1
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
2
|
Shan C, Wang Y, Wang Y. The Crosstalk between Autophagy and Nrf2 Signaling in Cancer: from Biology to Clinical Applications. Int J Biol Sci 2024; 20:6181-6206. [PMID: 39664581 PMCID: PMC11628323 DOI: 10.7150/ijbs.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Autophagy is a catabolic process that has been conserved throughout evolution, serving to degrade and recycle cellular components and damaged organelles. Autophagy is activated under various stress conditions, such as nutrient deprivation, viral infections, and genotoxic stress, and operates in conjunction with other stress response pathways to mitigate oxidative damage and maintain cellular homeostasis. One such pathway is the Nrf2-Keap1-ARE signaling axis, which functions as an intrinsic antioxidant defense mechanism and has been implicated in cancer chemoprevention, tumor progression, and drug resistance. Recent research has identified a link between impaired autophagy, mediated by the autophagy receptor protein p62, and the activation of the Nrf2 pathway. Specifically, p62 facilitates Keap1 degradation through selective autophagy, leading to the translocation of Nrf2 into the nucleus, where it transcriptionally activates downstream antioxidant enzyme expression, thus safeguarding cells from oxidative stress. Furthermore, Nrf2 regulates p62 transcription, so a positive feedback loop involving p62, Keap1, and Nrf2 is established, which amplifies the protective effects on cells. This paper aims to provide a comprehensive review of the roles of Nrf2 and autophagy in cancer progression, the regulatory interactions between the Nrf2 pathway and autophagy, and the potential applications of the Nrf2-autophagy signaling axis in cancer therapy.
Collapse
Affiliation(s)
- Chan Shan
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Wang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
3
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Xu H, Zhang Y, Xie Z, Xie XF, Qiao WL, Wang M, Zhao BB, Hua T. Investigating PPT2's role in ovarian cancer prognosis and immunotherapy outcomes. J Ovarian Res 2024; 17:198. [PMID: 39394143 PMCID: PMC11468411 DOI: 10.1186/s13048-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Ovarian cancer (OC) remains the primary cause of mortality among gynecological malignancies, and the identification of reliable molecular biomarkers to prognosticate OC outcomes is yet to be achieved. The gene palmitoyl protein thioesterase 2 (PPT2), which has been sparsely studied in OC, was closely associated with metabolism. This study aimed to determine the association between PPT2 expression, prognosis, immune infiltration, and potential molecular mechanisms in OC. We obtained the RNA-seq and clinical data from The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases, then Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, nomogram, and calibration were conducted to assess and verify the role of PPT2. Gene set enrichment analysis (GSEA) was used to figure out the closely correlated pathways with PPT2. Overexpression experiment was performed to explore the function of PPT2. Our findings showed that PPT2 mRNA expression was apparent down-regulation in OC tissue compared to normal ovarian tissues in TCGA, GTEx datasets, and GEO datasets. This differential expression was also confirmed in our in-house datasets at both the mRNA and protein levels. Decreased PPT2 expression correlated with lower survival rates in TCGA, several GEO datasets, and our in-house datasets. Multivariate analysis revealed that PPT2 was an independent factor in predicting better outcomes for OC patients in TCGA and GEO. A negative correlation was revealed between immune infiltration and PPT2 expression through Single-sample GSEA (ssGSEA). Additionally, PPT2 was negatively correlated with an up-regulated immune score, stromal score, and estimate score, suggesting that patients with low PPT2 expression might benefit more from immunotherapy. Numerous chemical agents showed lower IC50 in patients with high PPT2 expression. In single-cell RNA sequencing (scRNA-seq) analysis of several OC datasets, we found PPT2 was mainly expressed in endothelial cells. Furthermore, we found that PPT2 inhibited OC cell proliferation in vitro. Our results demonstrated that PPT2 was considered a favorable prognostic biomarker for OC and may be vital in predicting response to immunotherapy and chemotherapy. Further research was needed to fully understand the relationship between PPT2 and immunotherapy efficacy in OC patients.
Collapse
Affiliation(s)
- Hui Xu
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Yan Zhang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Zhen Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Wen-Lan Qiao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Miao Wang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Bei-Bei Zhao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China.
| |
Collapse
|
5
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
8
|
Dong X, Liu X, Lin D, Zhang L, Wu Y, Chang Y, Jin M, Huang G. Baicalin induces cell death of non-small cell lung cancer cells via MCOLN3-mediated lysosomal dysfunction and autophagy blockage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155872. [PMID: 39096542 DOI: 10.1016/j.phymed.2024.155872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for 85 % of lung cancer, becoming the most mortality of all cancers globally. Blockage of autophagy in NSCLC represents a promising therapeutic strategy that inhibits angiogenesis and overcomes drug resistance. Natural ingredients in anti-tumor adjuvants are increasingly reported to promote cell death with less side effects and the potential to increase chemotherapeutic drugs sensitivity. Baicalin, a Scutellaria baicalensis-extracted flavonoid glycoside, is reported to induce death of NSCLC cells, however, its effects on autophagy in NSCLC cells remain unclear. PURPOSE This study aimed to investigate the effect of baicalin on autophagic flux in NSCLC cells, unraveling the underlying mechanism including potential target and its role in cell death of NSCLC cells. METHODS In vitro anti-cancer effects of baicalin were verified by evaluating proliferation, clone formation, cell cycle, and cell migration in three NSCLC cell lines (A549, H1299, and PC-9). In vivo anti-tumor efficacies of baicalin were evaluated in subcutaneous xenograft tumor model in nude mice. Autophagy characterization in NSCLC cells included autophagic marker detection by western blot and immunofluorescence staining, subcellular structure observation by TEM, lysosomal function by RNA-seq and fluorescence staining (LysoTracker®, LysoSensor®, and acridine orange). Based on RNA-seq and molecular biological verification using apoptotic, autophagic, and lysosomal inhibitors, potential target molecule of baicalin was verified via Ca2+ flux assay, MCOLN3 knockdown by shRNA, and virtual molecular docking. RESULTS Baicalin inhibited NSCLC cell proliferation and migration, and suppressed tumor growth in vivo. Baicalin blocked the autophagic flux via activating the membranal cation channel MCOLN3 of lysosome, which disrupted its Ca2+ balance and induced lysosome dysfunction, leading to failure of autolysosome degradation. The cytoplasmic Ca2+ imbalance further resulted in depolarization of mitochondrial membrane potentials and ROS accumulation in NSCLC cells, mediating autophagy-related apoptosis. CONCLUSION This study demonstrated that baicalin inhibited autolysosome degradation by activating MCOLN3, leading to dysfunction in lysosomal pH elevation, thereby inhibiting autophagy in NSCLC, leading to apoptotic death of NSCLC cells. These findings enriched the existing theories of cancer therapy based on autophagy inhibition and underlying mechanisms of flavonoids as antitumor agents, paving the way for their clinical application in future.
Collapse
Affiliation(s)
- Xian Dong
- School of Graduate, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd. Shanghai 201203, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China; College of Medical Technology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China
| | - Xiyu Liu
- School of Graduate, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd. Shanghai 201203, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China
| | - Dan Lin
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China.
| | - Lian Zhang
- School of Graduate, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd. Shanghai 201203, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China; Department of Radiology, Jiading Hospital of Traditional Chinese Medicine, 222 Bo Le Rd. Shanghai 201800, China
| | - Yue Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi Jiang Rd. Shanghai 200071, China
| | - Yuzhen Chang
- School of Graduate, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd. Shanghai 201203, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China
| | - Mingming Jin
- School of Graduate, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd. Shanghai 201203, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China.
| | - Gang Huang
- School of Graduate, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd. Shanghai 201203, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Highway, Shanghai 201318, China.
| |
Collapse
|
9
|
Zhang ZJ, Wei BJ, Liu ZK, Xuan ZF, Zhou L, Zheng SS. Nomogram for prediction of hepatocellular carcinoma recurrence after liver resection. Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00118-8. [PMID: 39332935 DOI: 10.1016/j.hbpd.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy with high mortality. Liver resection (LR) is a curative treatment for early-stage HCC, but the prognosis of HCC patients after LR is unsatisfactory because of tumor recurrence. Prognostic prediction models with great performance are urgently needed. The present study aimed to establish a novel prognostic nomogram to predict tumor recurrence in HCC patients after LR. METHODS We retrospectively analyzed 726 HCC patients who underwent LR between October 2011 and December 2016. Patients were randomly divided into the training cohort (n = 508) and the testing cohort (n = 218). The protein expression of 14 biomarkers in tumor tissues was assessed by immunohistochemistry. The nomogram predicting recurrence-free survival (RFS) was established by a multivariate Cox regression analysis model and was evaluated by calibration curves, Kaplan-Meier survival curves, time-dependent areas under the receiver operating characteristic (ROC) curves (AUCs), and decision curve analyses in both the training and testing cohorts. RESULTS Alpha-fetoprotein [hazard ratio (HR) = 1.013, P = 0.002], portal vein tumor thrombosis (HR = 1.833, P < 0.001), ascites (HR = 2.024, P = 0.014), tumor diameter (HR = 1.075, P < 0.001), E-cadherin (HR = 0.859, P = 0.011), EMA (HR = 1.196, P = 0.022), and PCNA (HR = 1.174, P = 0.031) immunohistochemistry scores were found to be independent factors for RFS. The 1-year and 3-year AUCs of the nomogram for RFS were 0.813 and 0.739, respectively. The patients were divided into the high-risk group and the low-risk group by median value which was generated from the nomogram, and Kaplan-Meier analysis revealed that the high-risk group had a shorter RFS than the low-risk group in both the training (P < 0.001) and testing cohorts (P < 0.001). CONCLUSIONS Our newly developed nomogram integrated clinicopathological data and key gene expression data, and was verified to have high accuracy in predicting the RFS of HCC patients after LR. This model could be used for early identification of patients at high-risk of postoperative recurrence.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ba-Jin Wei
- NHC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Division of Breast Surgery, Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi-Kun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Ze-Feng Xuan
- NHC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
10
|
Crissey MAS, Versace A, Bhardwaj M, Jain V, Liu S, Singh A, Beer LA, Tang HY, Villanueva J, Gimotty PA, Xu X, Amaravadi RK. Divergent effects of acute and chronic PPT1 inhibition in melanoma. Autophagy 2024:1-13. [PMID: 39265628 DOI: 10.1080/15548627.2024.2403152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024] Open
Abstract
Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials. However, the role of PPT1 in tumorigenesis remains poorly understood. Here we report that in melanoma cells, acute siRNA or pharmacological PPT1 inhibition led to increased ferroptosis sensitivity and significant loss of viability, whereas chronic PPT1 knockout using CRISPR-Cas9 produced blunted ferroptosis that led to sustained viability and growth. Each mode of PPT1 inhibition produced lysosome-autophagy inhibition but distinct proteomic changes, demonstrating the complexity of cellular adaptation mechanisms. To determine whether total genetic loss of Ppt1 would affect tumorigenesis in vivo, we developed a Ppt1 conditional knockout mouse model. We then crossed it into the BrafCA, PtenloxP, Tyr:CreERT2 melanoma mouse model to investigate the impact of Ppt1 loss on tumorigenesis. Loss of Ppt1 had no impact on melanoma histology, time to tumor initiation, or survival of tumor-bearing mice. These results suggest that chemical PPT1 inhibitors produce different adaptations than genetic PPT1 inhibition, and additional studies are warranted to fully understand the mechanism of chloroquine derivatives that target PPT1 in cancer.Abbreviations: 4-HT: 4-hydroxytamoxifen; BRAF: B-Raf proto-oncogene, serine/threonine kinase; cKO: conditional knockout; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9; DC661: A specific PPT1 inhibitor; DMSO: dimethyl sulfoxide; Dox; doxycycline hyclate; Easi-CRISPR: efficient additions with ssDNA inserts-CRISPR; GNS561/ezurpimtrostat: A PPT1 inhibitor; Hug: human guide; iCas: inducible CRISPR-Cas9; KO: knockout; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; LDLR: low density lipoprotein receptor; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NT: non-target; PTEN: phosphatase and tensin homolog; PPT1: palmitoyl-protein thioesterase 1; RSL3: RAS-selective lethal small molecule 3; SCRIB/SCRB1: scribble planar cell polarity protein; Tyr:CreERT2: tyrosinase-driven Cre recombinase fused with the tamoxifen-inducible mutant ligand binding domain of the human estrogen receptor; UGCG: UDP-glucose ceramide glucosyltransferase; WT: wild-type.
Collapse
Affiliation(s)
- Mary Ann S Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shujing Liu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arpana Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn A Beer
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Singh S, Ahmad F, Aruri H, Das S, Parajuli P, Gavande NS, Singh PK, Kumar A. Novel quinoline substituted autophagy inhibitors attenuate Zika virus replication in ocular cells. Virus Res 2024; 347:199419. [PMID: 38880335 PMCID: PMC11239713 DOI: 10.1016/j.virusres.2024.199419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Zika virus (ZIKV) is a re-emerging RNA virus that is known to cause ocular and neurological abnormalities in infants. ZIKV exploits autophagic processes in infected cells to enhance its replication and spread. Thus, autophagy inhibitors have emerged as a potent therapeutic target to combat RNA viruses, with Hydroxychloroquine (HCQ) being one of the most promising candidates. In this study, we synthesized several novel small-molecule quinoline derivatives, assessed their antiviral activity, and determined the underlying molecular mechanisms. Among the nine synthesized analogs, two lead candidates, labeled GL-287 and GL-382, significantly attenuated ZIKV replication in human ocular cells, primarily by inhibiting autophagy. These two compounds surpassed the antiviral efficacy of HCQ and other existing autophagy inhibitors, such as ROC-325, DC661, and GNS561. Moreover, unlike HCQ, these novel analogs did not exhibit cytotoxicity in the ocular cells. Treatment with compounds GL-287 and GL-382 in ZIKV-infected cells increased the abundance of LC3 puncta, indicating the disruption of the autophagic process. Furthermore, compounds GL-287 and GL-382 effectively inhibited the ZIKV-induced innate inflammatory response in ocular cells. Collectively, our study demonstrates the safe and potent antiviral activity of novel autophagy inhibitors against ZIKV.
Collapse
Affiliation(s)
- Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Prahlad Parajuli
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Gujarathi R, Franses JW, Pillai A, Liao CY. Targeted therapies in hepatocellular carcinoma: past, present, and future. Front Oncol 2024; 14:1432423. [PMID: 39267840 PMCID: PMC11390354 DOI: 10.3389/fonc.2024.1432423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Targeted therapies are the mainstay of systemic therapies for patients with advanced, unresectable, or metastatic hepatocellular carcinoma. Several therapeutic targets, such as c-Met, TGF-β, and FGFR, have been evaluated in the past, though results from these clinical studies failed to show clinical benefit. However, these remain important targets for the future with novel targeted agents and strategies. The Wnt/β-catenin signaling pathway, c-Myc oncogene, GPC3, PPT1 are exciting novel targets, among others, currently undergoing evaluation. Through this review, we aim to provide an overview of previously evaluated and potentially novel therapeutic targets and explore their continued relevance in ongoing and future studies for HCC.
Collapse
Affiliation(s)
- Rushabh Gujarathi
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Joseph W Franses
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Chicago, Chicago, IL, United States
| | - Chih-Yi Liao
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Liu Y, Guo Y, Zeng Q, Hu Y, He R, Ma W, Qian C, Hua T, Song F, Cai Y, Zhu L, Ren X, Xu J, Zheng C, Ding L, Ge J, Wang W, Xu H, Ge M, Zheng G. Prosapogenin A induces GSDME-dependent pyroptosis of anaplastic thyroid cancer through vacuolar ATPase activation-mediated lysosomal over-acidification. Cell Death Dis 2024; 15:586. [PMID: 39138191 PMCID: PMC11322489 DOI: 10.1038/s41419-024-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Anaplastic thyroid cancer (ATC) is among the most aggressive and metastatic malignancies, often resulting in fatal outcomes due to the lack of effective treatments. Prosapogenin A (PA), a bioactive compound prevalent in traditional Chinese herbs, has shown potential as an antineoplastic agent against various human tumors. However, its effects on ATC and the underlying mechanism remain unclear. Here, we demonstrate that PA exhibits significant anti-ATC activity both in vitro and in vivo by inducing GSDME-dependent pyroptosis in ATC cells. Mechanistically, PA promotes lysosomal membrane permeabilization (LMP), leading to the release of cathepsins that activate caspase 8/3 to cleave GSDME. Remarkably, PA significantly upregulates three key functional subunits of V-ATPase-ATP6V1A, ATP6V1B2, and ATP6V0C-resulting in lysosomal over-acidification. This over-acidification exacerbates LMP and subsequent lysosomal damage. Neutralization of lysosomal lumen acidification or inhibition/knockdown of these V-ATPase subunits attenuates PA-induced lysosomal damage, pyroptosis and growth inhibition of ATC cells, highlighting the critical role for lysosomal acidification and LMP in PA's anticancer effects. In summary, our findings uncover a novel link between PA and lysosomal damage-dependent pyroptosis in cancer cells. PA may act as a V-ATPase agonist targeting lysosomal acidification, presenting a new potential therapeutic option for ATC treatment.
Collapse
Affiliation(s)
- Yunye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yawen Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yiqun Hu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Ru He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenli Ma
- Bengbu Medical College, Bengbu, Anhui, China
| | - Chenhong Qian
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tebo Hua
- Department of Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Fahuan Song
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Yefeng Cai
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Zhu
- Department of Thyroid Surgery, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Xinxin Ren
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Chuanming Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenzhen Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haifeng Xu
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China.
| | - Guowan Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
15
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
16
|
Radin DP, Shifman S, Outhwaite IR, Sharma A, Bases R, Seeliger MA, Tsirka SE. Lucanthone, a Potential PPT1 Inhibitor, Perturbs Stemness, Reduces Tumor Microtube Formation, and Slows the Growth of Temozolomide-Resistant Gliomas In Vivo. J Pharmacol Exp Ther 2024; 389:51-60. [PMID: 38296645 PMCID: PMC10949164 DOI: 10.1124/jpet.123.002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Glioblastoma (GBM) is the most frequently diagnosed primary central nervous system tumor in adults. Despite the standard of care therapy, which includes surgical resection, temozolomide chemotherapy, radiation and the newly added tumor-treating fields, median survival remains only ∼20 months. Unfortunately, GBM has a ∼100% recurrence rate, but after recurrence there are no Food and Drug Administration-approved therapies to limit tumor growth and enhance patient survival, as these tumors are resistant to temozolomide (TMZ). Recently, our laboratory reported that lucanthone slows GBM by inhibiting autophagic flux through lysosome targeting and decreases the number of Olig2+ glioma stem-like cells (GSC) in vitro and in vivo. We now additionally report that lucanthone efficiently abates stemness in patient-derived GSC and reduces tumor microtube formation in GSC, an emerging hallmark of treatment resistance in GBM. In glioma tumors derived from cells with acquired resistance to TMZ, lucanthone retains the ability to perturb tumor growth, inhibits autophagy by targeting lysosomes, and reduces Olig2 positivity. We also find that lucanthone may act as an inhibitor of palmitoyl protein thioesterase 1. Our results suggest that lucanthone may function as a potential treatment option for GBM tumors that are not amenable to TMZ treatment. SIGNIFICANCE STATEMENT: We report that the antischistosome agent lucanthone impedes tumor growth in a preclinical model of temozolomide-resistant glioblastoma and reduces the numbers of stem-like glioma cells. In addition, it acts as an autophagy inhibitor, and its mechanism of action may be via inhibition of palmitoyl protein thioesterase 1. As there are no defined therapies approved for recurrent, TMZ-resistant tumor, lucanthone could emerge as a treatment for glioblastoma tumors that may not be amenable to TMZ both in the newly diagnosed and recurrent settings.
Collapse
Affiliation(s)
- Daniel P Radin
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Sophie Shifman
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Ian R Outhwaite
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Aryan Sharma
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Robert Bases
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Markus A Seeliger
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences (D.P.R., S.S., I.R.O., A.S., M.A.S., S.E.T.) and Stony Brook Medical Scientist Training Program (D.P.R., S.S., I.R.O.), Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
17
|
Puhl AC, Raman R, Havener TM, Minerali E, Hickey AJ, Ekins S. Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer. ACS OMEGA 2024; 9:11870-11882. [PMID: 38496939 PMCID: PMC10938339 DOI: 10.1021/acsomega.3c09607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Tammy M. Havener
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eni Minerali
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anthony J. Hickey
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
18
|
Chauhan N, Patro BS. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett 2024; 584:216599. [PMID: 38135207 DOI: 10.1016/j.canlet.2023.216599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
19
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
20
|
Liu J, Wu Y, Meng S, Xu P, Li S, Li Y, Hu X, Ouyang L, Wang G. Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 2024; 23:22. [PMID: 38262996 PMCID: PMC10807193 DOI: 10.1186/s12943-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Eukaryotic cells engage in autophagy, an internal process of self-degradation through lysosomes. Autophagy can be classified as selective or non-selective depending on the way it chooses to degrade substrates. During the process of selective autophagy, damaged and/or redundant organelles like mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes, and lipid droplets are selectively recycled. Specific cargo is delivered to autophagosomes by specific receptors, isolated and engulfed. Selective autophagy dysfunction is closely linked with cancers, neurodegenerative diseases, metabolic disorders, heart failure, etc. Through reviewing latest research, this review summarized molecular markers and important signaling pathways for selective autophagy, and its significant role in cancers. Moreover, we conducted a comprehensive analysis of small-molecule compounds targeting selective autophagy for their potential application in anti-tumor therapy, elucidating the underlying mechanisms involved. This review aims to supply important scientific references and development directions for the biological mechanisms and drug discovery of anti-tumor targeting selective autophagy in the future.
Collapse
Affiliation(s)
- Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Sha Meng
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Luo Q, Hu S, Tang Y, Yang D, Chen Q. PPT1 Promotes Growth and Inhibits Ferroptosis of Oral Squamous Cell Carcinoma Cells. Curr Cancer Drug Targets 2024; 24:1047-1060. [PMID: 38299399 DOI: 10.2174/0115680096294098240123104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers with poor prognosis in the head and neck. Elucidating molecular mechanisms underlying OSCC occurrence and development is important for the therapy. Dysregulated palmitoylation-related enzymes have been reported in several cancers but OSCC. OBJECTIVES To explore the role of palmitoyl-protein thioesterase 1 (PPT1) in OSCC. METHODS Differentially expressed genes (DEGs) and related protein-protein interaction networks between normal oral epithelial and OSCC tissues were screened and constructed via different online databases. Tumor samples from 70 OSCC patients were evaluated for the relationship between PPT1 expression level and patients'clinic characteristics. The role of PPT1 in OSCC proliferation and metastasis was studied by functional experiments including MTT, colony formation, EdU incorporation and transwell assays. Lentivirus-based constructs were used to manipulate gene expression. FerroOrange probe and malondialdehyde assay were used to determine ferroptosis. Growth of OSCC cells in vivo was investigated by a xenograft mouse model. RESULTS A total of 555 DEGs were obtained, and topological analysis revealed that PPT1 and GPX4 might play critical roles in OSCC. Increased PPT1 expression was found to be correlated with poor prognosis of OSCC patients. PPT1 effectively promoted the proliferation, migration and invasion while inhibited the ferroptosis of OSCC cells. PPT1 affected the expression of glutathione peroxidase 4 (GPX4). CONCLUSION PPT1 promoted growth and inhibited ferroptosis of OSCC cells. PPT1 might be a potential target for OSCC therapy.
Collapse
Affiliation(s)
- Qingqiong Luo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yijie Tang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Dandan Yang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Qilong Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| |
Collapse
|
22
|
Bestion E, Rachid M, Tijeras-Raballand A, Roth G, Decaens T, Ansaldi C, Mezouar S, Raymond E, Halfon P. Ezurpimtrostat, A Palmitoyl-Protein Thioesterase-1 Inhibitor, Combined with PD-1 Inhibition Provides CD8 + Lymphocyte Repopulation in Hepatocellular Carcinoma. Target Oncol 2024; 19:95-106. [PMID: 38133710 DOI: 10.1007/s11523-023-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Palmitoyl-protein thioesterase-1 (PPT1) is a clinical stage druggable target for inhibiting autophagy in cancer. OBJECTIVE We aimed to determine the cellular and molecular activity of targeting PPT1 using ezurpimtrostat, in combination with an anti-PD-1 antibody. METHODS In this study we used a transgenic immunocompetent mouse model of hepatocellular carcinoma. RESULTS Herein, we revealed that inhibition of PPT1 using ezurpimtrostat decreased the liver tumor burden in a mouse model of hepatocellular carcinoma by inducing the penetration of lymphocytes into tumors when combined with anti-programmed death-1 (PD-1). Inhibition of PPT1 potentiates the effects of anti-PD-1 immunotherapy by increasing the expression of major histocompatibility complex (MHC)-I at the surface of liver cancer cells and modulates immunity through recolonization and activation of cytotoxic CD8+ lymphocytes. CONCLUSIONS Ezurpimtrostat turns cold tumors into hot tumors and, thus, could improve T cell-mediated immunotherapies in liver cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
| | - Madani Rachid
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
| | | | - Gael Roth
- Centre hospitalouniversitaire Grenoble Alpes/Institute for Advanced Biosciences, Centre national de la recherché scienti-fique, Unité mixte de recherche 5309-Institut national de la santé et de la recherche médicale U1209, University Grenoble Alpes/Hepato-Gastroenterology and Digestive Oncology Department, 38043, Grenoble, France
| | - Thomas Decaens
- Centre hospitalouniversitaire Grenoble Alpes/Institute for Advanced Biosciences, Centre national de la recherché scienti-fique, Unité mixte de recherche 5309-Institut national de la santé et de la recherche médicale U1209, University Grenoble Alpes/Hepato-Gastroenterology and Digestive Oncology Department, 38043, Grenoble, France
| | | | - Soraya Mezouar
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
- Etablissement français du sang, Centre national de la recherche scientifique, Anthropologie bio-culturelle, droit, éthique et santé, "Biologie des Groupes Sanguins", Aix-Marseille University, Marseille, France
| | - Eric Raymond
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
- Oncology Department, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Philippe Halfon
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France.
| |
Collapse
|
23
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
24
|
Chen XC, Huang LF, Tang JX, Wu D, An N, Ye ZN, Lan HY, Liu HF, Yang C. Asiatic acid alleviates cisplatin-induced renal fibrosis in tumor-bearing mice by improving the TFEB-mediated autophagy-lysosome pathway. Biomed Pharmacother 2023; 165:115122. [PMID: 37413899 DOI: 10.1016/j.biopha.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
Nephrotoxicity is a major side effect of cisplatin treatment of solid tumors in the clinical setting. Long-term low-dose cisplatin administration causes renal fibrosis and inflammation. However, few specific medicines with clinical application value have been developed to reduce or treat the nephrotoxic side effects of cisplatin without affecting its tumor-killing effect. The present study analyzed the potential reno-protective effect and mechanism of asiatic acid (AA) in long-term cisplatin-treated nude mice suffering from tumors. AA treatment significantly attenuated renal injury, inflammation, and fibrosis induced by long-term cisplatin injection in tumor-bearing mice. AA administration notably suppressed tubular necroptosis and improved the autophagy-lysosome pathway disruption caused by chronic cisplatin treatment in tumor-transplanted nude mice and HK-2 cells. AA promoted transcription factor EB (TFEB)-mediated lysosome biogenesis and reduced the accumulation of damaged lysosomes, resulting in enhanced autophagy flux. Mechanistically, AA increased TFEB expression by rebalancing Smad7/Smad3, whereas siRNA inhibition of Smad7 or TFEB abolished the effect of AA on autophagy flux in HK-2 cells. In addition, AA treatment did not weaken, but actually enhanced the anti-tumor effect of cisplatin, as evidenced by the promoted tumor apoptosis and inhibited proliferation in nude mice. In summary, AA alleviates cisplatin-induced renal fibrosis in tumor-bearing mice by improving the TFEB-mediated autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
25
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
26
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
27
|
Bestion E, Raymond E, Mezouar S, Halfon P. Update on Autophagy Inhibitors in Cancer: Opening up to a Therapeutic Combination with Immune Checkpoint Inhibitors. Cells 2023; 12:1702. [PMID: 37443736 PMCID: PMC10341243 DOI: 10.3390/cells12131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| | - Eric Raymond
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Department of Medical Oncology, Paris Saint-Joseph Hospital Group, 75014 Paris, France
| | - Soraya Mezouar
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Établissement Français du Sang, Provence Alpes Côte d’Azur et Corse, Marseille, France; «Biologie des Groupes Sanguins», Aix Marseille Univ-CNRS-EFS-ADÉS, 13005 Marseille, France
| | - Philippe Halfon
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| |
Collapse
|
28
|
Weng J, Liu S, Zhou Q, Xu W, Xu M, Gao D, Shen Y, Yi Y, Shi Y, Dong Q, Zhou C, Ren N. Intratumoral PPT1-positive macrophages determine immunosuppressive contexture and immunotherapy response in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e006655. [PMID: 37385725 PMCID: PMC10314632 DOI: 10.1136/jitc-2022-006655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignancy with limited treatment options and poor prognosis. Macrophages are enriched in the HCC microenvironment and have a significant impact on disease progression and therapy efficacy. We aim to identify critical macrophages subsets involved in HCC development. METHODS Macrophage-specific marker genes were identified through single-cell RNA sequencing analyses. The clinical significance of macrophages with palmitoyl-protein thioesterase 1 (PPT1) positive was investigated in 169 patients with HCC from Zhongshan Hospital using immunohistochemistry and immunofluorescence. The immune microenvironment of HCC and the functional phenotype of PPT1+ macrophages were explored using cytometry by time-of-flight (CyTOF) and RNA sequencing. RESULTS Single-cell RNA sequencing analyses revealed that PPT1 was predominantly expressed in macrophages in HCC. Intratumoral PPT1+ macrophages abundance was associated with inferior survival durations of patients and an independent risk factor of prognosis for HCC. High throughput analyses of immune infiltrates showed that PPT1+ macrophage-enriched HCCs were characterized by high infiltration of CD8+ T cells with increased programmed death-1 (PD-1) expression. PPT1+ macrophages exhibited higher galectin-9, CD172a, and CCR2 levels but lower CD80 and CCR7 levels than PPT1- macrophages. Pharmacological inhibition of PPT1 by DC661 suppressed mitogen-activated protein kinase (MAPK) pathway activity but activated nuclear factor kappa B (NF-κB) pathway in macrophages. In addition, DC661 enhanced the therapeutic efficacy of anti-PD-1 antibody in the HCC mouse model. CONCLUSIONS PPT1 is mainly expressed in macrophages in HCC and promotes immunosuppressive transformation of macrophages and tumor microenvironment. PPT1+ macrophage infiltration is associated with poor prognosis of patients with HCC. Targeting PPT1 may potentiate the efficacy of immunotherapy for HCC.
Collapse
Affiliation(s)
- Jialei Weng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Qiang Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Minghao Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dongmei Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yinghao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Jain V, Singh MP, Amaravadi RK. Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 2023; 44:290-302. [PMID: 36931971 PMCID: PMC10106406 DOI: 10.1016/j.tips.2023.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023]
Abstract
Autophagy is a cellular homeostasis mechanism that fuels the proliferation and survival of advanced cancers by degrading and recycling organelles and proteins. Preclinical studies have identified that within an established tumor, tumor cell autophagy and host cell autophagy conspire to support tumor growth. A growing body of evidence suggests that autophagy inhibition can augment the efficacy of chemotherapy, targeted therapy, or immunotherapy to enhance tumor shrinkage. First-generation autophagy inhibition trials in cancer using the lysosomal inhibitor hydroxychloroquine (HCQ) have produced mixed results but have guided the way for the development of more potent and specific autophagy inhibitors in clinical trials. In this review, we will discuss the role of autophagy in cancer, newly discovered molecular mechanisms of the autophagy pathway, the effects of autophagy modulation in cancer and host cells, and novel autophagy inhibitors that are entering clinical trials.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahendra Pal Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
32
|
Xie Z, Zhao M, Yan C, Kong W, Lan F, Zhao S, Yang Q, Bai Z, Qing H, Ni J. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis 2023; 14:255. [PMID: 37031185 PMCID: PMC10082344 DOI: 10.1038/s41419-023-05786-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future avenues for research.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Mengyuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Chengxiang Yan
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Zhantao Bai
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China.
- Yan'an Key Laboratory for Neural Immuno-Tumor and Stem Cell and Engineering and Technological Research Center for Natural Peptide Drugs, Yan'an, 716000, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
33
|
Jain V, Harper SL, Versace AM, Fingerman D, Brown GS, Bhardwaj M, Crissey MAS, Goldman AR, Ruthel G, Liu Q, Zivkovic A, Stark H, Herlyn M, Gimotty PA, Speicher DW, Amaravadi RK. Targeting UGCG Overcomes Resistance to Lysosomal Autophagy Inhibition. Cancer Discov 2023; 13:454-473. [PMID: 36331284 PMCID: PMC9905280 DOI: 10.1158/2159-8290.cd-22-0535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. Although UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted. SIGNIFICANCE We discovered UGCG-dependent lipid remodeling drives resistance to LAI. Targeting UGCG with a drug approved for a lysosomal storage disorder enhanced LAI antitumor activity without toxicity. LAI and UGCG inhibition could be tested clinically in multiple cancers. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Amanda M. Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | - Holgar Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | | | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- The Wistar Institute, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| |
Collapse
|
34
|
Xu J, Zhang K, Zhang G. Prognostic Lysosome-Related Biomarkers for Predicting Drug Candidates in Hepatocellular Carcinoma: An Insilco Analysis. J Hepatocell Carcinoma 2023; 10:459-472. [PMID: 36974330 PMCID: PMC10039712 DOI: 10.2147/jhc.s401338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lysosomes play an important role in enhancing tumorigenesis and chemoresistance in hepatocellular carcinoma (HCC). Therefore, a detailed analysis of the role of lysosome-related genes could improve the poor prognosis of HCC patients. Methods Lysosome-associated genes were downloaded from the GO and Genome Enrichment Analysis (GSEA) databases. After analyzing lysosome-associated differentially expressed genes (DEGs) between the TCGA and GTEx cohorts, we used univariate Cox regression, LASSO-Cox regression, stepwise Cox regression, and multivariate Cox regression analyses to build a predictive risk model. The ICGC cohort was used as a test cohort for the prognostic signature's validation. It was also assessed how significantly the signature affected the tumor microenvironment (TME) and sensitivity to immune checkpoint inhibitors. To investigate the expression of this signature in clinical samples, qRT-PCR and immunohistochemistry (IHC) were carried out in 50 normal tissues and 59 HCC tissues. Results A total of 894 lysosome-associated genes were obtained. After identifying 113 lysosome-associated DEGs, we constructed a five-gene prognostic signature (RRAGD, AP1M2, CRHBP, NCSTN, and SLCO4C1) that can be effectively applied to the prognostic classification of HCC patients in TCGA and ICGC cohorts. Additionally, we discovered that this signature can affect the proportion of macrophage infiltration in TME. We also evaluated several tumor-sensitive medicines that affect this signature. Finally, we discovered that HCC tissues had lower amounts of CRHBP compared to normal tissues by the qRT-PCR and IHC assay. Conclusion We developed and validated a predictive signature of five lysosome-related genes for HCC patients and verified the downregulation of CRHBP expression in clinical samples, which may provide fresh perspectives for customized immunotherapy.
Collapse
Affiliation(s)
- Junxiu Xu
- Department of Medical Laboratory, Zhengzhou University Fifth Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Kai Zhang
- Department of Medical Laboratory, Zhengzhou University Third Affiliated Hospital, Zhengzhou, People’s Republic of China
| | - Genhao Zhang
- Department of Blood Transfusion, Zhengzhou University First Affiliated Hospital, Zhengzhou, People’s Republic of China
- Correspondence: Genhao Zhang, Zhengzhou University First Affiliated Hospital, Jianshe Road 1#, Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
35
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
36
|
De Lorenzo S, Tovoli F, Trevisani F. Mechanisms of Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Patients with Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4616. [PMID: 36230538 PMCID: PMC9564277 DOI: 10.3390/cancers14194616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a relevant global health problem. Immune checkpoint inhibitors (ICIs) represent the most effective systemic treatment for HCC. However, due to primary resistance, approximately 40% of HCC patients do not achieve a disease control with ICIs. Moreover, a similar proportion will experience disease progression after an initial response caused by secondary resistance. This review describes the mechanisms of primary and secondary resistance and reports the ongoing therapeutic strategies to overcome these obstacles.
Collapse
Affiliation(s)
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Franco Trevisani
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
37
|
Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol 2022; 17:3-26. [PMID: 36018061 PMCID: PMC9812842 DOI: 10.1002/1878-0261.13308] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Protein S-palmitoylation (hereinafter referred to as protein palmitoylation) is a reversible lipid posttranslational modification catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family. The reverse reaction, depalmitoylation, is catalyzed by palmitoyl-protein thioesterases (PPTs), including acyl-protein thioesterases (APT1/2), palmitoyl protein thioesterases (PPT1/2), or alpha/beta hydrolase domain-containing protein 17A/B/C (ABHD17A/B/C). Proteins encoded by several oncogenes and tumor suppressors are modified by palmitoylation, which enhances the hydrophobicity of specific protein subdomains, and can confer changes in protein stability, membrane localization, protein-protein interaction, and signal transduction. The importance for protein palmitoylation in tumorigenesis has just started to be elucidated in the past decade; palmitoylation appears to affect key aspects of cancer, including cancer cell proliferation and survival, cell invasion and metastasis, and antitumor immunity. Here we review the current literature on protein palmitoylation in the various cancer types, and discuss the potential of targeting of palmitoylation enzymes or palmitoylated proteins for tumor treatment.
Collapse
Affiliation(s)
- Binhui Zhou
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina
| | - Qianyun Hao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology IIPeking University Cancer Hospital & InstituteBeijingChina
| | - Yinming Liang
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory MedicineXinxiang Medical UniversityChina
| | - Eryan Kong
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina
| |
Collapse
|
38
|
Yuan J, Wang Y, Wang X, Zhang W, Ding R, Yue S, Li X. Construction and experimental verification of user-friendly molecular subtypes mediated by immune-associated genes in hepatocellular carcinoma. Front Oncol 2022; 12:924059. [PMID: 35992798 PMCID: PMC9391001 DOI: 10.3389/fonc.2022.924059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for third most cancer death globally, and its prognosis continues to be poor even with many novel therapeutic approaches emerging. The advent of immunotherapy seems to offer new hope, but low response rates are an unresolved problem. To gain further knoeledge of the effect of immune-related genes in HCC, we examined the connection between immune-related genes and the immune microenvironment in HCC through the HCC transcriptome dataset. The study also aimed to construct and experimentally validate user-friendly molecular subtypes mediated by immune-related genes in HCC. The immune cell infiltration patterns differs in HCC adjacent non-disease tissues and cancerous tissues. Patients with HCC could be classified into 2 subtypes: subtype A and subtype B. Specifically, subtype A shows characteristics of a hot tumor, in which the infiltration of cells exhibiting antigens and the expression of other crucial factors associated with immune function are higher than in a cold tumor. In addition, we identified Hub genes for the different subtypes and constructed a prognostic prediction model based on six genes (KLRB1, KLF2, S100A9, MSC, ANXA5, and IMPDH1). Further experimental analysis of HCC samples exhibited that the expression levels of KLF2 and ANXA5 were associated with immune cell infiltration and expression of PD-L1 in cancer tissues. Our work suggests that the expression of immune-related genes has crucial effect on the tumor microenvironment and prognosis of HCC patients and may be associated with immunotherapeutic response, which provides new clues for the widespread and effective application of immunotherapy in HCC.
Collapse
Affiliation(s)
- Juzheng Yuan
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Rui Ding, ; Shuqiang Yue, ; Xiao Li,
| | - Shuqiang Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Rui Ding, ; Shuqiang Yue, ; Xiao Li,
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Rui Ding, ; Shuqiang Yue, ; Xiao Li,
| |
Collapse
|
39
|
Fu J, Qin W, Tong Q, Li Z, Shao Y, Liu Z, Liu C, Wang Z, Xu X. A novel DNA methylation-driver gene signature for long-term survival prediction of hepatitis-positive hepatocellular carcinoma patients. Cancer Med 2022; 11:4721-4735. [PMID: 35637633 PMCID: PMC9741990 DOI: 10.1002/cam4.4838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Abnormal DNA methylation is one of the most general epigenetic modifications in hepatocellular carcinoma (HCC). Recent research showed that DNA methylation was a prognostic indicator of all-cause HCC and nonviral HCC. However, whether DNA methylation-driver genes could be used for predicting survival, the probability of hepatitis-positive HCC remains unclear. METHODS In this study, DNA methylation-driver genes (MDGs) were screened by a joint analysis of methylome and transcriptome data of 142 hepatitis-positive HCC patients. Subsequently, a prognostic risk score and nomogram were constructed. Finally, correlation analyses between the risk score and signaling pathways and immunity were conducted by GSVA and CIBERSORT. RESULTS Through random forest screening and Cox progression analysis, 10 prognostic methylation-driver genes (AC008271.1, C11orf53, CASP8, F2RL2, GBP5, LUCAT1, RP11-114B7.6, RP11-149I23.3, RP11-383 J24.1, and SLC35G2) were screened out. As a result, a prognostic risk score signature was constructed. The independent value of the risk score for prognosis prediction were addressed in the TCGA-HCC and the China-HCC cohorts. Next, clinicopathological features were analyzed and HBV status and histological grade were screened to construct a nomogram together with the risk score. The prognostic efficiency of the nomogram was validated by the calibration curves and the concordance index (C index: 0.829, 95% confidence interval: 0.794-0.864), while its clinical application ability was confirmed by decision curve analysis (DCA). At last, the relationship between the risk score and signaling pathways, as well as the correlations between immune cells were elucidated preliminary. CONCLUSIONS Taken together, our study explored a novel DNA methylation-driver gene risk score signature and an efficient nomogram for long-term survival prediction of hepatitis-positive HCC patients.
Collapse
Affiliation(s)
- Jie Fu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wei Qin
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Qing Tong
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhenghao Li
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yaoli Shao
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiqiang Liu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chun Liu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zicheng Wang
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xundi Xu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina,Department of General SurgerySouth China Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
40
|
The Role of Macroautophagy and Chaperone-Mediated Autophagy in the Pathogenesis and Management of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030760. [PMID: 35159028 PMCID: PMC8833636 DOI: 10.3390/cancers14030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a major health problem with the second highest mortality among all cancers and a continuous increase worldwide. HCC is highly resistant to available chemotherapeutic agents, leaving patients with no effective therapeutic option and a poor prognosis. Although an increasing number of studies have elucidated the potential role of autophagy underlying HCC, the complete regulation is far from understood. The different forms of autophagy constitute important cell survival mechanisms that could prevent hepatocarcinogenesis by limiting hepatocyte death and the associated hepatitis and fibrosis at early stages of chronic liver diseases. On the other hand, at late stages of hepatocarcinogenesis, they could support the malignant transformation of (pre)neoplastic cells by facilitating their survival. Abstract Hepatocarcinogenesis is a long process with a complex pathophysiology. The current therapeutic options for HCC management, during the advanced stage, provide short-term survival ranging from 10–14 months. Autophagy acts as a double-edged sword during this process. Recently, two main autophagic pathways have emerged to play critical roles during hepatic oncogenesis, macroautophagy and chaperone-mediated autophagy. Mounting evidence suggests that upregulation of macroautophagy plays a crucial role during the early stages of carcinogenesis as a tumor suppressor mechanism; however, it has been also implicated in later stages promoting survival of cancer cells. Nonetheless, chaperone-mediated autophagy has been elucidated as a tumor-promoting mechanism contributing to cancer cell survival. Moreover, the autophagy pathway seems to have a complex role during the metastatic stage, while induction of autophagy has been implicated as a potential mechanism of chemoresistance of HCC cells. The present review provides an update on the role of autophagy pathways in the development of HCC and data on how the modulation of the autophagic pathway could contribute to the most effective management of HCC.
Collapse
|
41
|
GNS561 Exhibits Potent Antiviral Activity against SARS-CoV-2 through Autophagy Inhibition. Viruses 2022; 14:v14010132. [PMID: 35062337 PMCID: PMC8778678 DOI: 10.3390/v14010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/08/2023] Open
Abstract
Since December 2019, SARS-CoV-2 has spread quickly worldwide, leading to more than 280 million confirmed cases, including over 5,000,000 deaths. Interestingly, coronaviruses were found to subvert and hijack autophagic process to allow their viral replication. Autophagy-modulating compounds thus rapidly emerged as an attractive strategy to fight SARS-CoV-2 infection, including the well-known chloroquine (CQ). Here, we investigated the antiviral activity and associated mechanism of GNS561/Ezurpimtrostat, a small lysosomotropic molecule inhibitor of late-stage autophagy. Interestingly, GNS561 exhibited antiviral activity of 6–40 nM depending on the viral strain considered, currently positioning it as the most powerful molecule investigated in SARS-CoV-2 infection. We then showed that GNS561 was located in lysosome-associated-membrane-protein-2-positive (LAMP2-positive) lysosomes, together with SARS-CoV-2. Moreover, GNS561 increased LC3-II spot size and caused the accumulation of autophagic vacuoles and the presence of multilamellar bodies, suggesting that GNS561 disrupted the autophagy mechanism. To confirm our findings, we used the K18-hACE2 mouse model and highlighted that GNS561 treatment led to a decline in SARS-CoV-2 virions in the lungs associated with a disruption of the autophagy pathway. Overall, our study highlights GNS561 as a powerful drug in the treatment of SARS-CoV-2 infection and supports the hypothesis that autophagy blockers could be an alternative strategy for COVID-19.
Collapse
|