1
|
Kuzukiran O, Yurdakok-Dikmen B, Uyar R, Turgut-Birer Y, Çelik HT, Simsek I, Karakas-Alkan K, Boztepe UG, Ozyuncu O, Kanca H, Ozdag H, Filazi A. Transcriptomic evaluation of metals detected in placenta. CHEMOSPHERE 2024; 363:142929. [PMID: 39048050 DOI: 10.1016/j.chemosphere.2024.142929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This research aims to assess the concentration of metals in human and canine placentas from the same geographic area and to investigate how these metal levels influence gene expression within the placenta. Placentas of 25 dogs and 60 women who had recently given birth residing in Ankara, Turkey were collected and subjected to metal analysis using ICP-OES. Placentas with detectable metal levels underwent further examination including Next Generation Sequencing, transcriptional analysis, single nucleotide polymorphism investigation, and extensive scrutiny across various groups. For women, placentas with concurrent detection of aluminum (Al), lead (Pb), and cadmium (Cd) underwent transcriptomic analysis based on metal analysis results. However, the metal load in dog placentas was insufficient for comparison. Paired-end sequencing with 100-base pair read lengths was conducted using the DNBseq platform. Sequencing quality control was evaluated using FastQC, fastq screen, and MultiQC. RNA-sequencing data is publicly available via PRJNA936158. Comparative analyses were performed between samples with detected metals and "golden" samples devoid of these metals, revealing significant gene lists and read counts. Normalization of read counts was based on estimated size factors. Principal Component Analysis (PCA) was applied to all genes using rlog-transformed count data. Results indicate that metal exposure significantly influences placental gene expression, impacting various biological processes and pathways, notably those related to protein synthesis, immune responses, and cellular structure. Upregulation of immune-related pathways and alterations in protein synthesis machinery suggest potential defense mechanisms against metal toxicity. Nonetheless, these changes may adversely affect placental function and fetal health, emphasizing the importance of monitoring and mitigating environmental exposure to metals during pregnancy.
Collapse
Affiliation(s)
- Ozgur Kuzukiran
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Veterinary Department, Cankiri, Turkey.
| | - Begum Yurdakok-Dikmen
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| | - Recep Uyar
- Ankara University, The Stem Cell Institute, Ankara, Turkey; Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Yagmur Turgut-Birer
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Hasan Tolga Çelik
- Hacettepe University, Faculty of Medicine, Department of Child Health and Diseases, Section of Neonatology, 06230, Altindag, Ankara, Turkey.
| | - Ilker Simsek
- Cankiri Karatekin University, Eldivan Vocational School of Health Sciences, Cankiri, Turkey.
| | - Kubra Karakas-Alkan
- Selcuk University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Konya, Turkey.
| | - Ummu Gulsum Boztepe
- Ankara University, Graduate School of Health Sciences, 06070, Ankara, Turkey.
| | - Ozgur Ozyuncu
- Hacettepe University, Faculty of Medicine, Department of Obstetrics and Gynaecology, 06230, Altindag, Ankara, Turkey.
| | - Halit Kanca
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynaecology, Ankara, Turkey.
| | - Hilal Ozdag
- Ankara University Biotechnology Institute, 06135, Ankara, Turkey.
| | - Ayhan Filazi
- Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 06070, Ankara, Turkey.
| |
Collapse
|
2
|
Lumour-Mensah T, Lemos B. Evidence of reduced gestational age in response to in utero arsenic exposure and implications for aging trajectories of the newborn. ENVIRONMENT INTERNATIONAL 2024; 185:108566. [PMID: 38461780 DOI: 10.1016/j.envint.2024.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Arsenic exposure is associated with a plethora of age-related health outcomes of disparate etiology. However, evidence of the impact of arsenic on aging remains limited. Here, we investigated the utility of epigenetic clocks in two different populations and the impact of maternal arsenic exposure during pregnancy on epigenetic gestational age at birth. To do this, we examined publicly available DNA methylation data and estimated gestational age across five gestational clocks in two unrelated human populations. These populations also differ in the extent of arsenic exposure and the targeted tissue of analysis (cord blood and placental tissue). Our results indicate that same-tissue clocks produce gestational age estimates that are more highly correlated with clinical gestational age. Interestingly, our results also indicate that arsenic exposure is associated with gestational age, with higher arsenic exposures associated with decreased gestational age. We also applied two pediatric clocks to evaluate infant biological age in the same samples. The data is suggestive of higher pediatric age in infants exposed to higher arsenic levels during gestation. Taken altogether, our findings are consistent with past work indicating that that in utero arsenic exposure is associated with decreased gestational maturity as characterized by infant outcomes such as low birthweight and lung underdevelopment and dysfunction in arsenic exposed infants. The findings are also consistent with arsenic exposure setting infants on a trajectory of accelerated epigenetic aging that starts at birth.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States; R. Ken Coit College of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ, United States; Coit Center for Longevity and Neurotherapeutics, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
4
|
Lumour-Mensah T, Lemos B. Defining high confidence targets of differential CpG methylation in response to in utero arsenic exposure and implications for cancer risk. Toxicol Appl Pharmacol 2024; 482:116768. [PMID: 38030093 PMCID: PMC10889851 DOI: 10.1016/j.taap.2023.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Arsenic is a relatively abundant metalloid that impacts DNA methylation and has been implicated in various adverse health outcomes including several cancers and diabetes. However, uncertainty remains about the identity of genomic CpGs that are sensitive to arsenic exposure, in utero or otherwise. Here we identified a high confidence set of CpG sites whose methylation is sensitive to in utero arsenic exposure. To do so, we analyzed methylation of infant CpGs as a function of maternal urinary arsenic in cord blood and placenta from geographically and ancestrally distinct human populations. Independent analyses of these distinct populations were followed by combination of results across sexes and populations/tissue types. Following these analyses, we concluded that both sex and tissue type are important drivers of heterogeneity in methylation response at several CpGs. We also identified 17 high confidence CpGs that were hypermethylated across sex, tissue type and population; 11 of these were located within protein coding genes. This pattern is consistent with hypotheses that arsenic increases cancer risk by inducing the hypermethylation of genic regions. This study represents an opportunity to understand consistent, reproducible patterns of epigenomic responses after in utero arsenic exposure and may aid towards novel biomarkers or signatures of arsenic exposure. Identifying arsenic-responsive sites can also contribute to our understanding of the biological mechanisms by which arsenic exposure can affect biological function and increase risk of cancer and other age-related diseases.
Collapse
Affiliation(s)
- Tabitha Lumour-Mensah
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
| | - Bernardo Lemos
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America; R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
5
|
Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, Chen F. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies. Front Oncol 2022; 12:971288. [PMID: 36185256 PMCID: PMC9520778 DOI: 10.3389/fonc.2022.971288] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Delayed presentation of the disease, late stage at diagnosis, limited therapeutic options, metastasis, and relapse are the major factors contributing to breast cancer mortality. The development and progression of breast cancer is a complex and multi-step process that incorporates an accumulation of several genetic and epigenetic alterations. External environmental factors and internal cellular microenvironmental cues influence the occurrence of these alterations that drives tumorigenesis. Here, we discuss state-of-the-art information on the epigenetics of breast cancer and how environmental risk factors orchestrate major epigenetic events, emphasizing the necessity for a multidisciplinary approach toward a better understanding of the gene-environment interactions implicated in breast cancer. Since epigenetic modifications are reversible and are susceptible to extrinsic and intrinsic stimuli, they offer potential avenues that can be targeted for designing robust breast cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Yiran Qiu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yao Fu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Zhuoyue Bi
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Wenxuan Zhang
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Haoyan Ji
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Fei Chen
- Department of Pathology, Stony Brook Cancer Center, Stony Brook, NY, United States
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
6
|
Figueroa-Garduño I, Escamilla-Núñez C, Barraza-Villarreal A, Hernández-Cadena L, Onofre-Pardo EN, Romieu I. Docosahexaenoic Acid Effect on Prenatal Exposure to Arsenic and Atopic Dermatitis in Mexican Preschoolers. Biol Trace Elem Res 2022; 201:3152-3161. [PMID: 36074245 DOI: 10.1007/s12011-022-03411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Childhood atopic dermatitis (AD) is a chronic and recurrent health problem that involves multiple factors, particularly immunological and environmental. We evaluated the impact of docosahexaenoic acid (DHA) supplementation on prenatal arsenic exposure on the risk of atopic dermatitis in preschool children as part of the POSGRAD (Prenatal Omega-3 fatty acid Supplements, GRowth, And Development) clinical trial study in the city of Morelos, Mexico. Our study population included 300 healthy mother-child pairs. Of these, 146 were in the placebo group and 154 in the supplement group. Information on family history, health, and other variables was obtained through standardized questionnaires used during follow-up. Prenatal exposure to arsenic concentrations, which appear in maternal urine, was measured by inductively coupled plasma optical emission spectrometry. To assess the effect of prenatal arsenic exposure on AD risk, we ran a generalized estimating equation model for longitudinal data, adjusting for potential confounders, and testing for interaction by omega-3 fatty acid supplementation during pregnancy. The mean and SD (standard deviation) of arsenic concentration during pregnancy was 0.06 mg/L, SD (0.04 mg/L). We found a marginally significant association between prenatal arsenic exposure and AD (OR = 1.12, 95% CI: 0.99, 1.26); however, DHA supplementation during pregnancy modified the effect of arsenic on AD risk (p < 0.05). The results of this study strengthen the evidence that arsenic exposure during pregnancy increases the risk of atopic dermatitis early in life. However, supplementation with omega-e fatty acids during pregnancy could modify this association.
Collapse
Affiliation(s)
- Ivan Figueroa-Garduño
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Morelos, Cuernavaca, México
| | - Consuelo Escamilla-Núñez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Morelos, Cuernavaca, México.
| | - Albino Barraza-Villarreal
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Morelos, Cuernavaca, México
| | - Leticia Hernández-Cadena
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Morelos, Cuernavaca, México
| | - Erika Noelia Onofre-Pardo
- Departamento de Ingeniería en Sistemas Ambientales, Instituto Politécnico Nacional: Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico, México
| | - Isabelle Romieu
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Morelos, Cuernavaca, México
| |
Collapse
|
7
|
Yin G, Xia L, Hou Y, Li Y, Cao D, Liu Y, Chen J, Liu J, Zhang L, Yang Q, Zhang Q, Tang N. Transgenerational male reproductive effect of prenatal arsenic exposure: abnormal spermatogenesis with Igf2/H19 epigenetic alteration in CD1 mouse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1248-1260. [PMID: 33406855 DOI: 10.1080/09603123.2020.1870668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Developmental exposure to environmental toxicants can induce transgenerational reproductive disease phenotypes through epigenetic mechanisms. We treated pregnant CD-1 (F0) mice with drinking water containing sodium arsenite (85 ppm) from days 8 to 18 of gestation. Male offspring were bred with untreated female mice until the F3 generation was produced. Our results revealed that F0 transient exposure to arsenic can cause decreased sperm quality and histological abnormalities in the F1 and F3. The overall methylation status of Igf2 DMR2 and H19 DMR was significantly lower in the arsenic-exposed group than that of the control group in both F1 and F3. The relative mRNA expression levels of Igf2 and H19 in arsenic-exposed males were significantly increased in both F1 and F3. This study indicates that ancestral exposure to arsenic may result in transgenerational inheritance of an impaired spermatogenesis phenotyping involving both epigenetic alterations and the abnormal expression of Igf2 and H19.
Collapse
Affiliation(s)
- Guoying Yin
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaoyan Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Deqing Cao
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yanan Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jingshan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juan Liu
- Department of Biomedical Information and Library, Tianjin Medical University, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Kim S, Hollinger H, Radke EG. 'Omics in environmental epidemiological studies of chemical exposures: A systematic evidence map. ENVIRONMENT INTERNATIONAL 2022; 164:107243. [PMID: 35551006 PMCID: PMC11515950 DOI: 10.1016/j.envint.2022.107243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systematic evidence maps are increasingly used to develop chemical risk assessments. These maps can provide an overview of available studies and relevant study information to be used for various research objectives and applications. Environmental epidemiological studies that examine the impact of chemical exposures on various 'omic profiles in human populations provide relevant mechanistic information and can be used for benchmark dose modeling to derive potential human health reference values. OBJECTIVES To create a systematic evidence map of environmental epidemiological studies examining environmental contaminant exposures with 'omics in order to characterize the extent of available studies for future research needs. METHODS Systematic review methods were used to search and screen the literature and included the use of machine learning methods to facilitate screening studies. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were developed to identify and screen relevant studies. Studies that met the PECO criteria after full-text review were summarized with information such as study population, study design, sample size, exposure measurement, and 'omics analysis. RESULTS Over 10,000 studies were identified from scientific databases. Screening processes were used to identify 84 studies considered PECO-relevant after full-text review. Various contaminants (e.g. phthalate, benzene, arsenic, etc.) were investigated in epidemiological studies that used one or more of the four 'omics of interest: epigenomics, transcriptomics, proteomics, and metabolomics . The epidemiological study designs that were used to explore single or integrated 'omic research questions with contaminant exposures were cohort studies, controlled trials, cross-sectional, and case-control studies. An interactive web-based systematic evidence map was created to display more study-related information. CONCLUSIONS This systematic evidence map is a novel tool to visually characterize the available environmental epidemiological studies investigating contaminants and biological effects using 'omics technology and serves as a resource for investigators and allows for a range of applications in chemical research and risk assessment needs.
Collapse
Affiliation(s)
- Stephanie Kim
- Superfund and Emergency Management Division, Region 2, U.S. Environmental Protection Agency, NY, USA.
| | - Hillary Hollinger
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, NC, USA.
| | - Elizabeth G Radke
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, D.C, USA.
| |
Collapse
|
9
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Cleal JK, Poore KR, Lewis RM. The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Mol Aspects Med 2022; 87:101095. [DOI: 10.1016/j.mam.2022.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
|
11
|
Rehman MYA, Briedé JJ, van Herwijnen M, Krauskopf J, Jennen DGJ, Malik RN, Kleinjans JCS. Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118279. [PMID: 34619179 DOI: 10.1016/j.envpol.2021.118279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination in groundwater is responsible for numerous adverse health outcomes among millions of people. Epigenetic alterations are among the most widely studied mechanisms of As toxicity. To understand how As exposure alters gene expression through epigenetic modifications, a systematic genome-wide study was designed to address the impact of multiple important single nucleotide polymorphisms (SNPs) related to As exposure on the methylome of drinking water As-exposed rural subjects from Pakistan. Urinary As levels were used to stratify subjects into low, medium and high exposure groups. Genome-wide DNA methylation was investigated using MeDIP in combination with NimbleGen 2.1 M Deluxe Promotor arrays. Transcriptome levels were measured using Agilent 8 × 60 K expression arrays. Genotyping of selected SNPs (As3MT, DNMT1a, ERCC2, EGFR and MTHFR) was measured and an integrated genetic risk factor for each respondent was calculated by assigning a specific value to the measured genotypes based on known risk allele numbers. To select a representative model related to As exposure we compared 9 linear mixed models comprising of model 1 (including the genetic risk factor), model 2 (without the genetic risk factor) and models with individual SNPs incorporated into the methylome data. Pathway analysis was performed using ConsensusPathDB. Model 1 comprising the integrated genetic risk factor disclosed biochemical pathways including muscle contraction, cardio-vascular diseases, ATR signaling, GPCR signaling, methionine metabolism and chromatin modification in association with hypo- and hyper-methylated gene targets. A unique pathway (direct P53 effector) was found associated with the individual DNMT1a polymorphism due to hyper-methylation of CSE1L and TRRAP. Most importantly, we provide here the first evidence of As-associated DNA methylation in relation with gene expression of ATR, ATF7IP, TPM3, UBE2J2. We report the first evidence that integrating SNPs data with methylome data generates a more representative epigenome profile and discloses a better insight in disease risks of As-exposed individuals.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jacco Jan Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands.
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, the Netherlands
| |
Collapse
|
12
|
Bozack AK, Rifas-Shiman SL, Coull BA, Baccarelli AA, Wright RO, Amarasiriwardena C, Gold DR, Oken E, Hivert MF, Cardenas A. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics 2021; 13:208. [PMID: 34798907 PMCID: PMC8605513 DOI: 10.1186/s13148-021-01198-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prenatal exposure to essential and non-essential metals impacts birth and child health, including fetal growth and neurodevelopment. DNA methylation (DNAm) may be involved in pathways linking prenatal metal exposure and health. In the Project Viva cohort, we analyzed the extent to which metals (As, Ba, Cd, Cr, Cs, Cu, Hg, Mg, Mn, Pb, Se, and Zn) measured in maternal erythrocytes were associated with differentially methylated positions (DMPs) and regions (DMRs) in cord blood and tested if associations persisted in blood collected in mid-childhood. We measured metal concentrations in first-trimester maternal erythrocytes, and DNAm in cord blood (N = 361) and mid-childhood blood (N = 333, 6-10 years) with the Illumina HumanMethylation450 BeadChip. For each metal individually, we tested for DMPs using linear models (considered significant at FDR < 0.05), and for DMRs using comb-p (Sidak p < 0.05). Covariates included biologically relevant variables and estimated cell-type composition. We also performed sex-stratified analyses. RESULTS Pb was associated with decreased methylation of cg20608990 (CASP8) (FDR = 0.04), and Mn was associated with increased methylation of cg02042823 (A2BP1) in cord blood (FDR = 9.73 × 10-6). Both associations remained significant but attenuated in blood DNAm collected at mid-childhood (p < 0.01). Two and nine Mn-associated DMPs were identified in male and female infants, respectively (FDR < 0.05), with two and six persisting in mid-childhood (p < 0.05). All metals except Ba and Pb were associated with ≥ 1 DMR among all infants (Sidak p < 0.05). Overlapping DMRs annotated to genes in the human leukocyte antigen (HLA) region were identified for Cr, Cs, Cu, Hg, Mg, and Mn. CONCLUSIONS Prenatal metal exposure is associated with DNAm, including DMRs annotated to genes involved in neurodevelopment. Future research is needed to determine if DNAm partially explains the relationship between prenatal metal exposures and health outcomes.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, 2121 Berkeley Way, Room 5302, Berkeley, CA, 94720, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, NY, New York City, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, NY, New York City, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, 2121 Berkeley Way, Room 5302, Berkeley, CA, 94720, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
13
|
Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal Air Pollution Exposure and Placental DNA Methylation Changes: Implications on Fetal Development and Future Disease Susceptibility. Cells 2021; 10:cells10113025. [PMID: 34831248 PMCID: PMC8616150 DOI: 10.3390/cells10113025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept postulates that in utero exposures influence fetal programming and health in later life. Throughout pregnancy, the placenta plays a central role in fetal programming; it regulates the in utero environment and acts as a gatekeeper for nutrient and waste exchange between the mother and the fetus. Maternal exposure to air pollution, including heavy metals, can reach the placenta, where they alter DNA methylation patterns, leading to changes in placental function and fetal reprogramming. This review explores the current knowledge on placental DNA methylation changes associated with prenatal air pollution (including heavy metals) exposure and highlights its effects on fetal development and disease susceptibility. Prenatal exposure to air pollution and heavy metals was associated with altered placental DNA methylation at the global and promoter regions of genes involved in biological processes such as energy metabolism, circadian rhythm, DNA repair, inflammation, cell differentiation, and organ development. The altered placental methylation of these genes was, in some studies, associated with adverse birth outcomes such as low birth weight, small for gestational age, and decreased head circumference. Moreover, few studies indicate that DNA methylation changes in the placenta were sex-specific, and infants born with altered placental DNA methylation patterns were predisposed to developing neurobehavioral abnormalities, cancer, and atopic dermatitis. These findings highlight the importance of more effective and stricter environmental and public health policies to reduce air pollution and protect human health.
Collapse
Affiliation(s)
- Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
| | - Pragalathan Naidoo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (P.N.)
- Correspondence: ; Tel.: +27-31-260-4404
| |
Collapse
|
14
|
Rosenfeld CS. Transcriptomics and Other Omics Approaches to Investigate Effects of Xenobiotics on the Placenta. Front Cell Dev Biol 2021; 9:723656. [PMID: 34631709 PMCID: PMC8497882 DOI: 10.3389/fcell.2021.723656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022] Open
Abstract
The conceptus is most vulnerable to developmental perturbation during its early stages when the events that create functional organ systems are being launched. As the placenta is in direct contact with maternal tissues, it readily encounters any xenobiotics in her bloodstream. Besides serving as a conduit for solutes and waste, the placenta possesses a tightly regulated endocrine system that is, of itself, vulnerable to pharmaceutical agents, endocrine disrupting chemicals (EDCs), and other environmental toxicants. To determine whether extrinsic factors affect placental function, transcriptomics and other omics approaches have become more widely used. In casting a wide net with such approaches, they have provided mechanistic insights into placental physiological and pathological responses and how placental responses may impact the fetus, especially the developing brain through the placenta-brain axis. This review will discuss how such omics technologies have been utilized to understand effects of EDCs, including the widely prevalent plasticizers bisphenol A (BPA), bisphenol S (BPS), and phthalates, other environmental toxicants, pharmaceutical agents, maternal smoking, and air pollution on placental gene expression, DNA methylation, and metabolomic profiles. It is also increasingly becoming clear that miRNA (miR) are important epigenetic regulators of placental function. Thus, the evidence to date that xenobiotics affect placental miR expression patterns will also be explored. Such omics approaches with mouse and human placenta will assuredly provide key biomarkers that may be used as barometers of exposure and can be targeted by early mitigation approaches to prevent later diseases, in particular neurobehavioral disorders, originating due to placental dysfunction.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, United States.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Bozack AK, Boileau P, Wei L, Hubbard AE, Sillé FCM, Ferreccio C, Acevedo J, Hou L, Ilievski V, Steinmaus CM, Smith MT, Navas-Acien A, Gamble MV, Cardenas A. Exposure to arsenic at different life-stages and DNA methylation meta-analysis in buccal cells and leukocytes. Environ Health 2021; 20:79. [PMID: 34243768 PMCID: PMC8272372 DOI: 10.1186/s12940-021-00754-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Arsenic (As) exposure through drinking water is a global public health concern. Epigenetic dysregulation including changes in DNA methylation (DNAm), may be involved in arsenic toxicity. Epigenome-wide association studies (EWAS) of arsenic exposure have been restricted to single populations and comparison across EWAS has been limited by methodological differences. Leveraging data from epidemiological studies conducted in Chile and Bangladesh, we use a harmonized data processing and analysis pipeline and meta-analysis to combine results from four EWAS. METHODS DNAm was measured among adults in Chile with and without prenatal and early-life As exposure in PBMCs and buccal cells (N = 40, 850K array) and among men in Bangladesh with high and low As exposure in PBMCs (N = 32, 850K array; N = 48, 450K array). Linear models were used to identify differentially methylated positions (DMPs) and differentially variable positions (DVPs) adjusting for age, smoking, cell type, and sex in the Chile cohort. Probes common across EWAS were meta-analyzed using METAL, and differentially methylated and variable regions (DMRs and DVRs, respectively) were identified using comb-p. KEGG pathway analysis was used to understand biological functions of DMPs and DVPs. RESULTS In a meta-analysis restricted to PBMCs, we identified one DMP and 23 DVPs associated with arsenic exposure; including buccal cells, we identified 3 DMPs and 19 DVPs (FDR < 0.05). Using meta-analyzed results, we identified 11 DMRs and 11 DVRs in PBMC samples, and 16 DMRs and 19 DVRs in PBMC and buccal cell samples. One region annotated to LRRC27 was identified as a DMR and DVR. Arsenic-associated KEGG pathways included lysosome, autophagy, and mTOR signaling, AMPK signaling, and one carbon pool by folate. CONCLUSIONS Using a two-step process of (1) harmonized data processing and analysis and (2) meta-analysis, we leverage four DNAm datasets from two continents of individuals exposed to high levels of As prenatally and during adulthood to identify DMPs and DVPs associated with arsenic exposure. Our approach suggests that standardizing analytical pipelines can aid in identifying biological meaningful signals.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA.
| | - Philippe Boileau
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Alan E Hubbard
- Graduate Group in Biostatistics, University of California, Berkeley, Berkeley, CA, USA
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Johanna Acevedo
- Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Health Planning Division in the Ministry of Health, Santiago, Chile
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vesna Ilievski
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Craig M Steinmaus
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
17
|
Zheng Y, Tian C, Dong L, Tian L, Glabonjat RA, Xiong C. Effect of arsenic-containing hydrocarbon on the long-term potentiation at Schaffer Collateral-CA1 synapses from infantile male rat. Neurotoxicology 2021; 84:198-207. [PMID: 33848561 DOI: 10.1016/j.neuro.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023]
Abstract
Arsenic-containing hydrocarbons (AsHCs) are common constituents of marine organisms and have potential toxicity to human health. This work is to study the effect of AsHCs on long-term potentiation (LTP) for the first time. A multi-electrode array (MEA) system was used to record the field excitatory postsynaptic potential (fEPSP) of CA1 before and after treatment with AsHC 360 in hippocampal slices from infantile male rats. The element content of Na, K, Ca, Mg, Mn, Cu, Zn, and As in the hippocampal slices were analyzed by elemental mass spectrometry after the neurophysiological experiment. The results showed that low AsHC 360 (1.5 μg As L-1) had no effect on the LTP, moderate AsHC 360 (3.75-15 μg As L-1) enhanced the LTP, and high AsHC 360 (45-150 μg As L-1) inhibited the LTP. The enhancement of the LTP by promoting Ca2+ influx was proved by a Ca2+ gradient experiment. The inhibition of the LTP was likely due to damage of synaptic cell membrane integrity. This study on the neurotoxicity of AsHCs showed that high concentrations have a strong toxic effect on the LTP in hippocampus slices of the infantile male rat, which may lead to a negative effect on the development, learning, and memory.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA; Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Chan Xiong
- Institute of Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
18
|
Bozack AK, Domingo-Relloso A, Haack K, Gamble MV, Tellez-Plaza M, Umans JG, Best LG, Yracheta J, Gribble MO, Cardenas A, Francesconi KA, Goessler W, Tang WY, Fallin MD, Cole SA, Navas-Acien A. Locus-Specific Differential DNA Methylation and Urinary Arsenic: An Epigenome-Wide Association Study in Blood among Adults with Low-to-Moderate Arsenic Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67015. [PMID: 32603190 PMCID: PMC7534587 DOI: 10.1289/ehp6263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chronic exposure to arsenic (As), a human toxicant and carcinogen, remains a global public health problem. Health risks persist after As exposure has ended, suggesting epigenetic dysregulation as a mechanistic link between exposure and health outcomes. OBJECTIVES We investigated the association between total urinary As and locus-specific DNA methylation in the Strong Heart Study, a cohort of American Indian adults with low-to-moderate As exposure [total urinary As, mean ( ± SD ) μ g / g creatinine: 11.7 (10.6)]. METHODS DNA methylation was measured in 2,325 participants using the Illumina MethylationEPIC array. We implemented linear models to test differentially methylated positions (DMPs) and the DMRcate method to identify regions (DMRs) and conducted gene ontology enrichment analysis. Models were adjusted for estimated cell type proportions, age, sex, body mass index, smoking, education, estimated glomerular filtration rate, and study center. Arsenic was measured in urine as the sum of inorganic and methylated species. RESULTS In adjusted models, methylation at 20 CpGs was associated with urinary As after false discovery rate (FDR) correction (FDR < 0.05 ). After Bonferroni correction, 5 CpGs remained associated with total urinary As (p Bonferroni < 0.05 ), located in SLC7A11, ANKS3, LINGO3, CSNK1D, ADAMTSL4. We identified one DMR on chromosome 11 (chr11:2,322,050-2,323,247), annotated to C11orf2; TSPAN32 genes. DISCUSSION This is one of the first epigenome-wide association studies to investigate As exposure and locus-specific DNA methylation using the Illumina MethylationEPIC array and the largest epigenome-wide study of As exposure. The top DMP was located in SLC7A11A, a gene involved in cystine/glutamate transport and the biosynthesis of glutathione, an antioxidant that may protect against As-induced oxidative stress. Additional DMPs were located in genes associated with tumor development and glucose metabolism. Further research is needed, including research in more diverse populations, to investigate whether As-related DNA methylation signatures are associated with gene expression or may serve as biomarkers of disease development. https://doi.org/10.1289/EHP6263.
Collapse
Affiliation(s)
- Anne K Bozack
- Department of Environmental Health Science, Columbia University, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Science, Columbia University, New York, New York, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mary V Gamble
- Department of Environmental Health Science, Columbia University, New York, New York, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason G Umans
- MedStar Health Research Institute, Washington, District of Columbia, USA
- Center for Clinical and Translational Sciences, Georgetown/Howard Universities, Washington, DC, USA
| | - Lyle G Best
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Joseph Yracheta
- Missouri Breaks Industries Research, Eagle Butte, South Dakota, USA
| | - Matthew O Gribble
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkley, California, USA
| | | | | | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ana Navas-Acien
- Department of Environmental Health Science, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
DiGiovanni A, Demanelis K, Tong L, Argos M, Shinkle J, Jasmine F, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Islam MT, Shahriar H, Islam T, Rahman M, Yunus M, Graziano J, Gamble MV, Ahsan H, Pierce BL. Assessing the impact of arsenic metabolism efficiency on DNA methylation using Mendelian randomization. Environ Epidemiol 2020; 4:e083. [PMID: 32337471 PMCID: PMC7147391 DOI: 10.1097/ee9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Arsenic exposure affects >100 million people globally and increases risk for chronic diseases. One possible toxicity mechanism is epigenetic modification. Previous epigenome-wide association studies (EWAS) have identified associations between arsenic exposure and CpG-specific DNA methylation. To provide additional evidence that observed associations represent causal relationships, we examine the association between genetic determinants of arsenic metabolism efficiency (percent dimethylarsinic acid, DMA%, in urine) and DNA methylation among individuals from the Health Effects of Arsenic Longitudinal Study (n = 379) and Bangladesh Vitamin E and Selenium Trial (n = 393). METHODS We used multivariate linear models to assess the association of methylation at 221 arsenic-associated CpGs with DMA% and measures of genetically predicted DMA% derived from three SNPs (rs9527, rs11191527, and rs61735836). We also conducted two-sample Mendelian randomization analyses to estimate the association between arsenic metabolism efficiency and CpG methylation. RESULTS Among the associations between DMA% and methylation at each of 221 CpGs, 64% were directionally consistent with associations observed between arsenic exposure and the 221 CpGs from a prior EWAS. Similarly, among the associations between genetically predicted DMA% and each CpG, 62% were directionally consistent with the prior EWAS results. Two-sample Mendelian randomization analyses produced similar conclusions. CONCLUSION Our findings support the hypothesis that arsenic exposure effects DNA methylation at specific CpGs in whole blood. Our novel approach for assessing the impact of arsenic exposure on DNA methylation requires larger samples in order to draw more robust conclusions for specific CpG sites.
Collapse
Affiliation(s)
- Anthony DiGiovanni
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Kathryn Demanelis
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Justin Shinkle
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | - Mekala Sabarinathan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Md Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
- Department of Human Genetics
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
- Department of Human Genetics
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Park B, Khanam R, Vinayachandran V, Baqui AH, London SJ, Biswal S. Epigenetic biomarkers and preterm birth. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa005. [PMID: 32551139 PMCID: PMC7293830 DOI: 10.1093/eep/dvaa005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Preterm birth (PTB) is a major public health challenge, and novel, sensitive approaches to predict PTB are still evolving. Epigenomic markers are being explored as biomarkers of PTB because of their molecular stability compared to gene expression. This approach is also relatively new compared to gene-based diagnostics, which relies on mutations or single nucleotide polymorphisms. The fundamental principle of epigenome diagnostics is that epigenetic reprogramming in the target tissue (e.g. placental tissue) might be captured by more accessible surrogate tissue (e.g. blood) using biochemical epigenome assays on circulating DNA that incorporate methylation, histone modifications, nucleosome positioning, and/or chromatin accessibility. Epigenomic-based biomarkers may hold great potential for early identification of the majority of PTBs that are not associated with genetic variants or mutations. In this review, we discuss recent advances made in the development of epigenome assays focusing on its potential exploration for association and prediction of PTB. We also summarize population-level cohort studies conducted in the USA and globally that provide opportunities for genetic and epigenetic marker development for PTB. In addition, we summarize publicly available epigenome resources and published PTB studies. We particularly focus on ongoing genome-wide DNA methylation and epigenome-wide association studies. Finally, we review the limitations of current research, the importance of establishing a comprehensive biobank, and possible directions for future studies in identifying effective epigenome biomarkers to enhance health outcomes for pregnant women at risk of PTB and their infants.
Collapse
Affiliation(s)
- Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rasheda Khanam
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, International Center for Maternal and Newborn Health, Baltimore, MD 21205, USA
| | - Vinesh Vinayachandran
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Abdullah H Baqui
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, International Center for Maternal and Newborn Health, Baltimore, MD 21205, USA
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Everson TM, Marsit CJ. Integrating -Omics Approaches into Human Population-Based Studies of Prenatal and Early-Life Exposures. Curr Environ Health Rep 2019; 5:328-337. [PMID: 30054820 DOI: 10.1007/s40572-018-0204-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We present the study design and methodological suggestions for population-based studies that integrate molecular -omics data and highlight recent studies that have used such data to examine the potential impacts of prenatal environmental exposures on fetal health. RECENT FINDINGS Epidemiologic studies have observed numerous relationships between prenatal exposures (smoking, toxic metals, endocrine disruptors) and fetal and early-life molecular profiles, though such investigations have so far been dominated by epigenomic association studies. However, recent transcriptomic, proteomic, and metabolomic studies have demonstrated their promise for the identification of exposure and response biomarkers. Molecular -omics have opened new avenues of research in environmental health that can improve our understanding of disease etiology and contribute to the development of exposure and response biomarkers. Studies that incorporate multiple -omics data from different molecular domains in longitudinally collected samples hold particular promise.
Collapse
Affiliation(s)
- Todd M Everson
- Departments of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA
| | - Carmen J Marsit
- Departments of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA. .,Departments of Environmental Health and Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Potential facet for prenatal arsenic exposure paradigm: linking endocrine disruption and epigenetics. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00274-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Seow WJ, Ngo CS, Pan H, Barathi VA, Tompson SW, Whisenhunt KN, Vithana E, Chong YS, Juo SHH, Hysi P, Young TL, Karnani N, Saw SM. In-utero epigenetic factors are associated with early-onset myopia in young children. PLoS One 2019; 14:e0214791. [PMID: 31100065 PMCID: PMC6524791 DOI: 10.1371/journal.pone.0214791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives To assess whether epigenetic mechanisms affecting gene expression may be involved in the pathogenesis of early-onset myopia, we performed genome-wide DNA methylation analyses of umbilical cord tissues, and assessed any associations between CpG site-specific methylation and the development of the disorder when the children were 3 years old. Methods Genome-wide DNA methylation profiling of umbilical cord samples from 519 Singaporean infants involved in a prospective birth cohort ‘Growing Up in Singapore Towards healthy Outcomes’ (GUSTO) was performed using the Illumina Infinium HumanMethylation450K chip microarray. Multivariable logistic regression models were used to assess any associations between site-specific CpG methylation of umbilical cord tissue at birth and myopia risk in 3 year old children, adjusting for potential confounders. Gene expression of genes located near CpG sites that demonstrated statistically significant associations were measured in relevant ocular tissues using human and mouse fetal and adult eye samples. Results We identified statistically significant associations between DNA methylation levels at five CpG sites and early-onset myopia risk after correcting for multiple comparisons using a false discovery rate of 5%. Two statistically significant CpG sites were identified in intergenic regions: 8p23(p = 1.70×10−7) and 12q23.2(p = 2.53×10−7). The remaining 3 statistically significant CpG sites were identified within the following genes: FGB (4q28, p = 3.60×10−7), PQLC1 (18q23, p = 8.9×10−7) and KRT12 (17q21.2, p = 1.2×10−6). Both PQLC1 and KRT12 were found to be significantly expressed in fetal and adult cornea and sclera tissues in both human and mouse. Conclusions We identified five CpG methylation sites that demonstrate a statistically significant association with increased risk of developing early-onset myopia. These findings suggest that variability in the neonatal cord epigenome may influence early-onset myopia risk in children. Further studies of the epigenetic influences on myopia risk in larger study populations, and the associations with adulthood myopia risk are warranted.
Collapse
Affiliation(s)
- Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Cheryl S. Ngo
- Department of Ophthalmology, National University Health System, Singapore
| | - Hong Pan
- Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore
- The Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stuart W. Tompson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Kristina N. Whisenhunt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Suh-Hang H. Juo
- Institute of New Drug Development, Center for Myopia and Eye diseases, China Medical University and China Medical University Hospital, Taichung, Taiwan
| | - Pirro Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Johns Hopkins School of Public Health, Baltimore, Maryland, United States
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Singapore Eye Research Institute, Singapore
- The Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|
24
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Mansell G, Gorrie-Stone TJ, Bao Y, Kumari M, Schalkwyk LS, Mill J, Hannon E. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics 2019; 20:366. [PMID: 31088362 PMCID: PMC6518823 DOI: 10.1186/s12864-019-5761-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10− 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 × 10− 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5761-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georgina Mansell
- University of Exeter Medical School, University of Exeter, RD&E Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Tyler J Gorrie-Stone
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Yanchun Bao
- Institute for Social and Economic Research, University of Essex, Colchester, Essex, CO3 3LG, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, Essex, CO3 3LG, UK
| | - Leonard S Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, RD&E Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, RD&E Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK.
| |
Collapse
|
26
|
Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Shahriar H, Islam T, Rahman M, Yunus M, Graziano JH, Broberg K, Engström K, Jasmine F, Ahsan H, Pierce BL. Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57011. [PMID: 31135185 PMCID: PMC6791539 DOI: 10.1289/ehp3849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Arsenic exposure affects [Formula: see text] people worldwide, including [Formula: see text] in Bangladesh. Arsenic exposure increases the risk of cancer and other chronic diseases, and one potential mechanism of arsenic toxicity is epigenetic dysregulation. OBJECTIVE We assessed associations between arsenic exposure and genome-wide DNA methylation measured at baseline among 396 Bangladeshi adults participating in the Health Effects of Arsenic Longitudinal Study (HEALS) who were exposed by drinking naturally contaminated well water. METHODS Methylation in whole blood DNA was measured at [Formula: see text] using the Illumina InfiniumMethylationEPIC (EPIC) array. To assess associations between arsenic exposure and CpG methylation, we used linear regression models adjusted for covariates and surrogate variables (SVs) (capturing unknown technical and biologic factors). We attempted replication and conducted a meta-analysis using an independent dataset of [Formula: see text] from 400 Bangladeshi individuals with arsenical skin lesions. RESULTS We identified 34 CpGs associated with [Formula: see text] creatinine-adjusted urinary arsenic [[Formula: see text]]. Sixteen of these CpGs annotated to the [Formula: see text] array, and 10 associations were replicated ([Formula: see text]). The top two CpGs annotated upstream of the ABR gene (cg01912040, cg10003262 ). All urinary arsenic-associated CpGs were also associated with arsenic concentration measured in drinking water ([Formula: see text]). Meta-analysis ([Formula: see text] samples) identified 221 urinary arsenic-associated CpGs ([Formula: see text]). The arsenic-associated CpGs from the meta-analysis were enriched in non-CpG islands and shores ([Formula: see text]) and depleted in promoter regions ([Formula: see text]). Among the arsenic-associated CpGs ([Formula: see text]), we observed significant enrichment of genes annotating to the reactive oxygen species pathway, inflammatory response, and tumor necrosis factor [Formula: see text] ([Formula: see text]) signaling via nuclear factor kappa-B ([Formula: see text]) hallmarks ([Formula: see text]). CONCLUSIONS The novel and replicable associations between arsenic exposure and DNA methylation at specific CpGs observed in this work suggest that epigenetic alterations should be further investigated as potential mediators in arsenic toxicity and as biomarkers of exposure and effect in exposed populations. https://doi.org/10.1289/EHP3849.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Yan J, Su R, Zhang W, Wei Y, Wang C, Lin L, Feng H, Yang H. Epigenetic alteration of Rho guanine nucleotide exchange Factor 11 (ARHGEF11) in cord blood samples in macrosomia exposed to intrauterine hyperglycemia. J Matern Fetal Neonatal Med 2019; 34:422-431. [PMID: 30999786 DOI: 10.1080/14767058.2019.1609929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Macrosomia at birth is associated with maternal hyperglycemia and leads to subsequent susceptibility to obesity, abnormal glucose metabolism, hypertension, and dyslipidemia in offspring. Epigenetic reprogramming has been reported to be involved in the development of human diseases caused by suboptimal environmental or nutritional factors. The study was aiming to explore epigenetic mechanism influences on macrosomic infants exposed to intrauterine hyperglycemia. We performed a genome-wide analysis of DNA methylation in cord blood from macrosomic infants born to women with gestational diabetes in order to identify genes related to fetal growth or early adipose tissue development.Methods: To analyze the epigenetic patterns in umbilical cord blood in gestational diabetes mellitus (GDM), we collected umbilical cord blood from women with GDM (mean pregestational BMI of 24.4 kg/m2 and mean neonatal birth weight of 4366 g) and normal glucose-tolerant women (mean pregestational BMI of 19.8 kg/m2 and mean neonatal birth weight of 3166 g). Differentially methylated genes in the GDM group were identified using the Infinium HumanMethylation450 BeadChip array.Results: A total of 1251 genes were differentially methylated compared to the controls (p < .01). The methylation microarray data showed that two specific CpG sites (cg12604331 and cg08480098) in the gene body of ARHGEF11 were significantly hypomethylated in the cord blood in macrosomic infants. Altered DNA methylation levels of ARHGEF11 were negatively correlated with glucose levels and neonatal birth weight.Conclusions: Exposure to adverse intrauterine environments can alter fetal development, such as by affecting the nutritional status of the fetus. Such exposure can also result in significant epigenetic modifications, including DNA methylation, which could serve as a potential marker for nutrition and metabolic conditions at the neonatal stage or even in the adult.
Collapse
Affiliation(s)
- Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Rina Su
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Wanyi Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yumei Wei
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Li Lin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Hui Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
28
|
Addo KA, Bulka C, Dhingra R, Santos HP, Smeester L, O’Shea TM, Fry RC. Acetaminophen use during pregnancy and DNA methylation in the placenta of the extremely low gestational age newborn (ELGAN) cohort. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz010. [PMID: 31404209 PMCID: PMC6682751 DOI: 10.1093/eep/dvz010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 05/09/2023]
Abstract
Acetaminophen is considered the safest antipyretic and analgesic medication for pregnant women. However, studies have reported that acetaminophen has endocrine disrupting properties and prenatal exposure has been associated with early life epigenetic changes and later life health outcomes. As the placenta is the central mediator of maternal and fetal interactions, exposure to acetaminophen during pregnancy could manifest as perturbations in the placenta epigenome. Here, we evaluated epigenome-wide cytosine-guanine dinucleotide (CpG) methylation in placental tissue in relation to maternal acetaminophen use during pregnancy in a cohort of 286 newborns born prior to 28 weeks gestation. According to maternal self-report, more than half (166 of 286) of the newborns were exposed to acetaminophen in utero. After adjustment for potential confounders, a total of 42 CpGs were identified to be differentially methylated at a false discovery rate < 0.05, with most displaying increased methylation as it relates to acetaminophen exposure. A notable gene that was significantly associated with acetaminophen is the prostaglandin receptor (PTGDR) which plays an essential role in mediating placental blood flow and fetal growth. Moreover, for 6 of the 42 CpGs, associations of acetaminophen use with methylation were significantly different between male and female placentas; 3 CpG sites were associated with acetaminophen use in the male placenta and 3 different sites were associated with acetaminophen use in the female placenta (P interaction < 0.2). These findings highlight a relationship between maternal acetaminophen use during pregnancy and the placental epigenome and suggest that the responses for some CpG sites are sex dependent.
Collapse
Affiliation(s)
- Kezia A Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Catherine Bulka
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - T Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Correspondence address. Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Rosenau Hall, Rm 166, Campus Box 7431, 135 Dauer Drive, Chapel Hill, NC 27599, USA. Tel: +1-919-966-1171; Fax: +1-919-966-7911; E-mail:
| |
Collapse
|
29
|
Transplacental exposure to carcinogens and risks to children: evidence from biomarker studies and the utility of omic profiling. Arch Toxicol 2019; 93:833-857. [PMID: 30859261 DOI: 10.1007/s00204-019-02428-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The factors underlying the increasing rates and the geographic variation of childhood cancers are largely unknown. Epidemiological studies provide limited evidence for a possible role in the etiology of certain types of childhood cancer of the exposure of pregnant women to environmental carcinogens (e.g., tobacco smoke and pesticides); however, such evidence is inadequate to allow definitive conclusions. Complementary evidence can be obtained from biomarker-based population studies. Such studies have demonstrated that, following exposure of pregnant mothers, most environmental carcinogens reach the fetus and, in many cases, induce therein genotoxic damage which in adults is known to be associated with increased cancer risk, implying that environmental carcinogens may contribute to the etiology of childhood cancer. During recent years, intermediate disease biomarkers, obtained via omic profiling, have provided additional insights into the impact of transplacental exposures on fetal tissues which, in some cases, are also compatible with a precarcinogenic role of certain in utero exposures. Here we review the epidemiological and biomarker evidence and discuss how further research, especially utilizing high-density profiling, may allow a better evaluation of the links between in utero environmental exposures and cancer in children.
Collapse
|
30
|
Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. CURRENT OPINION IN TOXICOLOGY 2019; 18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to the study of mitotically heritable and potentially reversible changes in gene expression unrelated to the DNA sequence itself, influenced by epigenetic marks including chromatin modifications, non-coding RNA and alterations to DNA itself via methylation and hydroxymethylation. Epigenetics has taken center stage in the study of diseases such as cancer, diabetes, and neurodegeneration; however, its integration into the field of environmental health sciences and toxicology (e.g. Toxicoepigenetics) is in its infancy. This review highlights the need to evaluate surrogate and target tissues in the field of toxicoepigenetics as the National Institute of Environmental Health Sciences (NIEHS) multi-phased Toxicant Exposure and Response by Genomic and Epigenomic Regulators of Transcription (TaRGET) consortia make headway, and the emergence of non-coding RNA biomarkers. The review also discusses lead (Pb) as a potential toxicoepigenetic exposure, where pre- and post-natal Pb exposure is associated with reprogramming of DNA methylation, histone modifications, and microRNA expression, representing potential biomarkers or predictors for Pb-induced health outcomes. Finally, new advances in epigenome editing, highlighting the potential of small ncRNA, will be explored for environmental health sciences research.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Laurie Svoboda
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Dana C Dolinoy
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI
| |
Collapse
|
31
|
Selmin OI, Donovan MG, Skovan B, Paine-Murieta GD, Romagnolo DF. Arsenic‑induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts. Int J Oncol 2019; 54:869-878. [PMID: 30664189 PMCID: PMC6365020 DOI: 10.3892/ijo.2019.4687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
A significant percentage (~30%) of estrogen receptor-α (ERα)-positive tumors become refractory to endocrine therapies; however, the mechanisms responsible for this resistance remain largely unknown. Chronic exposure to arsenic through foods and contaminated water has been linked to an increased incidence of several tumors and long-term health complications. Preclinical and population studies have indicated that arsenic exposure may interfere with endocrine regulation and increase the risk of breast tumorigenesis. In this study, we examined the effects of sodium arsenite (NaAsIII) exposure in ERα-positive breast cancer cells in vitro and in mammary tumor xenografts. The results revealed that acute (within 4 days) and long-term (10 days to 7 weeks) in vitro exposure to environmentally relevant doses reduced breast cancer 1 (BRCA1) and ERα expression associated with the gain of cyclin D1 (CCND1) and folate receptor 1 (FOLR1), and the loss of methylenetetrahydrofolate reductase (MTHFR) expression. Furthermore, long-term exposure to NaAsIII induced the proliferation and compromised the response of MCF7 cells to tamoxifen (TAM). The in vitro exposure to NaAsIII induced BRCA1 CpG methylation associated with the increased recruitment of DNA methyltransferase 1 (DNMT1) and the loss of RNA polymerase II (PolII) at the BRCA1 gene. Xenografts of NaAsIII-preconditioned MCF7 cells (MCF7NaAsIII) into the mammary fat pads of nude mice produced a larger tumor volume compared to tumors from control MCF7 cells and were more refractory to TAM in association with the reduced expression of BRCA1 and ERα, CpG hypermethylation of estrogen receptor 1 (ESR1) and BRCA1, and the increased expression of FOLR1. These cumulative data support the hypothesis that exposure to AsIII may contribute to reducing the efficacy of endocrine therapy against ERα-positive breast tumors by hampering the expression of ERα and BRCA1 via CpG methylation, respectively of ESR1 and BRCA1.
Collapse
Affiliation(s)
- Ornella I Selmin
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Micah G Donovan
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Bethany Skovan
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| | | | - Donato F Romagnolo
- The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
32
|
Bozack AK, Cardenas A, Quamruzzaman Q, Rahman M, Mostofa G, Christiani DC, Kile ML. DNA methylation in cord blood as mediator of the association between prenatal arsenic exposure and gestational age. Epigenetics 2018; 13:923-940. [PMID: 30175652 PMCID: PMC6284783 DOI: 10.1080/15592294.2018.1516453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Prenatal arsenic exposure is associated with adverse birth outcomes and disease risk later in life, which could be mediated through epigenetic dysregulation. We evaluated the association between arsenic and gestational age (GA) that was mediated through DNA methylation (DNAm) using data from a Bangladeshi birth cohort. Arsenic exposure was measured in maternal drinking water at ≤16 weeks GA and maternal toenails collected ≤1 month postpartum. Cord blood DNAm was measured using Infinium HumanMethylation450 arrays (n = 44, discovery phase). Top loci identified in the discovery phase were then pyrosequenced in a second group (n = 569, validation phase). Structural equation models (SEM) evaluated the direct and indirect effects of arsenic and DNAm on GA. In the discovery phase, arsenic was associated with differential DNAm of 139 loci that were associated with GA (P < 1.10X10-6; |β regression|>0.10). Each doubling in water arsenic concentration decreased GA by 2 days, which was fully mediated through the main principal component of the top-ten CpGs (P < 0.001). In the validation phase, there were direct and indirect effects of miR214-3 and MCC DNAm on GA. In an adjusted SEM model, mediation of the association between arsenic and GA by miR124-3 was borderline significant (P = 0.061). This study therefore identified DNAm at specific loci in cord blood that mediated the effect of arsenic exposure on GA. Specifically, prenatal arsenic exposure was associated with lower methylation of miR124-3 that mediated the exposure-response of arsenic on GA. Future research should evaluate if these epigenetic changes are persistent and associated with disease risk.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | | | | | | | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molly L. Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
33
|
Abstract
Background The placenta is the central regulator of maternal and fetal interactions. Perturbations of placental structure and function have been associated with adverse neurodevelopmental outcomes later in life. Placental CpG methylation represents an epigenetic modification with the potential to impact placental function, fetal development and child health later in life. Study design Genome-wide placental CpG methylation levels were compared between spontaneous versus indicated deliveries from extremely preterm births (EPTBs) (n = 84). The association between the identified differentially methylated CpG sites and neurocognitive outcome at ten years of age was then evaluated. Results Spontaneous EPTB was associated with differential CpG methylation levels in 250 CpG sites (217 unique genes) with the majority displaying hypermethylation. The identified genes are known to play a role in neurodevelopment and are enriched for basic helix-loop-helix transcription factor binding sites. The placental CpG methylation levels for 17 of these sites predicted cognitive function at ten years of age. Conclusion A hypermethylation signature is present in DNA from placentas in infants with spontaneous EPTB. CpG methylation levels of critical neurodevelopment genes in the placenta predicted later life cognitive function, supporting the developmental origins of health and disease hypothesis (DOHaD).
Collapse
|
34
|
Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health 2018; 39:309-333. [PMID: 29328878 DOI: 10.1146/annurev-publhealth-040617-014629] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
35
|
Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fañanás L. The impact of prenatal insults on the human placental epigenome: A systematic review. Neurotoxicol Teratol 2018; 66:80-93. [PMID: 29307795 DOI: 10.1016/j.ntt.2018.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
Abstract
The placenta is the first human organ to reach full development during pregnancy. It serves as a barrier but also as an interchange surface. Epigenetic changes observed in placental tissue may reflect intrauterine insults while also pointing to physiological pathways altered under exposure to such environmental threats. By means of a systematic search of the literature, 39 papers assessing human placental epigenetic signatures in association with either (i) psychosocial stress, (ii) maternal psychopathology, (iii) maternal smoking during pregnancy, and (iv) exposure to environmental pollutants, were identified. Their findings revealed placental tissue as a unique source of epigenetic variability that does not correlate with epigenetic patterns observed in maternal or newborn blood, tissues which are typically analyzed regarding prenatal stress. Studies regarding prenatal stress and psychopathology during pregnancy were scarce and exploratory in nature revealing inconsistent findings. Of note, there was a marked tendency towards placental hypomethylation in studies assessing either tobacco use during pregnancy or exposure to environmental pollutants suggesting the interaction between contaminant-derived metabolites and epigenetic machinery. This review highlights the need for further prospective longitudinal studies assessing long-term health effects of placental epigenetic signatures derived from exposure to several prenatal stressors.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Flors Cirera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Fátima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
36
|
Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res 2017; 60:1310-29. [PMID: 27144894 DOI: 10.1002/mnfr.201501063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR), bisphenol A (BPA), and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. METHODS AND RESULTS This review highlights (i) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and (ii) potential opportunities for the prevention of sporadic breast cancer with food components that target the epigenetic machinery. CONCLUSIONS Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet.
Collapse
Affiliation(s)
- Donato F Romagnolo
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Kevin D Daniels
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jonathan T Grunwald
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Stephan A Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ornella I Selmin
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,The University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
37
|
Bhattacharjee P, Paul S, Bhattacharjee S, Giri AK, Bhattacharjee P. Association of H3K79 monomethylation (an epigenetic signature) with arsenic-induced skin lesions. Mutat Res 2017; 807:1-9. [PMID: 29161537 DOI: 10.1016/j.mrfmmm.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Arsenic, a non mutagenic carcinogen, poses a profound health risk upon prolonged exposure. The objective of the study was to analyze the post-translational modifications of the major histone H3 and the associated molecular crosstalk to identify the epigenetic signature of arsenic susceptibility. Herein, we identified significant upregulation of H3K79me1, in individuals with arsenic-induced skin lesion (WSL), and H3K79me1 was found to be regulated by the upstream methyltransferase DOT1L. Moreover, the downstream target molecule 53BP1, a tumor suppressor protein that has a docking preference for H3K79me1 at a site of a double-strand break (DSB), was downregulated, indicating greater DNA damage in the WSL group. Western blot data confirmed higher levels of γH2AX, a known marker of DSBs, in group WSL. In vitro dose-response analysis also confirmed the association of the H3K79me1 signature with arsenic toxicity. Taken together, our findings revealed that H3K79me1 and DOT1L could be a novel epigenetic signature of the arsenic-exposed WSL group.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology and Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Somnath Paul
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
38
|
Bommarito PA, Martin E, Smeester L, Palys T, Baker ER, Karagas MR, Fry RC. Fetal-sex dependent genomic responses in the circulating lymphocytes of arsenic-exposed pregnant women in New Hampshire. Reprod Toxicol 2017; 73:184-195. [PMID: 28793237 PMCID: PMC6130838 DOI: 10.1016/j.reprotox.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
Exposure to inorganic arsenic (iAs) during pregnancy is associated with adverse health outcomes present both at birth and later in life. A biological mechanism may include epigenetic and genomic alterations in fetal genes involved in immune functioning. To investigate the role of the maternal immune response to in utero iAs exposure, we conducted an analysis of the expression of immune-related genes in pregnant women from the New Hampshire Birth Cohort Study. A set of 31 genes was identified with altered expression in association with levels of urinary total arsenic, urinary iAs, urinary monomethylated arsenic and urinary dimethylated arsenic. Notably, maternal gene expression signatures differed when stratified on fetal sex, with a more robust inflammatory response observed in male pregnancies. Moreover, the differentially expressed genes were also related to birth outcomes. These findings highlight the sex-dependent nature of the maternal iAs-induced inflammatory response in relationship to fetal outcomes.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Palys
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Emily R Baker
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Margaret R Karagas
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
39
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017. [PMID: 28234024 DOI: 10.2217/epi-20160112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
40
|
Bommarito PA, Martin E, Fry RC. Effects of prenatal exposure to endocrine disruptors and toxic metals on the fetal epigenome. Epigenomics 2017; 9:333-350. [PMID: 28234024 DOI: 10.2217/epi-2016-0112] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure to environmental contaminants during pregnancy has been linked to adverse outcomes at birth and later in life. The link between prenatal exposures and latent health outcomes suggests that these exposures may result in long-term epigenetic reprogramming. Toxic metals and endocrine disruptors are two major classes of contaminants that are ubiquitously present in the environment and represent threats to human health. In this review, we present evidence that prenatal exposures to these contaminants result in fetal epigenomic changes, including altered global DNA methylation, gene-specific CpG methylation and microRNA expression. Importantly, these changes may have functional cellular consequences, impacting health outcomes later in life. Therefore, these epigenetic changes represent a critical mechanism that warrants further study.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth Martin
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
41
|
Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes. Genes (Basel) 2016; 7:genes7120117. [PMID: 27918480 PMCID: PMC5192493 DOI: 10.3390/genes7120117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 01/15/2023] Open
Abstract
Adverse environmental exposures in pregnancy can significantly alter the development of the fetus resulting in impaired child neurodevelopment. Such exposures can lead to epigenetic alterations like DNA methylation, which may be a marker of poor cognitive, motor and behavioral outcomes in the infant. Here we review studies that have assessed DNA methylation in cord blood following maternal exposures that may impact neurodevelopment of the child. We also highlight some key studies to illustrate the potential for DNA methylation to successfully identify infants at risk for poor outcomes. While the current evidence is limited, in that observations to date are largely correlational, in time and with larger cohorts analyzed and longer term follow-up completed, we may be able to develop epigenetic biomarkers that not only indicate adverse early life exposures but can also be used to identify individuals likely to be at an increased risk of impaired neurodevelopment even in the absence of detailed information regarding prenatal environment.
Collapse
|
42
|
Alegría-Torres JA, Carrizales-Yánez L, Díaz-Barriga F, Rosso-Camacho F, Motta V, Tarantini L, Bollati V. DNA methylation changes in Mexican children exposed to arsenic from two historic mining areas in San Luis potosí. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:717-723. [PMID: 27862296 DOI: 10.1002/em.22062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/24/2016] [Indexed: 05/24/2023]
Abstract
Arsenic is a carcinogen and epimutagen that threatens the health of exposed populations worldwide. In this study, we examined the methylation status of Alu and long interspersed nucleotide elements (LINE-1) and their association with levels of urinary arsenic in 84 Mexican children between 6 and 12 years old from two historic mining areas in the State of San Luis Potosí, Mexico. Urinary arsenic levels were determined by atomic absorption spectrophotometry and DNA methylation analysis was performed in peripheral blood leukocytes by bisulfite-pyrosequencing. The geometric mean of urinary arsenic was 26.44 µg/g Cr (range 1.93-139.35). No significant differences in urinary arsenic or methylation patterns due to gender were observed. A positive correlation was found between urinary arsenic and the mean percentage of methylated cytosines in Alu sequences (Spearman correlation coefficient r = 0.532, P < 0.001), and a trend of LINE-1 hypomethylation was also observed (Spearman correlation coefficient r = -0.232, P = 0.038) after adjustment for sex and age. A linear regression model showed an association with log-normalized urinary arsenic for Alu (β = 1.05, 95% CI: 0.67; 1.43, P < 0.001) and LINE-1 (β = -0.703, 95% CI: -1.36; -0.38, P = 0.038). Despite the low-level arsenic exposure, a subtle epigenetic imbalance measured as DNA methylation was detected in the leukocytes of Mexican children living in two historic mining areas. Environ. Mol. Mutagen. 57:717-723, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge Alejandro Alegría-Torres
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, México
- Laboratorio de Investigación Molecular en Nutrición (LIMON), Universidad del Centro de México UCEM, San Luis Potosí, México
| | - Leticia Carrizales-Yánez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, México
| | - Fernando Díaz-Barriga
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, México
| | - Fernando Rosso-Camacho
- Laboratorio de Investigación Molecular en Nutrición (LIMON), Universidad del Centro de México UCEM, San Luis Potosí, México
| | - Valeria Motta
- Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Laboratory, University of Milano, Milan, Italy
- Epidemiology Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Tarantini
- Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Laboratory, University of Milano, Milan, Italy
- Epidemiology Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, EPIGET - Epidemiology, Epigenetics and Toxicology Laboratory, University of Milano, Milan, Italy
- Epidemiology Unit, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
43
|
Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol 2016; 91:2067-2078. [PMID: 27838757 PMCID: PMC5399044 DOI: 10.1007/s00204-016-1879-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
Abstract
Arsenic, a carcinogen with immunotoxic effects, is a common contaminant of drinking water and certain food worldwide. We hypothesized that chronic arsenic exposure alters gene expression, potentially by altering DNA methylation of genes encoding central components of the immune system. We therefore analyzed the transcriptomes (by RNA sequencing) and methylomes (by target-enrichment next-generation sequencing) of primary CD4-positive T cells from matched groups of four women each in the Argentinean Andes, with fivefold differences in urinary arsenic concentrations (median concentrations of urinary arsenic in the lower- and high-arsenic groups: 65 and 276 μg/l, respectively). Arsenic exposure was associated with genome-wide alterations of gene expression; principal component analysis indicated that the exposure explained 53% of the variance in gene expression among the top variable genes and 19% of 28,351 genes were differentially expressed (false discovery rate <0.05) between the exposure groups. Key genes regulating the immune system, such as tumor necrosis factor alpha and interferon gamma, as well as genes related to the NF-kappa-beta complex, were significantly downregulated in the high-arsenic group. Arsenic exposure was associated with genome-wide DNA methylation; the high-arsenic group had 3% points higher genome-wide full methylation (>80% methylation) than the lower-arsenic group. Differentially methylated regions that were hyper-methylated in the high-arsenic group showed enrichment for immune-related gene ontologies that constitute the basic functions of CD4-positive T cells, such as isotype switching and lymphocyte activation and differentiation. In conclusion, chronic arsenic exposure from drinking water was related to changes in the transcriptome and methylome of CD4-positive T cells, both genome wide and in specific genes, supporting the hypothesis that arsenic causes immunotoxicity by interfering with gene expression and regulation.
Collapse
|
44
|
Subbanna S, Nagre NN, Shivakumar M, Basavarajappa BS. A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice. Physiol Behav 2016; 167:16-27. [PMID: 27594097 DOI: 10.1016/j.physbeh.2016.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
The present study was undertaken to evaluate the immediate and long-term effects of a single-day exposure to 5-Azacytidine (5-AzaC), a DNA methyltransferase inhibitor, on neurobehavioral abnormalities in mice. Our findings suggest that the 5-AzaC treatment significantly inhibited DNA methylation, impaired extracellular signal-regulated kinase (ERK1/2) activation and reduced expression of the activity-regulated cytoskeleton-associated protein (Arc). These events lead to the activation of caspase-3 (a marker for neurodegeneration) in several brain regions, including the hippocampus and cortex, two brain areas that are essential for memory formation and memory storage, respectively. 5-AzaC treatment of P7 mice induced significant deficits in spatial memory, social recognition, and object memory in adult mice and deficits in long-term potentiation (LTP) in adult hippocampal slices. Together, these data demonstrate that the inhibition of DNA methylation by 5-AzaC treatment in P7 mice causes neurodegeneration and impairs ERK1/2 activation and Arc protein expression in neonatal mice and induces behavioral abnormalities in adult mice. DNA methylation-mediated mechanisms appear to be necessary for the proper maturation of synaptic circuits during development, and disruption of this process by 5-AzaC could lead to abnormal cognitive function.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Nagaraja N Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Houseman EA, Kile ML, Christiani DC, Ince TA, Kelsey KT, Marsit CJ. Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. BMC Bioinformatics 2016; 17:259. [PMID: 27358049 PMCID: PMC4928286 DOI: 10.1186/s12859-016-1140-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/19/2016] [Indexed: 12/28/2022] Open
Abstract
Background Recent interest in reference-free deconvolution of DNA methylation data has led to several supervised methods, but these methods do not easily permit the interpretation of underlying cell types. Results We propose a simple method for reference-free deconvolution that provides both proportions of putative cell types defined by their underlying methylomes, the number of these constituent cell types, as well as a method for evaluating the extent to which the underlying methylomes reflect specific types of cells. We demonstrate these methods in an analysis of 23 Infinium data sets from 13 distinct data collection efforts; these empirical evaluations show that our algorithm can reasonably estimate the number of constituent types, return cell proportion estimates that demonstrate anticipated associations with underlying phenotypic data; and methylomes that reflect the underlying biology of constituent cell types. Conclusions Our methodology permits an explicit quantitation of the mediation of phenotypic associations with DNA methylation by cell composition effects. Although more work is needed to investigate functional information related to estimated methylomes, our proposed method provides a novel and useful foundation for conducting DNA methylation studies on heterogeneous tissues lacking reference data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1140-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Andres Houseman
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tan A Ince
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Karl T Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University, Providence, USA
| | - Carmen J Marsit
- Department of Community and Family Medicine, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|