBD patients, with the aim of helping clinicians provide individualized management for patients. All of the included studies found that IBD patients reported a higher frequency of depressive and anxiety disorders than the general population. These findings should encourage healthcare providers to employ validated tools to monitor the mental health of their IBD patients, such as the Patient Health Questionnaire (PHQ-9). In addition, most studies confirm that women with IBD are more likely than men to develop affective disorders and show that up to 65% of women with IBD have depressive and anxiety disorders. Women with IBD require close mental health monitoring and ultimately a multidisciplinary approach involving mental health professionals. Drug treatment in women should be individualized and medications that may affect mental health (e.g., corticosteroids) should be thoroughly reconsidered. Further data are needed to ensure individualized treatment for IBD patients in a framework of precision medicine.
Collapse
Affiliation(s)
- Elia Fracas
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (E.F.); (A.C.); (M.V.)
| | - Andrea Costantino
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (E.F.); (A.C.); (M.V.)
- Division of Gastroenterology and Endoscopy, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maurizio Vecchi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (E.F.); (A.C.); (M.V.)
- Division of Gastroenterology and Endoscopy, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (E.F.); (A.C.); (M.V.)
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
25
|
Xia W, Pan Z, Zhang H, Zhou Q, Liu Y. ERRα protects against sepsis-induced acute lung injury in rats. Mol Med 2023; 29:76. [PMID: 37340376 DOI: 10.1186/s10020-023-00670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is associated with poor survival rates. The identification of potential therapeutic targets for preventing sepsis-induced ALI has clinical importance. This study aims to investigate the role of estrogen-related receptor alpha (ERRα) in sepsis-induced ALI. METHODS Lipopolysaccharide (LPS) was used to simulate sepsis-induced ALI model in rat pulmonary microvascular endothelial cells (PMVECs). The effects of ERRα overexpression and knockdown on LPS-induced endothelial permeability, apoptosis and autophagy were determined by horseradish peroxidase permeability assay, TdT-mediated dUTP Nick End Labeling (TUNEL) assay, flow cytometry, immunofluorescence staining, RT-PCR and Western Blotting. The rat model with sepsis-induced ALI was established by cecal ligation and puncture in anesthetized rats to verify the results of in vitro experiments. Animals were randomly assigned to receive intraperitoneal injection of vehicle or ERRα agonist. Lung vascular permeability, pathological injury, apoptosis and autophagy were examined. RESULTS Overexpression of ERRα ameliorated LPS-induced endothelial hyperpermeability, degradation of adherens junctional molecules, upregulation of bax, cleaved caspase 3 and cleaved caspase 9 levels, downregulation of anti-apoptotic protein Bcl-2 level, and promoted the formation of autophagic flux, while the knockdown of ERRα exacerbated LPS-induced apoptosis and inhibited the activation of autophagy. Administration of ERRα agonist alleviated the pathological damage of lung tissue, increased the levels of tight junction proteins and adherens junction proteins, and decreased the expression of apoptosis-related proteins. Promoting the expression of ERRα significantly enhanced the process of autophagy and reduced CLP-induced ALI. Mechanistically, ERRα is essential to regulate the balance between autophagy and apoptosis to maintain the adherens junctional integrity. CONCLUSION ERRα protects against sepsis-induced ALI through ERRα-mediated apoptosis and autophagy. Activation of ERRα provides a new therapeutic opportunity to prevent sepsis-induced ALI.
Collapse
Affiliation(s)
- Wenfang Xia
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhou Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huanming Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingshan Zhou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
26
|
Guo M, Cao X, Ji D, Xiong H, Zhang T, Wu Y, Suo L, Pan M, Brugger D, Chen Y, Zhang K, Ma B. Gut Microbiota and Acylcarnitine Metabolites Connect the Beneficial Association between Estrogen and Lipid Metabolism Disorders in Ovariectomized Mice. Microbiol Spectr 2023; 11:e0014923. [PMID: 37140372 PMCID: PMC10269676 DOI: 10.1128/spectrum.00149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Decreased estrogen level is one of the main causes of lipid metabolism disorders and coronary heart disease in women after menopause. Exogenous estradiol benzoate is effective to some extent in alleviating lipid metabolism disorders caused by estrogen deficiency. However, the role of gut microbes in the regulation process is not yet appreciated. The objective of this study was to investigate the effects of estradiol benzoate supplementation on lipid metabolism, gut microbiota, and metabolites in ovariectomized (OVX) mice and to reveal the importance of gut microbes and metabolites in the regulation of lipid metabolism disorders. This study found that high doses of estradiol benzoate supplementation effectively attenuated fat accumulation in OVX mice. There was a significant increase in the expression of genes enriched in hepatic cholesterol metabolism and a concomitant decrease in the expression of genes enriched in unsaturated fatty acid metabolism pathways. Further screening of the gut for characteristic metabolites associated with improved lipid metabolism revealed that estradiol benzoate supplementation influenced major subsets of acylcarnitine metabolites. Ovariectomy significantly increased the abundance of characteristic microbes that are significantly negatively associated with acylcarnitine synthesis, such as Lactobacillus and Eubacterium ruminantium group bacteria, while estradiol benzoate supplementation significantly increased the abundance of characteristic microbes that are significantly positively associated with acylcarnitine synthesis, such as Ileibacterium and Bifidobacterium spp. The use of pseudosterile mice with gut microbial deficiency greatly facilitated the synthesis of acylcarnitine due to estradiol benzoate supplementation and also alleviated lipid metabolism disorders to a greater extent in OVX mice. IMPORTANCE Our findings establish a role for gut microbes in the progression of estrogen deficiency-induced lipid metabolism disorders and reveal key target bacteria that may have the potential to regulate acylcarnitine synthesis. These findings suggest a possible route for the use of microbes or acylcarnitine to regulate disorders of lipid metabolism induced by estrogen deficiency.
Collapse
Affiliation(s)
- Mengmeng Guo
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xi Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - De Ji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Xiong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Li M, Yu Y, Xue K, Li J, Son G, Wang J, Qian W, Wang S, Zheng J, Yang C, Ge J. Genistein mitigates senescence of bone marrow mesenchymal stem cells via ERRα-mediated mitochondrial biogenesis and mitophagy in ovariectomized rats. Redox Biol 2023; 61:102649. [PMID: 36871183 PMCID: PMC9995482 DOI: 10.1016/j.redox.2023.102649] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Senescence of bone marrow mesenchymal stem cells (BMMSCs) induced by chronic oxidative stress is an important factor contributes to the postmenopausal osteoporosis (PMOP). Mitochondrial quality control takes a pivotal role in regulating oxidative stress and cell senescence. Genistein is a major isoflavone in soy products, which is best known for its ability to inhibit bone loss in both postmenopausal women and ovariectomized (OVX) rodents. Here we show that OVX-BMMSCs displayed premature senescence, elevated reactive oxygen species (ROS) level and mitochondria dysfunction, while genistein rescued these phenotypes. Using network pharmacology and molecular docking, we identified estrogen-related receptor α (ERRα) as the potential target of genistein. Knockdown of ERRα greatly abolished the anti-senescence effect of genistein on OVX-BMMSCs. Further, the mitochondrial biogenesis and mitophagy induced by genistein were inhibited by ERRα knockdown in OVX-BMMSCs. In vivo, genistein inhibited trabecular bone loss and p16INK4a expression, upregulated sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor gamma coactivator one alpha (PGC1α) expression in the trabecular bone area of proximal tibia in OVX rats. Together, this study revealed that genistein ameliorates senescence of OVX-BMMSCs through ERRα-mediated mitochondrial biogenesis and mitophagy, which provided a molecular basis for advancement and development of therapeutic strategies against PMOP.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yejia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke Xue
- Department of Pastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Geehun Son
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiajia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wentao Qian
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
28
|
Jiang X, Zheng S, Bamu A, Dai H, Lin X. Nilaparvata lugens ERR2 regulates moulting and ovary development is related to hormone signalling. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36861367 DOI: 10.1111/imb.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The nuclear receptor (NR) superfamily is one of the largest groups of transcription factors in living organisms. Oestrogen related receptor (ERR) is a class of nuclear receptors closely related to oestrogen receptors (ERs). In this study, the Nilaparvata lugens (N. lugens) ERR2 (NlERR2) was cloned, and the expression of NlERR2 was detected by qRT-PCR to explore the distribution of NlERR2 during development and in different tissues. Using RNAi and qRT-PCR, the interaction between NlERR2 and related genes of the 20-hydroxyecdysone (20E) and juvenile hormone (JH) signalling pathways was studied. The results showed that topical application of 20E and juvenile hormone III (JHIII) affected the expression of NlERR2, and NlERR2 could affect the expression of genes related to 20E and JH signalling pathways. Furthermore, NlERR2 and JH/20E hormone signalling-related genes affect moulting and ovarian development. NlERR2 and NlE93/NlKr-h1 affect the transcriptional expression of Vg-related genes. In summary, NlERR2 is related to hormone signalling pathways, which is also related to the expression of Vg and Vg related genes. Brown planthopper is one of the most important rice pests. This study provides an important basis for mining new targets for pest control.
Collapse
Affiliation(s)
- Xiaojuan Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Shiwen Zheng
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Anfu Bamu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Huan Dai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xinda Lin
- College of Life Sciences, China Jiliang University, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
29
|
Seneviratne AMPB, Lidagoster S, Valbuena-Castor S, Lashley K, Saha S, Alimova A, Kreitzer G. Kinesins Modify ERR1-Dependent Transcription Using a Conserved Nuclear Receptor Box Motif. Int J Mol Sci 2023; 24:ijms24043795. [PMID: 36835206 PMCID: PMC9959666 DOI: 10.3390/ijms24043795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Kinesin family motors are microtubule (MT)-stimulated ATPases known best as transporters of cellular cargoes through the cytoplasm, regulators of MT dynamics, organizers of the mitotic spindle, and for insuring equal division of DNA during mitosis. Several kinesins have also been shown to regulate transcription by interacting with transcriptional cofactors and regulators, nuclear receptors, or with specific promotor elements on DNA. We previously showed that an LxxLL nuclear receptor box motif in the kinesin-2 family motor KIF17 mediates binding to the orphan nuclear receptor estrogen related receptor alpha (ERR1) and is responsible for the suppression of ERR1-dependent transcription by KIF17. Analysis of all kinesin family proteins revealed that multiple kinesins contain this LxxLL motif, raising the question as to whether additional kinesin motors contribute to the regulation of ERR1. In this study, we interrogate the effects of multiple kinesins with LxxLL motifs on ERR1-mediated transcription. We demonstrate that the kinesin-3 family motor KIF1B contains two LxxLL motifs, one of which binds to ERR1. In addition, we show that expression of a KIF1B fragment containing this LxxLL motif inhibits ERR1-dependent transcription by regulating nuclear entry of ERR1. We also provide evidence that the effects of expressing the KIF1B-LxxLL fragment on ERR1 activity are mediated by a mechanism distinct from that of KIF17. Since LxxLL domains are found in many kinesins, our data suggest an expanded role for kinesins in nuclear receptor mediated transcriptional regulation.
Collapse
Affiliation(s)
- A. M. Pramodh Bandara Seneviratne
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Correspondence: (A.M.P.B.S.); (G.K.)
| | - Sarah Lidagoster
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | | | - Kareena Lashley
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Sumit Saha
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY 10031, USA
| | - Geri Kreitzer
- CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, City College of New York, New York, NY 10031, USA
- Correspondence: (A.M.P.B.S.); (G.K.)
| |
Collapse
|
30
|
An L, Wirth U, Koch D, Schirren M, Drefs M, Koliogiannis D, Niess H, Andrassy J, Guba M, Bazhin AV, Werner J, Kühn F. Metabolic Role of Autophagy in the Pathogenesis and Development of NAFLD. Metabolites 2023; 13:metabo13010101. [PMID: 36677026 PMCID: PMC9864958 DOI: 10.3390/metabo13010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease, ranging from simple steatosis to hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Liver fibrosis, which portends a poor prognosis in NAFLD, is characterized by the excessive accumulation of extracellular matrix (ECM) proteins resulting from abnormal wound repair response and metabolic disorders. Various metabolic factors play crucial roles in the progression of NAFLD, including abnormal lipid, bile acid, and endotoxin metabolism, leading to chronic inflammation and hepatic stellate cell (HSC) activation. Autophagy is a conserved process within cells that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. Accumulating evidence has shown the importance of autophagy in NAFLD and its close relation to NAFLD progression. Thus, regulation of autophagy appears to be beneficial in treating NAFLD and could become an important therapeutic target.
Collapse
|
31
|
Yu Y, Zhang D, Xu J, Zhang D, Yang L, Xia R, Wang SL. Adolescence is a sensitive period for acrylamide-induced sex hormone disruption: Evidence from NHANES populations and experimental mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114413. [PMID: 36516620 DOI: 10.1016/j.ecoenv.2022.114413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Acrylamide (AA) is widely contaminated in environment and diet. However, the association of AA and sex hormones has rarely been investigated, especially in adolescents, a period of particular susceptibility to sex hormone disruption. In this study, survey-weighted multivariate linear regression models were conducted to determine the association between AA Hb biomarkers [HbAA and glycidamide (HbGA)] and sex hormones [total testosterone (TT) and estradiol (E2)] in a total of 3268 subjects from National Health and Nutrition Examination Survey (NHANES) 2013-2016 waves. Additionally, adult and pubertal mice were treated with AA to assess the effect of AA on sex hormones and to explore the potential mechanisms. Among all the subjects, significant negative patterns for HbGA and sex hormones were identified only in youths (6-19 years old), with the lowest β being - 0.53 (95% CI: -0.80 to -0.26) for TT in males and - 0.58 (95% CI: -0.93 to -0.23) for E2 in females. Stratified analysis further revealed significant negative associations between HbGA and sex hormones in adolescents, with the lowest β being - 0.58 (95% CI: -1.02 to -0.14) for TT in males and - 0.54 (95% CI: -1.03 to -0.04) for E2 in females, while there were no significant differences between children or late adolescents. In mice, the levels of TT and E2 were dramatically reduced in AA-treated pubertal mice but not in adult mice. AA disturbed the expression of genes in the hypothalamic-pituitary-gonadal (HPG) axis, induced apoptosis of hypothalamus-produced gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus and reduced serum and hypothalamic GnRH levels in pubertal mice. Our study indicates AA could reduce TT and E2 levels by injuring GnRH neurons and disrupting the HPG axis in puberty, which manifested as severe endocrine disruption on adolescents. Our findings reinforce the idea that adolescence is a vulnerable stage in AA-induced sex hormone disruption.
Collapse
Affiliation(s)
- Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Di Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jiayi Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Daiwei Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Liu Yang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Rong Xia
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Shou-Lin Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
32
|
Han Y, Gu S, Li Y, Qian X, Wang F, Huang JH. Neuroendocrine pathogenesis of perimenopausal depression. Front Psychiatry 2023; 14:1162501. [PMID: 37065890 PMCID: PMC10098367 DOI: 10.3389/fpsyt.2023.1162501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
With the development of social economics and the increase of working pressure, more and more women are suffering from long-term serious stress and showing symptoms of perimenopausal depression (PMD). The incidence rate of PMD is increasing, and the physical and mental health are seriously affected. However, due to the lack of accurate knowledge of pathophysiology, its diagnosis and treatment cannot be accurately executed. By consulting the relevant literature in recent years, this paper elaborates the neuroendocrine mechanism of perimenopausal depression from the aspects of epigenetic changes, monoamine neurotransmitter and receptor hypothesis, glial cell-induced neuroinflammation, estrogen receptor, interaction between HPA axis and HPG axis, and micro-organism-brain gut axis. The purpose is to probe into new ways of treatment of PMD by providing new knowledge about the neuroendocrine mechanism and treatment of PMD.
Collapse
Affiliation(s)
- Yuping Han
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Simeng Gu
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
- *Correspondence: Simeng Gu,
| | - Yumeng Li
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Xin Qian
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott and White Health, Temple, TX, United States
- Department of Surgery, Texas A&M University, Temple, TX, United States
| |
Collapse
|
33
|
[The role and mechanism of autophagy in lipopolysaccharide-induced inflammatory response of A549 cells]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1161-1170. [PMID: 36305119 PMCID: PMC9628005 DOI: 10.7499/j.issn.1008-8830.2202135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To study the role and mechanism of autophagy in lipopolysaccharide (LPS)-induced inflammatory response of human alveolar epithelial A549 cells. METHODS A549 cells were stimulated with LPS to establish a cell model of inflammatory response, and were then grouped (n=3 each) by concentration (0, 1, 5, and 10 μg/mL) and time (0, 4, 8, 12, and 24 hours). The A549 cells were treated with autophagy inhibitor 3-methyladenine (3-MA) to be divided into four groups (n=3 each): control, LPS, 3-MA, and 3-MA+LPS. The A549 cells were treated with autophagy agonist rapamycin (RAPA) to be divided into four groups (n=3 each): control, LPS, RAPA, and RAPA+LPS. The A549 cells were transfected with the Toll-like receptor 4 (TLR4) overexpression plasmid to be divided into four groups (n=3 each): TLR4 overexpression control, TLR4 overexpression, TLR4 overexpression control+LPS, and TLR4 overexpression+LPS. The A549 cells were transfected with TLR4 siRNA to be divided into four groups (n=3 each): TLR4 silencing control,TLR4 silencing, TLR4 silencing control+LPS, and TLR4 silencing+LPS. CCK-8 assay was used to measure cell viability. Western blot was used to measure the protein expression levels of inflammatory indicators (NLRP3, Caspase-1, and ASC), autophagic indicators (LC3B, Beclin-1, and P62), and TLR4. RESULTS After stimulation with 1 μg/mL LPS for 12 hours, the levels of inflammatory indicators (NLRP3, Caspase-1, and ASC), autophagic indicators (LC3B, Beclin-1, and P62), and TLR4 increased and reached the peak (P<0.05). Compared with the LPS group, the 3-MA+LPS group had reduced expression of autophagy-related proteins and increased expression of inflammation-related proteins and TLR4, while the RAPA+LPS group had increased expression of autophagy-related proteins and reduced inflammation-related proteins and TLR4 (P<0.05). The TLR4 overexpression+LPS group had reduced autophagy-related proteins and increased inflammation-related proteins compared with the TLR4 overexpression control+LPS group, and the TLR4 silencing+LPS group had increased autophagy-related proteins and reduced inflammation-related proteins compared with the TLR4 silencing control+LPS group (P<0.05). CONCLUSIONS In the LPS-induced inflammatory response of human alveolar epithelial A549 cells, autophagic flux has a certain protective effect on A549 cells. TLR4-mediated autophagic flux negatively regulates the LPS-induced inflammatory response of A549 cells.
Collapse
|
34
|
Wang J, Zhong Y, Zhu H, Mahgoub OK, Jian Z, Gu L, Xiong X. Different gender-derived gut microbiota influence stroke outcomes by mitigating inflammation. J Neuroinflammation 2022; 19:245. [PMID: 36195899 PMCID: PMC9531521 DOI: 10.1186/s12974-022-02606-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background and purpose Stroke is associated with high disability and mortality rates and increases the incidence of organ-related complications. Research has revealed that the outcomes and prognosis of stroke are regulated by the state of the intestinal microbiota. However, the possibility that the manipulation of the intestinal microbiota can alter sex-related stroke outcomes remain unknown. Methods To verify the different effects of microbiota from different sexes on stroke outcomes, we performed mouse fecal microbiota transplantation (FMT) and established a model of ischemic stroke. Male and female mice received either male or female microbiota through FMT. Ischemic stroke was triggered by MCAO (middle cerebral artery occlusion), and sham surgery served as a control. Over the next few weeks, the mice underwent neurological evaluation and metabolite and inflammatory level detection, and we collected fecal samples for 16S ribosomal RNA analysis. Results We found that when the female mice were not treated with FMT, the microbiota (especially the Firmicutes-to-Bacteroidetes ratio) and the levels of three main metabolites tended to resemble those of male mice after experimental stroke, indicating that stroke can induce an ecological imbalance in the biological community. Through intragastric administration, the gut microbiota of male and female mice was altered to resemble that of the other sex. In general, in female mice after MCAO, the survival rate was increased, the infarct area was reduced, behavioral test performance was improved, the release of beneficial metabolites was promoted and the level of inflammation was mitigated. In contrast, mice that received male microbiota were much more hampered in terms of protection against brain damage and the recovery of neurological function. Conclusion A female-like biological community reduces the level of systemic proinflammatory cytokines after ischemic stroke. Poor stroke outcomes can be positively modulated following supplementation with female gut microbiota.
Collapse
Affiliation(s)
- Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.,Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Omer Kamal Mahgoub
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, 430060, Hubei, China.
| |
Collapse
|
35
|
Xu L, Yuan Y, Che Z, Tan X, Wu B, Wang C, Xu C, Xiao J. The Hepatoprotective and Hepatotoxic Roles of Sex and Sex-Related Hormones. Front Immunol 2022; 13:939631. [PMID: 35860276 PMCID: PMC9289199 DOI: 10.3389/fimmu.2022.939631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Most liver diseases, including acute liver injury, drug-induced liver injury, viral hepatitis, metabolic liver diseases, and end-stage liver diseases, are strongly linked with hormonal influences. Thus, delineating the clinical manifestation and underlying mechanisms of the “sexual dimorphism” is critical for providing hints for the prevention, management, and treatment of those diseases. Whether the sex hormones (androgen, estrogen, and progesterone) and sex-related hormones (gonadotrophin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin) play protective or toxic roles in the liver depends on the biological sex, disease stage, precipitating factor, and even the psychiatric status. Lifestyle factors, such as obesity, alcohol drinking, and smoking, also drastically affect the involving mechanisms of those hormones in liver diseases. Hormones deliver their hepatic regulatory signals primarily via classical and non-classical receptors in different liver cell types. Exogenous sex/sex-related hormone therapy may serve as a novel strategy for metabolic liver disease, cirrhosis, and liver cancer. However, the undesired hormone-induced liver injury should be carefully studied in pre-clinical models and monitored in clinical applications. This issue is particularly important for menopause females with hormone replacement therapy (HRT) and transgender populations who want to receive gender-affirming hormone therapy (GAHT). In conclusion, basic and clinical studies are warranted to depict the detailed hepatoprotective and hepatotoxic mechanisms of sex/sex-related hormones in liver disease. Prolactin holds a promising perspective in treating metabolic and advanced liver diseases.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yuan
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhaodi Che
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaozhi Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Chengfang Xu, ; Jia Xiao,
| | - Jia Xiao
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Chengfang Xu, ; Jia Xiao,
| |
Collapse
|
36
|
Maffei S, Forini F, Canale P, Nicolini G, Guiducci L. Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23137154. [PMID: 35806159 PMCID: PMC9266921 DOI: 10.3390/ijms23137154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The available evidence indicates a close connection between gut microbiota (GM) disturbance and increased risk of cardiometabolic (CM) disorders and cardiovascular (CV) disease. One major objective of this narrative review is to discuss the key contribution of dietary regimen in determining the GM biodiversity and the implications of GM dysbiosis for the overall health of the CV system. In particular, emerging molecular pathways are presented, linking microbiota-derived signals to the local activation of the immune system as the driver of a systemic proinflammatory state and permissive condition for the onset and progression of CM and CV disease. We further outline how the cross-talk between sex hormones and GM impacts disease susceptibility, thereby offering a mechanistic insight into sexual dimorphism observed in CVD. A better understanding of these relationships could help unravel novel disease targets and pave the way to the development of innovative, low-risk therapeutic strategies based on diet interventions, GM manipulation, and sex hormone analogues.
Collapse
Affiliation(s)
- Silvia Maffei
- Department of Gynecological and Cardiovascular Endocrinology, CNR-Tuscany Region, G. Monasterio Foundation, Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Francesca Forini
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
- Correspondence:
| | - Paola Canale
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| | - Giuseppina Nicolini
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| | - Letizia Guiducci
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (L.G.)
| |
Collapse
|
37
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
38
|
Gu W, Zhang L, Han T, Huang H, Chen J. Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. J Inflamm Res 2022; 15:2631-2647. [PMID: 35494313 PMCID: PMC9049869 DOI: 10.2147/jir.s358807] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background An animal model of DSS-induced UC has been widely used in basic research, and the dysbiosis of gut microbiome is one of the important pathogenetic mechanisms of DSS-induced UC, but its dynamic changes and correlation with inflammatory factors are not clear yet. Methods Clinical signs and tissue damage degree of C57BL/6 ulcerative colitis mice model induced by different concentrations of DSS were compared with that of normal mice, and finally the optimal concentration of DSS was determined. Then we analyzed the sequencing results of gut microbiome and inflammatory factors to determine the dynamic patterns of gut microbiome and their correlation with the inflammatory factors. Results DSS at 2.5% and 3.0% concentration could cause intestinal injury and induce colitis. However, 3.0% DSS resulted in higher mortality. In addition, there were dynamic changes of gut microbiome in DSS-induced UC model: the relative abundance of intestinal flora increased first and then decreased in Bacteroides, Parabacteroides, Romboutsia, Clostridium_sensu_stricto_1, Lachnospiraceae_NK4A136_group, norank_f_norank_o_Clostridia_UCG-014, Parasutterella, and decreased first and then increased in Lactobacillus, Muribaculum, norank_f_Muribaculaceae, in addition, Bifidobacterium, Coriobacteriaceae_UCG-002 and Enterorhabdus did not change in the first 14 days but increased significantly on day 21. Moreover, inflammatory cytokines were closely associated with the imbalance of the intestinal microbiota in mice with UC: most pathogenic bacteria in the intestinal tract of the UC animal model were positively correlated with pro-inflammatory factors and negatively correlated with anti-inflammatory factors, while beneficial bacteria were the opposite. Conclusion Intestinal microecology plays an important role in DSS-induced UC model, and the relative abundance of gut microbiome changes dynamically in the occurrence and development of ulcerative colitis.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Liangkun Zhang
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
| | - Tao Han
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People’s Republic of China
- Hailiang Huang, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Changqing District, Jinan, People’s Republic of China, Tel +86 15628987355, Email
| | - Jian Chen
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), Jinan, 250000, People’s Republic of China
- Correspondence: Jian Chen, Central Hospital Affiliated to ShanDong First Medical University (Jinan Central Hospital), No. 105 Jiefang Road, Lixia District, Jinan, People’s Republic of China, Tel +86 133 7058 7597, Email
| |
Collapse
|
39
|
Pan Q, Guo F, Huang Y, Li A, Chen S, Chen J, Liu HF, Pan Q. Gut Microbiota Dysbiosis in Systemic Lupus Erythematosus: Novel Insights into Mechanisms and Promising Therapeutic Strategies. Front Immunol 2021; 12:799788. [PMID: 34925385 PMCID: PMC8677698 DOI: 10.3389/fimmu.2021.799788] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that was traditionally thought to be closely related to genetic and environmental risk factors. Although treatment options for SLE with hormones, immunosuppressants, and biologic drugs are now available, the rates of clinical response and functional remission of these drugs are still not satisfactory. Currently, emerging evidence suggests that gut microbiota dysbiosis may play crucial roles in the occurrence and development of SLE, and manipulation of targeting the gut microbiota holds great promises for the successful treatment of SLE. The possible mechanisms of gut microbiota dysbiosis in SLE have not yet been well identified to date, although they may include molecular mimicry, impaired intestinal barrier function and leaky gut, bacterial biofilms, intestinal specific pathogen infection, gender bias, intestinal epithelial cells autophagy, and extracellular vesicles and microRNAs. Potential therapies for modulating gut microbiota in SLE include oral antibiotic therapy, fecal microbiota transplantation, glucocorticoid therapy, regulation of intestinal epithelial cells autophagy, extracellular vesicle-derived miRNA therapy, mesenchymal stem cell therapy, and vaccination. This review summarizes novel insights into the mechanisms of microbiota dysbiosis in SLE and promising therapeutic strategies, which may help improve our understanding of the pathogenesis of SLE and provide novel therapies for SLE.
Collapse
Affiliation(s)
- Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyan Huang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
40
|
Wu SY, Chen YL, Lee YR, Lin CF, Lan SH, Lan KY, Chu ML, Lin PW, Yang ZL, Chen YH, Wang WH, Liu HS. The Autophagosomes Containing Dengue Virus Proteins and Full-Length Genomic RNA Are Infectious. Viruses 2021; 13:v13102034. [PMID: 34696464 PMCID: PMC8540618 DOI: 10.3390/v13102034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/04/2023] Open
Abstract
Autophagic machinery is involved in selective and non-selective recruitment as well as degradation or exocytosis of cargoes, including pathogens. Dengue virus (DENV) infection induces autophagy that enhances virus replication and vesicle release to evade immune system surveillance. This study reveals that DENV2 induces autophagy in lung and liver cancer cells and showed that DENV2 capsid, envelope, NS1, NS3, NS4B and host cell proinflammatory high mobility group box 1 (HMGB1) proteins associated with autophagosomes which were purified by gradient centrifugation. Capsid, NS1 and NS3 proteins showing high colocalization with LC3 protein in the cytoplasm of the infected cells were detected in the purified double-membrane autophagosome by immunogold labeling under transmission electron microscopy. In DENV infected cells, the levels of capsid, envelope, NS1 and HMGB1 proteins are not significantly changed compared to the dramatic accumulation of LC3-II and p62/SQSTM1 proteins when autophagic degradation was blocked by chloroquine, indicating that these proteins are not regulated by autophagic degradation machinery. We further demonstrated that purified autophagosomes were infectious when co-cultured with uninfected cells. Notably, these infectious autophagosomes contain DENV2 proteins, negative-strand and full-length genomic RNAs, but no viral particles. It is possible that the infectivity of the autophagosome originates from the full-length DENV RNA. Moreover, we reveal that DENV2 promotes HMGB1 exocytosis partially through secretory autophagy. In conclusion, we are the first to report that DENV2-induced double-membrane autophagosomes containing viral proteins and full-length RNAs are infectious and not undergoing autophagic degradation. Our novel finding warrants further validation of whether these intracellular vesicles undergo exocytosis to become infectious autophagic vesicles.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-Y.W.); (C.-F.L.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Lun Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-Y.W.); (C.-F.L.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
- Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (S.-H.L.); (K.-Y.L.); (Z.-L.Y.)
| | - Kai-Ying Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (S.-H.L.); (K.-Y.L.); (Z.-L.Y.)
| | - Man-Ling Chu
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.)
| | - Pei-Wen Lin
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.)
| | - Zong-Lin Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (S.-H.L.); (K.-Y.L.); (Z.-L.Y.)
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (W.-H.W.)
- Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, HsinChu 300, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-H.C.); (W.-H.W.)
- Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.)
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2378); Fax: +886-7-3222461
| |
Collapse
|
41
|
Ni Z, Ding J, Zhao Q, Cheng W, Yu J, Zhou L, Sun S, Yu C. Alpha-linolenic acid regulates the gut microbiota and the inflammatory environment in a mouse model of endometriosis. Am J Reprod Immunol 2021; 86:e13471. [PMID: 34022075 DOI: 10.1111/aji.13471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
PROBLEM This study aims to investigate the effects of alpha-linolenic acid (ALA) on the gut microbiota (GM) and the abdominal environment in mice with endometriosis (EMS). METHODS The effects of faecal microbiota transplantation (FMT) from EMS mice on mice treated with antibiotic cocktail were conducted. The 16S rRNA sequencing and PICRUSt software were used to detect the structure and function of GM respectively. The protein levels of Claudin 4 and ZO-2 in the intestinal wall were detected using the western blotting. The level of LPS in the abdominal cavity was detected using enzyme-linked immunosorbent assay (ELISA). The content of macrophages in the abdominal cavity was detected using flow cytometry. RESULTS The exogenous supplementation of ALA could restore the abundance of Firmicutes and Bacteroidota in EMS mice. After the ALA treatment, the abundance of 125 functional pathways and 50 abnormal enzymes related to GM in EMS mice was significantly improved (p < .05). The expression of the ZO-2 protein in the intestinal wall was decreased, and the level of LPS in the abdominal cavity was significantly increased after FMT from EMS mice (p < .05). ALA could increase the expression of the ZO-2 protein in the intestinal wall of EMS mice, reduce the level of LPS in the abdominal cavity (p < .05) and reduce the aggregation of peritoneal macrophages (p < .05). CONCLUSION Alpha-linolenic acid can improve the GM, intestinal wall barrier and abdominal inflammatory environment and reduce the level of LPS in mice with EMS.
Collapse
Affiliation(s)
- Zhexin Ni
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianqian Zhao
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen Cheng
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Department of Gynecology of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
42
|
Liu X, Du ZR, Wang X, Luk KH, Chan CH, Cao X, Zhao Q, Zhao F, Wong WT, Wong KH, Dong XL. Colonic Dopaminergic Neurons Changed Reversely With Those in the Midbrain via Gut Microbiota-Mediated Autophagy in a Chronic Parkinson's Disease Mice Model. Front Aging Neurosci 2021; 13:649627. [PMID: 33912026 PMCID: PMC8071868 DOI: 10.3389/fnagi.2021.649627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
The role of gut-brain axis in the pathogenesis of Parkinson's disease (PD) have become a research hotspot, appropriate animal model to study gut-brain axis in PD is yet to be confirmed. Our study employed a classical PD mice model achieved by chronic MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) injection to study concurrent changes of dopaminergic neurons in the midbrain and the colon of mice. Our results showed such a PD model exhibited apparent locomotor deficits but not gastrointestinal dysfunction. Tyrosine hydroxylase expressions and dopamine content reduced greatly in the substantia nigra pars compacta (SNpc) or striatum, but increased in the colon of PD mice. Mechanism investigation indicated autophagy activity and apoptosis were stimulated in the SNpc, but inhibited in the colon of PD mice. Interplay of gut microbiota (GM) and autophagy in response to chronic MPTP injection led to GM dysbiosis and defective autophagy in mice colon. Meanwhile, fecal short chain fatty acids (SCFAs), acetate and propionate in particular, declined greatly in PD mice, which could be attributed to the decreased bacteria abundance of phylum Bacteroidetes, but increased abundance of phylum Firmicutes. GM dysbiosis derived fecal SCFAs might be one of the mediators of downregulated autophagy in the colon of PD mice. In conclusion, colonic dopaminergic neurons changed in the opposition direction with those in the midbrain via GM dysbiosis-mediated autophagy inhibition followed by suppressed apoptosis in response to chronic MPTP injection. Such a chronic PD mice model might not be an ideal model to study role of gut-brain axis in PD progression.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhong-Rui Du
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- College of Physical Education, Ludong University, Yantai, China
| | - Xiong Wang
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
| | - Kar-Him Luk
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Cheuk-Hin Chan
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xu Cao
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
- Department of Neurology, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Qing Zhao
- Department of Neurology, Linzi Maternal and Child Health Hospital of Zibo, Zibo, China
| | - Fang Zhao
- Beijing Genomics Institute (BGI)-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Wing-Tak Wong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Hing Wong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiao-Li Dong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Institute, Shenzhen, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
43
|
Wei RX, Ye FJ, He F, Song Q, Xiong XP, Yang WL, Gang X, Hu JW, Hu B, Xu HY, Li L, Liu HH, Zeng XY, Chen L, Kang B, Han CC. Comparison of overfeeding effects on gut physiology and microbiota in two goose breeds. Poult Sci 2020; 100:100960. [PMID: 33652539 PMCID: PMC7936201 DOI: 10.1016/j.psj.2020.12.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
To have a better understanding of how the “gut–liver axis” mediates the lipid deposition in the liver, a comparison of overfeeding influence on intestine physiology and microbiota between Gang Goose and Tianfu Meat Goose was performed in this study. After force-feeding, compared with Gang Goose, Tianfu Meat Goose had better fat storage capacity in liver (397.94 vs. 166.54 for foie gras weight (g), P < 0.05; 6.37 vs. 2.92% for the ratio of liver to body, P < 0.05; 60.01 vs. 46.64% for fat content, P < 0.05) and the less subcutaneous adipose tissue weight (1240.96 g vs. 1440.46 g, P < 0.05). After force-feeding, the digestion–absorption capacity of Tianfu Meat Goose was higher than that of Gang Goose (5.56 vs. 3.64 and 4.63 vs. 3.68 for the ratio of villus height to crypt depth in duodenum and ileum, respectively, P < 0.05; 1394.96 vs. 782.59 and 1314.76 vs. 766.17 for the invertase activity (U/mg-prot), in duodenum and ileum, respectively, P < 0.05; 6038.36 vs. 3088.29 and 4645.29 vs. 3927.61 for the activity of maltase (U/mg-prot), in duodenum and ileum, respectively, P < 0.05). Force-feeding decreased the gene expression of Escherichia coli in the ileum of Tianfu Meat Goose; force-feeding increased the number of gut microbiota Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction band in Tianfu Meat Goose and decreased the number in Gang Goose. In conclusion, compared with Gang Goose, the lipid deposition in the liver and the intestine digestion–absorption capacity and stability were higher in Tianfu Meat Goose. Thereby, Tianfu Meat Goose is the better breed for foie gras production for prolonged force-feeding; Gang Goose possesses better fat storage capacity in subcutaneous adipose tissue. However, Gang Goose has lower gut stability responding to force-feeding, so Gang Goose is suited to force-feeding in a short time to gain the body weight and subcutaneous fat as an overfed duck for roast duck.
Collapse
Affiliation(s)
- R X Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F J Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - F He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Q Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X P Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - W L Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Gang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - J W Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - B Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H Y Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - H H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - X Y Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, P.R. China
| | - L Chen
- Xichang Huanong Poultry Co., Xichang, Sichuan 615000, P.R. China
| | - B Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - C C Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|