1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Yang Q, Jiang P, Tang H, Wen J, Zhou L, Zhao Y, Wang L, Wang J, Yang Q. Shh regulates M2 microglial polarization and fibrotic scar formation after ischemic stroke. Neurochem Int 2024; 180:105862. [PMID: 39307461 DOI: 10.1016/j.neuint.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Fibrotic scar formation is a critical pathological change impacting tissue reconstruction and functional recovery after ischemic stroke. The regulatory mechanisms behind fibrotic scarring in the central nervous system (CNS) remain largely unknown. While macrophages are known to play a role in fibrotic scar formation in peripheral tissues, the involvement of microglia, the resident immune cells of the CNS, in CNS fibrosis requires further exploration. The Sonic Hedgehog (Shh) signaling pathway, pivotal in embryonic development and tissue regeneration, is also crucial in modulating fibrosis in peripheral tissues. However, the impact and regulatory mechanisms of Shh on fibrotic scar formation post-ischemic stroke have not been thoroughly investigated. METHODS This study explores whether Shh can regulate fibrotic scar formation post-ischemic stroke and its underlying mechanisms through in vivo and in vitro manipulation of Shh expression. RESULTS Our results showed that Shh expression was upregulated in the serum of acute ischemic stroke patients, as well as in the serum, CSF, and ischemic regions of MCAO/R mice. Moreover, the upregulation of Shh expression was positively correlated with fibrotic scar formation and M2 microglial polarization. Shh knockdown inhibited fibrotic scar formation and M2 microglial polarization while aggravating neurological deficits in MCAO/R mice. In vitro, adenoviral knockdown or Smoothened Agonist (SAG) activation of Shh expression in BV2 cells following OGD/R regulated their polarization and influenced the expression of TGFβ1 and PDGFA, subsequently affecting fibroblast activation. CONCLUSION These results suggest that Shh regulates M2 microglial polarization and fibrotic scar formation after cerebral ischemia.
Collapse
Affiliation(s)
- Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiani Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Kang X, Su X, Li T, Wang S, Huang H, Liu Y, Li C, Deng X, Hu M, Lu T, Wei L, Cai W, Lu Z. Intra-cisterna-magna bevacizumab injection (ICM-BI) reproduces pathological alterations of cerebral small vessel diseases. J Cereb Blood Flow Metab 2024:271678X241295856. [PMID: 39450471 DOI: 10.1177/0271678x241295856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
General modeling strategies for sporadic cerebral small blood vessel diseases (CSVDs) include limiting blood stream in large blood vessels and inducing systemic hypertension, in which small blood vessel deficit is either a secondary or concomitant pathology. In the current study, we introduce that intra-cisterna-magna Bevacizumab injection (ICM-BI) directly causes cerebral small blood vessel injury by neutralizing VEGF-A, the indispensable growth factor for angiogenesis. ICM-BI reproduces neuro-functional impairment, tight junction loss, cerebral micro-bleeds (CMBs), amyloid peptide accumulation, neuronal injury, white matter loss, and glial cell activation, which are common manifestations of sporadic CSVDs. Compared with existing CSVD models, small blood vessel injury is more prominent in the ICM-BI brain. Moreover, no significant alteration in large blood vessels or peripheral organs after ICM-BI is recorded. We thus propose that ICM-BI is a neat, economic and applicable methodology to establish murine sporadic CSVD model.
Collapse
Affiliation(s)
- Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang S, Cai L, Ma Y, Zhang H. Shaoyao decoction alleviates DSS-induced colitis by inhibiting IL-17a-mediated polarization of M1 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118941. [PMID: 39427735 DOI: 10.1016/j.jep.2024.118941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of Shaoyao decoction (SYD), a traditional Chinese medicine prescription, in alleviating colonic mucosal inflammation in ulcerative colitis (UC) has been established. However, the specific mechanism underlying the therapeutic effects of SYD on UC is not clear. AIM OF STUDY In this study, we demonstrated the therapeutic effect of SYD on the polarization of M1 macrophages and elucidated the underlying mechanism. MATERIALS AND METHODS UC mice were induced with 3% DSS for one week and subsequently treated with SYD for another week. The composition of SYD was determined by HPLC. To assess the therapeutic efficacy of SYD, key parameters, including body weight changes, DAI scores, colon length, and histological alterations in colonic tissues, were monitored. ELISA was performed to quantify inflammatory cytokines, while Western blotting and immunofluorescence analyses were performed to quantify tight junction protein expression and M1 macrophage infiltration, respectively. Functional assessments focused on lysosomal activity and glucose oxidation in primary macrophages and RAW 264.7 cells exposed to LPS, IL-17a, and SYD using dedicated kits. To elucidate the mechanisms underlying the action of SYD, the data derived from TMT-based proteomics were analyzed to screen and predict its potential targets and regulated pathways. RESULTS After treatment for seven days, SYD significantly mitigated colitis symptoms in mice, as determined by a decrease in body weight loss, an increase in colon length, and a decrease in disease activity index (DAI) score. The results of histopathological analysis showed substantial improvements in the integrity of colonic tissue. Additionally, SYD treatment significantly decreased the levels of proinflammatory cytokines, including IL-17a, IL-6, IL-1β, and TNF-α. This effect was accompanied by a reduction in the infiltration of CD86+ macrophages and restoration of occludin and ZO-1 levels, thus improving colonic mucosal permeability. SYD treatment also reversed the upregulation of cathepsin (CTS) E, CTSS, lysosomal-associated membrane protein (LAMP)-1, and LAMP-2 expression observed in CD86+ macrophages and RAW 264.7 cells treated with IL-17a. These changes were accompanied by an increase in lysosomal acidification and the enzymatic activities of CTSE and CTSS, suggesting that SYD can restore lysosomal function. SYD also corrected the metabolic alterations in M1 macrophages, characterized by an increase in the extracellular acidification rate (ECAR) and a decrease in oxygen consumption rate (OCR). This was confirmed by a decrease in the ADP/ATP ratio, downregulation of pyruvate dehydrogenase kinase 4 (PDK4) and lactate dehydrogenase (LDH) expression, and a decrease in the concentrations of intracellular pyruvate and lactate. These findings showed that SYD promotes glucose oxidation in macrophages. The data derived from TMT-based proteomics showed that the PPAR pathway was a key target in regulating the polarization of M1 macrophages. SYD was also found to regulate the expression of the PPAR-α, PPAR-γ, and PPAR-δ proteins. CONCLUSION SYD inhibited the polarization of M1 macrophages induced by IL-17a. This effect occurred due to the restoration of lysosomal activity and glucose oxidation via activation of the PPAR/NF-κB pathway. Our findings provided novel insights into the mechanisms underlying the therapeutic effects of SYD in UC.
Collapse
Affiliation(s)
- Shiying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Linkun Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yanyan Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangzhou University of Chinese Medicine, Guangzhou, 511400, China
| | - Haiyan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Su X, Li T, Wang Y, Wei L, Jian B, Kang X, Hu M, Li C, Wang S, Lu D, Shen S, Huang H, Liu Y, Deng X, Zhang B, Cai W, Lu Z. Bone marrow-derived mesenchymal stem cell ameliorates post-stroke enterobacterial translocation through liver-gut axis. Stroke Vasc Neurol 2024:svn-2024-003494. [PMID: 39366758 DOI: 10.1136/svn-2024-003494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Enterobacterial translocation is a leading contributor to fatal infection among patients with acute ischaemic stroke (AIS). Accumulative evidence suggests that mesenchymal stem cell (MSC) effectively ameliorates stroke outcomes. Whether MSC could inhibit post-stroke enterobacterial translocation remains elusive. METHODS Patients with AIS and healthy individuals were enrolled in the study. Mice subjected to transient middle cerebral artery occlusion were treated with bone marrow-derived MSC (BM-MSC) right after reperfusion. Enterobacterial translocation was evaluated with Stroke Dysbiosis Index and circulating endotoxin. Thickness of mucus was assessed with Alcian blue staining. Hepatic glucocorticoid (GC) metabolism was analysed with expression of HSD11B2, HSD11B1 and SRD5A1. RESULTS We report that the gut mucus layer was attenuated after the stroke leading to pronounced enterobacterial translocation. The attenuation of the gut mucus was attributed to diminished mucin production by goblet cells in response to the elevated systemic GC after cerebral ischaemia. Transferred-BM-MSC restored the mucus thickness, thus preserving gut microbiota homeostasis and preventing enterobacterial invasion. Mechanistically, the transferred-BM-MSC stationed in the liver and enhanced peroxisome proliferator-activated receptor γ signalling in hepatocytes. Consequently, expression of HSD11B2 and SRD5A1 was increased while HSD11B1 expression was downregulated which promoted GC catabolism and subsequently restored mucin production. CONCLUSIONS Our findings reveal that MSC transfer improves post-stroke gut barrier integrity and inhibits enterobacterial translocation by enhancing the hepatic GC metabolism thus representing a protective modulator of the liver-gut-brain axis in AIS.
Collapse
Affiliation(s)
- Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Banghao Jian
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
7
|
Liu Y, Kang X, Lin J, Liu Y, Liu S, Li C, Deng X, Huang H, Li T, Wang S, Lu D, Jiang Y, Lu Z, Cai W, Lu T. Myelin endocytosis by brain endothelial cells causes endothelial iron overload and oligodendroglial iron hunger in hypoperfusion-induced white matter injury. CNS Neurosci Ther 2024; 30:e14925. [PMID: 39161089 PMCID: PMC11333543 DOI: 10.1111/cns.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024] Open
Abstract
AIMS Hypoperfusion induces significant white matter injury in cerebral vascular disorders, including arteriosclerotic cerebral small vessel disease (aCSVD), which is prevalent among the elderly. Iron transport by blood vessel endothelial cells (BVECs) from the periphery supports oligodendrocyte maturation and white matter repair. This study aims to elucidate the association between iron homeostasis changes and white matter injury severity, and explore the crosstalk between BVECs and oligodendroglial lineage cells. METHODS In vivo: C57BL/6 mice were subjected to unilateral common carotid artery occlusion (UCCAO). In vitro: BVECs with myelin pretreatment were co-cultured with oligodendrocyte progenitor cells (OPCs) or organotypic cerebellar slices subjected to oxygen and glucose deprivation. RESULTS Circulatory iron tends to be stored in aCSVD patients with white matter injury. Myelin debris endocytosis by BVECs impairs iron transport, trapping iron in the blood and away from the brain, worsening oligodendrocyte iron deficiency in hypoperfusion-induced white matter injury. Iron accumulation in BVECs triggers ferroptosis, suppressing iron transport and hindering white matter regeneration. Intranasal holo-transferrin (hTF) administration bypassing the BBB alleviates oligodendrocyte iron deficiency and promotes myelin regeneration in hypoperfusion-induced white matter injury. CONCLUSION The iron imbalance between BVECs and oligodendroglial lineage cells is a potential therapeutic target in hypoperfusion-induced white matter injury.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiahao Lin
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yixin Liu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yuxuan Jiang
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
8
|
Wang Y, Shan T, Mao P, Jiang Y, Wang Z. FOXP3 gene is associated with susceptibility to ischemic stroke in the Chinese population. Clin Neurol Neurosurg 2024; 242:108313. [PMID: 38754303 DOI: 10.1016/j.clineuro.2024.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
AIM Immunoinflammatory response plays an important role in the pathophysiological process of ischemic stroke (IS). Forkhead box P3 (FOXP3) is a master regulator for immune cells. Polymorphisms of FOXP3 gene might contribute to the susceptibility of IS. This study aimed to explore the association between FOXP3 gene polymorphisms (rs3761548 and rs2232365) and IS susceptibility in the Chinese Han population. METHODS Polymerase chain reaction and Sanger sequencing were used to detect the genotype of FOXP3 gene rs3761548 and rs2232365 polymorphisms. RESULTS Smoking, diabetes mellitus (DM), and HBP histories, higher TG and HDL-C levels were more frequently observed in IS patients than in controls. In comparison with rs3761548 GG genotype, GT genotype (OR = 1.573, 95 %CI = 1.030-2.402; adjusted: OR = 1.736, 95 %CI = 1.070-2.817) and GT + TT vs. GG model (OR = 1.581, 95 %CI = 1.0449-2.382; adjusted: OR = 1.720, 95 %CI = 1.074-2.755) of rs3761548 polymorphism was significantly correlated with elevated ischemic stroke susceptibility both at prior and after adjusted by smoking, HBP, DM, TG and HDL-C. Recessive model of rs2232365 polymorphism could elevate the susceptibility of ischemic stroke (OR = 11.962, 95 %CI = 1.144-3.3363; adjusted: OR = 1.876, 95 %CI = 1.016-3.463). Besides, rs3761548 dominant model (OR = 2.757, 95 %CI = 1.379-5.552; adjusted: OR = 2.601, 95 %CI = 1.268-5.336) and rs2232365 recessive model (OR = 3.103, 95 %CI = 1.463-6.583; adjusted: OR = 3.545, 95 %CI = 1.600-7.855) were related to the severity of ischemic stroke. CONCLUSION FOXP3 gene rs3761548 and rs2232365 polymorphisms were risk factors for susceptibility and severity of IS.
Collapse
Affiliation(s)
- Youpei Wang
- Department of Geriatric Medicine, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Tiru Shan
- Department of Geriatric Medicine, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Peipei Mao
- Department of Geriatric Medicine, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Yi Jiang
- Department of Neurology II, Qingdao Chengyang People's Hospital, Qingdao 266109, China
| | - Zhao Wang
- Health Management Center, Qingdao Chengyang People's Hospital, Qingdao 266109, China.
| |
Collapse
|
9
|
Qian K, Hu J, Wang C, Xu C, Chen Y, Feng Q, Feng Y, Wu Y, Yu X, Ji Q. Dynamic change of neutrophil-to-lymphocyte ratio and its predictive value of prognosis in acute ischemic stroke. Brain Behav 2024; 14:e3616. [PMID: 38988102 PMCID: PMC11237173 DOI: 10.1002/brb3.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE The present research aimed to explore the dynamic change of the neutrophil-to-lymphocyte ratio (NLR) and its relationship with functional outcome following an acute ischemic stroke (AIS), whether receiving intravenous thrombolysis (IVT) or not. METHODS We retrospectively analyzed data that were prospectively acquired from patients with AIS treated with IVT or not. For patients receiving IVT, the NLR was based on a blood test performed prior to IVT (d0) and at different time points after disease onset (d1, d3, d7). In addition, in the non-IVT group, the NLR was obtained at different time points after disease onset (d1, d3, d7). Follow-ups were performed 3 months after onset via telephone. In addition, a good outcome was defined as a modified Rankin scale (mRS) ≤1; a poor outcome means 2 ≤ mRS ≤ 6. RESULTS A total of 204 AIS patients were included in this study. The NLR presented a dynamic change as it increased to its peak at day 1 and gradually declined to its baseline at day 7, no matter whether patients were receiving IVT or not. Patients with poor outcomes have a higher NLR at various time points. The results of multivariate logistic regression analysis demonstrated that the National Institutes of Health Stroke Scale (NIHSS), NLR d1, NLR d3, and NLR d7 were independently associated with functional outcomes. The area under the receiver operating characteristic curve of NLR in predicting outcomes was as follows: NLR d3 demonstrated robust predictive power within the IVT therapy cohort, whereas NLR d7 was predictive in the non-IVT cohort. However, the most potent predictor emerged as the combination of NIHSS and NLR. CONCLUSION NLR has the potential to predicate diagnosis for AIS, especially when combined with the NIHSS score.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Jie Hu
- Department of Emergency, Dongtai People's Hospital, Dongtai, China
| | - Chunyan Wang
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Chunxiang Xu
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Yanguo Chen
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Qing Feng
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Yu
- Department of Neurology, Dongtai People's Hospital, Dongtai, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
10
|
Liu T, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke. Int J Nanomedicine 2024; 19:6177-6199. [PMID: 38911498 PMCID: PMC11194020 DOI: 10.2147/ijn.s458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
11
|
Wang S, Li C, Kang X, Su X, Liu Y, Wang Y, Liu S, Deng X, Huang H, Li T, Lu D, Cai W, Lu Z, Wei L, Lu T. Agomelatine promotes differentiation of oligodendrocyte precursor cells and preserves white matter integrity after cerebral ischemic stroke. J Cereb Blood Flow Metab 2024:271678X241260100. [PMID: 38853430 DOI: 10.1177/0271678x241260100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
White matter injury contributes to neurological disorders after acute ischemic stroke (AIS). The repair of white matter injury is dependent on the re-myelination by oligodendrocytes. Both melatonin and serotonin antagonist have been proved to protect against post-stroke white matter injury. Agomelatine (AGM) is a multi-functional treatment which is both a melatonin receptor agonist and selective serotonin receptor antagonist. Whether AGM protects against white matter injury after stroke and the underlying mechanisms remain elusive. Here, using the transient middle cerebral artery occlusion (tMCAO) model, we evaluated the therapeutic effects of AGM in stroke mice. Sensorimotor and cognitive functions, white matter integrity, oligodendroglial regeneration and re-myelination in stroke hemisphere after AGM treatment were analyzed. We found that AGM efficiently preserved white matter integrity, reduced brain tissue loss, attenuated long-term sensorimotor and cognitive deficits in tMCAO models. AGM treatment promoted OPC differentiation and enhanced re-myelination both in vitro, ex vivo and in vivo, although OPC proliferation was unaffected. Mechanistically, AGM activated low density lipoprotein receptor related protein 1 (LRP1), peroxisome proliferator-activated receptor γ (PPARγ) signaling thus promoted OPC differentiation and re-myelination after stroke. Inhibition of PPARγ or knock-down of LRP1 in OPCs reversed the beneficial effects of AGM. Altogether, our data indicate that AGM represents a novel therapy against white matter injury after cerebral ischemia.
Collapse
Affiliation(s)
- Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tingting Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Yang S, Hu Y, Wang X, Deng M, Ma J, Hao Y, Ran Z, Luo T, Han G, Xiang X, Liu J, Shi H, Tan Y. Machine learning and deep learning to identifying subarachnoid haemorrhage macrophage-associated biomarkers by bulk and single-cell sequencing. J Cell Mol Med 2024; 28:e18296. [PMID: 38702954 PMCID: PMC11069052 DOI: 10.1111/jcmm.18296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024] Open
Abstract
We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.
Collapse
Affiliation(s)
- Sha Yang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
- Guizhou University Medical CollegeGuiyangChina
| | - Yunjia Hu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xiang Wang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Mei Deng
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Jun Ma
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yin Hao
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Zhongying Ran
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Tao Luo
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Xin Xiang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jian Liu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
- Guizhou University Medical CollegeGuiyangChina
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Hui Shi
- Department of NeurosurgeryYongchuan Hospital affiliated to Chongqing Medical UniversityChongqingChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
13
|
Wang H, Ma J, Li X, Peng Y, Wang M. FDA compound library screening Baicalin upregulates TREM2 for the treatment of cerebral ischemia-reperfusion injury. Eur J Pharmacol 2024; 969:176427. [PMID: 38428662 DOI: 10.1016/j.ejphar.2024.176427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanhui Peng
- Department of Neurology, The Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi 830000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiying Biomedical Research Center of Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
14
|
Zhang YS, Chen YQ. Dysfunctional regulatory T cell: May be an obstacle to immunotherapy in cardiovascular diseases. Biomed Pharmacother 2024; 173:116359. [PMID: 38430633 DOI: 10.1016/j.biopha.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Inflammatory responses are linked to cardiovascular diseases (CVDs) in various forms. Tregs, members of CD4+ T cells, play important roles in regulating immune system and suppressing inflammatory response, thus contributing to maintaining immune homeostasis. However, Tregs exert their powerful suppressive function relying on the stable phenotype and function. The stability of Tregs primarily depends on the FOXP3 (Forkhead box P3) expression and epigenetic regulation. Although Tregs are quite stable under physiological conditions, prolonged exposure to inflammatory cues, Tregs may lose suppressive function and require proinflammatory phenotype, namely plastic Tregs or ex-Tregs. There are extensive researches have established the beneficial role of Tregs in CVDs. Nevertheless, the potential risks of dysfunctional Tregs lack deep research. Anti-inflammatory and immunological modulation have been hotspots in the treatment of CVDs. Tregs are appealing because of their crucial role in resolving inflammation and promoting tissue repair. If alleviating inflammatory response through modulating Tregs could be a new therapeutic strategy for CVDs, the next step to consider is how to prevent the formation of dysfunctional Tregs or reverse detrimental Tregs to normal phenotype.
Collapse
Affiliation(s)
- Yu-Sha Zhang
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Ya-Qin Chen
- Department of Cardiology, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
15
|
Chen S, Huang W, Wan Q, Tang Z, Li X, Zeng F, Zheng S, Li Z, Liu X. Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics. J Transl Med 2024; 22:271. [PMID: 38475831 PMCID: PMC10936029 DOI: 10.1186/s12967-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Patients with spondyloarthritis (SpA)/HLA-B27-associated acute anterior uveitis (AAU) experience recurring acute flares, which pose significant visual and financial challenges. Despite established links between SpA and HLA-B27-associated AAU, the exact mechanism involved remains unclear, and further understanding is needed for effective prevention and treatment. METHODS To investigate the acute pathogenesis of SpA/HLA-B27-associated AAU, Mendelian randomization (MR) and single-cell transcriptomic analyses were employed. The MR incorporated publicly available protein quantitative trait locus data from previous studies, along with genome-wide association study data from public databases. Causal relationships between plasma proteins and anterior uveitis were assessed using two-sample MR. Additionally, colocalization analysis was performed using Bayesian colocalization. Single-cell transcriptome analysis utilized the anterior uveitis dataset from the Gene Expression Omnibus (GEO) database. Dimensionality reduction, clustering, transcription factor analysis, pseudotime analysis, and cell communication analysis were subsequently conducted to explore the underlying mechanisms involved. RESULTS Mendelian randomization analysis revealed that circulating levels of AIF1 and VARS were significantly associated with a reduced risk of developing SpA/HLA-B27-associated AAU, with AIF1 showing a robust correlation with anterior uveitis onset. Colocalization analysis supported these findings. Single-cell transcriptome analysis showed predominant AIF1 expression in myeloid cells, which was notably lower in the HLA-B27-positive group. Pseudotime analysis revealed dendritic cell terminal positions in differentiation branches, accompanied by gradual decreases in AIF1 expression. Based on cell communication analysis, CD141+CLEC9A+ classic dendritic cells (cDCs) and the APP pathway play crucial roles in cellular communication in the Spa/HLA-B27 group. CONCLUSIONS AIF1 is essential for the pathogenesis of SpA/HLA-B27-associated AAU. Myeloid cell differentiation into DCs and decreased AIF1 levels are also pivotal in this process.
Collapse
Affiliation(s)
- Shuming Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Weidi Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Qiaoqian Wan
- Department of Anaesthesiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zichun Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Xie Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Fang Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Shuyan Zheng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Zhuo Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
- Hunan Provincial Key Laboratory of Critical Quality Attribute of Cell Therapy Products, Changsha, 410011, Hunan, China.
| | - Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
17
|
Buchan SL. CTLA-4: Checkpoints beyond the membrane. Mol Ther 2024; 32:279-281. [PMID: 38237584 PMCID: PMC10861949 DOI: 10.1016/j.ymthe.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Affiliation(s)
- Sarah L Buchan
- Department of Life and Environmental Science, Bournemouth University, Fern Barrow, BH12 5BB Poole, UK.
| |
Collapse
|
18
|
Kennedy PT, Saulters EL, Duckworth AD, Lim YJ, Woolley JF, Slupsky JR, Cragg MS, Ward FJ, Dahal LN. Soluble CTLA-4 attenuates T cell activation and modulates anti-tumor immunity. Mol Ther 2024; 32:457-468. [PMID: 38053333 PMCID: PMC10861965 DOI: 10.1016/j.ymthe.2023.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
CTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform. Here, we explore the functional properties of sCTLA-4 and evaluate the efficacy of isoform-specific anti-sCTLA-4 antibody targeting in a murine cancer model. We show that expression of sCTLA-4 by tumor cells suppresses CD8+ T cells in vitro and accelerates growth and experimental metastasis of murine tumors in vivo. These effects were accompanied by modification of the immune infiltrate, notably restraining CD8+ T cells in a non-cytotoxic state. sCTLA-4 blockade with isoform-specific antibody reversed this restraint, enhancing intratumoral CD8+ T cell activation and cytolytic potential, correlating with therapeutic efficacy and tumor control. This previously unappreciated role of sCTLA-4 suggests that the biology and function of multi-gene products of immune checkpoint receptors need to be fully elucidated for improved mechanistic understanding of cancer immunotherapies.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK
| | - Emma L Saulters
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK
| | - Andrew D Duckworth
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Yeong Jer Lim
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, SO16 6YD Southampton, UK
| | - Frank J Ward
- Department of Immunology, University of Aberdeen, AB25 2ZD Aberdeen, UK
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK.
| |
Collapse
|
19
|
Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL. Holistic Assessment Based On Hepatocyte Mitochondria: Lycopene Repairs Oxidized mtDNA to Alleviate Mitochondrial Stress Induced by Atrazine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20325-20335. [PMID: 38052101 DOI: 10.1021/acs.jafc.3c05369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Atrazine (ATZ) is a highly persistent herbicide that harms organism health. Lycopene (LYC) is an antioxidant found in plants and fruits. The aim of this study is to investigate the mechanisms of atrazine-induced mitochondrial damage and lycopene antagonism in the liver. The mice were divided into seven groups by randomization: blank control (Con group), vehicle control (Vcon group), 5 mg/kg lycopene (LYC group), 50 mg/kg atrazine (ATZ1 group), ATZ1+LYC group, 200 mg/kg atrazine (ATZ2 group), and ATZ2+LYC group. The present study performed a holistic assessment based on mitochondria to show that ATZ causes the excessive fission of mitochondria and disrupts mitochondrial biogenesis. However, the LYC supplementation reverses these changes. ATZ causes increased mitophagy and exacerbates the production of oxidized mitochondrial DNA (Ox-mtDNA) and mitochondrial stress. This study reveals that LYC could act as an antioxidant to repair Ox-mtDNA and restore the disordered mitochondrial function caused by ATZ.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
20
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
21
|
Geng L, Zheng LZ, Kang YF, Pan CL, Wang T, Xie C, Liang B, Liao HL. Zhilong Huoxue Tongyu Capsule attenuates hemorrhagic transformation through the let-7f/TLR4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116521. [PMID: 37080368 DOI: 10.1016/j.jep.2023.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemorrhagic transformation after acute ischemic stroke is a life-threatening disease that currently has no effective chemotherapy. Zhilong Huoxue Tongyu Capsule (ZL) is an empirical prescription of traditional Chinese medicine that is used to prevent and treat cardiovascular and cerebrovascular diseases in China. However, only a few studies have addressed the mechanisms of ZL in treating hemorrhagic transformation. AIM OF THE STUDY To evaluate the anti-inflammatory effects of ZL on hemorrhagic transformation model rats and lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to explore the underlying molecular mechanisms. MATERIALS AND METHODS Murine RAW264.7 cells were treated with ZL and LPS (1 μg/mL), and cell viability was detected by cell counting kit-8 assay. RT-qPCR was used to detect the expression of inflammatory chemokines, microRNA let-7a/e/i/f, toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor kappa-B (NF-κB) p65. The protein expression levels of TLR4, MyD88, NF-κB p65, and apoptosis related molecules were determined by Western blotting. The apoptosis rate of RAW264.7 macrophages was detected by Annexin V-FITC/PI double staining. A hemorrhagic transformation model in rats was established by intraperitoneal injection of high glucose solution combined with thread embolization. Then, the model rats were observed behaviourally, pathologically, and molecularly. The gene expression of TLR4, MyD88, and NF-κB p65 was measured by RT-qPCR and used to evaluate the protective effect of ZL against hemorrhagic transformation in rats. RESULTS ZL (5, 20, 40 μg/mL) was beneficial in cell proliferation. LPS (1 μg/mL) stimulated the production of inflammatory chemokines and inhibited the production of let-7a/e/i/f, with let-7f being influenced most strongly. Moreover, overexpression of let-7f decreased the gene and protein levels of TLR4, MyD88, and NF-κB p65, downregulated TLR4, and inhibited its transcriptional activity. ZL (5, 20, and 40 μg·mL-1) inhibited the production of TLR4, MyD88, and NF-κB p65 and promoted the production of let-7f in a concentration-dependent manner. Furthermore, the blockade of TLR4 antagonized the promoting effects of TLR4 pathway activation in cell inflammation and apoptosis by downregulating let-7f. Critically, it was confirmed in vivo and in vitro that ZL upregulated the expression of let-7f and inhibited the gene expression of TLR4, MyD88, and NF-κB p65 to reduce inflammatory cell infiltration, which determined the occurrence of hemorrhagic transformation. CONCLUSIONS ZL can reduce inflammatory response by upregulating let-7f and subsequently inhibiting the TLR4 signaling pathway, thereby decreasing the occurrence of hemorrhagic transformation.
Collapse
Affiliation(s)
- Lu Geng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; Internal Medicine Department One, Wenjiang Traditional Chinese Medicine Hospital of Chengdu, Chengdu, China
| | - Li-Zhu Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; Traditional Chinese Medicine Hospital of Long Chang City, Neijiang, China
| | - Ya-Fei Kang
- Bazhong Hospital of Traditional Chinese Medicine, Bazhong, China
| | - Chuan-Ling Pan
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Tao Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Chen Xie
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Hui-Ling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China; College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
22
|
Pyung YJ, Park DJ, Kim CG, Yun CH. Remodeling and Restraining Lung Tissue Damage Through the Regulation of Respiratory Immune Responses. Tissue Eng Regen Med 2023; 20:329-339. [PMID: 36763280 PMCID: PMC9913030 DOI: 10.1007/s13770-022-00516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 02/11/2023] Open
Abstract
Tissue damage caused by various stimuli under certain conditions, such as biological and environmental cues, can actively induce systemic and/or local immune responses. Therefore, understanding the immunological perspective would be critical to not only regulating homeostasis of organs and tissues but also to restrict and remodel their damage. Lungs serve as one of the key immunological organs, and thus, in the present article, we focus on the innate and adaptive immune systems involved in remodeling and engineering lung tissue. Innate immune cells are known to react immediately to damage. Macrophages, one of the most widely studied types of innate immune cells, are known to be involved in tissue damage and remodeling, while type 2 innate lymphoid cells (ILC2s) have recently been revealed as an important cell type responsible for tissue remodeling. On the other hand, adaptive immune cells are also involved in damage control. In particular, resident memory T cells in the lung prevent prolonged disease that causes tissue damage. In this review, we first outlined the structure of the respiratory system with biological and environmental cues and the innate/adaptive immune responses in the lung. It is our hope that understanding an immunological perspective for tissue remodeling and damage control in the lung will be beneficial for stakeholders in this area.
Collapse
Affiliation(s)
- Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea.
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Marei HE, Yang C, Cenciarelli C, Jaillard A. Editorial: Inflammation in ischemic stroke and novel therapeutic strategies for stroke treatment. Front Neurol 2022; 13:1071557. [DOI: 10.3389/fneur.2022.1071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
|