1
|
Watanabe T, Kidoguchi K, Kimura S. Treating Hematological Malignancies With OR-2100, an Orally Bioavailable Prodrug of Decitabine. Cancer Sci 2025. [PMID: 39837580 DOI: 10.1111/cas.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
DNA methylation is an enzyme-driven epigenetic modification that must be precisely regulated to maintain cellular homeostasis. Aberrant methylation status, especially hypermethylation of the promoter sites of tumor-suppressor genes, is observed in human malignancies and is a proven target for cancer therapy. The first-generation DNA demethylating agents, azacitidine and decitabine, are widely used for treating several hematological malignancies. In addition, orally bioavailable prodrugs of azacitidine and decitabine have recently been approved by the FDA. We have developed a silylated derivative of decitabine, OR-2100, which is resistant to degradation by cytidine deaminase and orally bioavailable. It has efficacy against several human hematological malignancies in xenograft mouse models with less hematotoxicity than decitabine. Since DNA demethylating agents are combined with molecularly targeted drugs in clinical use and trials, we think that the less hematotoxic profile of OR-2100 makes it suitable for use as a combination therapy. In this article, we review the therapeutic approach in hematological malignancies with the DNA demethylating agent OR-2100.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Keisuke Kidoguchi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
2
|
Ma X, Zhang L, Liu L, Ruan D, Wang C. Hypermethylated ITGA8 Facilitate Bladder Cancer Cell Proliferation and Metastasis. Appl Biochem Biotechnol 2024; 196:245-260. [PMID: 37119505 DOI: 10.1007/s12010-023-04512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/01/2023]
Abstract
DNA methylation plays a vital role during the development of tumorigenesis. The purpose of this study is to identify candidate DNA methylation drivers during progression of bladder cancer (BLCA). The methylation spectrum in bladder cancer tissues was detected by CHARM analysis, and methylated ITGA8 was selected for further study due to its low expression. Methylation levels in BLCA tissues and cells were detected with methylated-specific PCR (MSP), while mRNA expression and methylation of ITGA8 were detected by qRT-PCR and MSP. After treatment with 5-Aza-dC (DNA methylation inhibitor), the proliferation, migration, and invasion abilities of BLCA cells were determined by MTT, wound healing, and transwell assays, respectively. Flow cytometric analysis was performed to evaluate any variance in the cell cycle. In addition, the effect of demethylated ITGA8 on BLCA tumor growth was verified with an in vivo xenograft tumor model. Based on the methylation profiling of BLCA, ITGA8 was identified to be hypermethylated. ITGA8 methylation levels in BLCA tissues and cells were upregulated, and 5-Aza-dC significantly suppressed ITGA8 methylation levels and increased ITGA8 mRNA expression. Furthermore, after treatment with 5-Aza-dC, the propagation, migration, and invasiveness of the cancer cells were inhibited, and more cancer cells were arrested at the G0/G1 phase. In vivo assays further demonstrated that 5-Aza-dC could impede BLCA tumor growth by repressing methylation levels of ITGA8 and increasing ITGA8 mRNA expression. Hypermethylated ITGA8 facilitated BLCA progression, and 5-Aza-dC treatment inhibited BLCA cell propagation and metastasis by decreasing methylation levels of ITGA8 and inducing cell cycle arrest.
Collapse
Affiliation(s)
- Xiulong Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xian, 710004, Shaanxi, China
| | - Liang Zhang
- Urology Surgery, Jiujiang University Clinic College/Hospital, Jiujiang, 332200, Jiangxi, China
| | - Ling Liu
- Urology Surgery, Jiujiang University Clinic College/Hospital, Deyang, 618000, Sichuan, China
| | - Dongli Ruan
- Urology Surgery, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, China
| | - Chunyang Wang
- Urology Surgery, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Baljinnyam B, Ronzetti M, Simeonov A. Advances in luminescence-based technologies for drug discovery. Expert Opin Drug Discov 2023; 18:25-35. [PMID: 36562206 PMCID: PMC9892298 DOI: 10.1080/17460441.2023.2160441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Luminescence-based technologies, specifically bioluminescence and chemiluminescence, are powerful tools with extensive use in drug discovery. Production of light during chemiluminescence and bioluminescence, unlike fluorescence, doesn't require an excitation light source, resulting in high signal-to-noise ratio, less background interference, and no issues from phototoxicity and photobleaching. These characteristics of luminescence technologies offer unique advantages for experimental designs, allowing for greater flexibility to target a wide range of proteins and biological processes for drug discovery at different stages. AREAS COVERED This review provides a basic overview of luciferase-based technologies and details recent advances and use cases of luciferase and luciferin variations and their applicability in the drug discovery toolset. The authors expand upon specific applications of luciferase technologies, including chemiluminescent and bioluminescent-based microscopy. Finally, the authors lay out forward-looking statements on the field of luminescence and how it may shape the translational scientists' work moving forward. EXPERT OPINION The demand for improved luciferase and luciferin pairs correlates strongly with efforts to improve the sensitivity and robustness of high-throughput assays. As luminescent reporter systems improve, so will the expansion of use cases for luminescence-based technologies in early-stage drug discovery. With the synthesis of novel, non-enzymatic chemiluminescence-based probes, which previously were restrained to only basic research applications, they may now be readily implemented in drug discovery campaigns.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Staff Scientist, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Michael Ronzetti
- Predoctoral IRTA Fellow, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Anton Simeonov
- Group Leader, Scientific Director, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
4
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
5
|
Ideta-Otsuka M, Miyai M, Yamamoto N, Tsuchimoto A, Tamura H, Tanemura K, Shibutani M, Igarashi K. Development of a new in vitro assay system for evaluating the effects of chemicals on DNA methylation. J Toxicol Sci 2021; 46:83-90. [PMID: 33536392 DOI: 10.2131/jts.46.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epigenetic toxicity, a phenomenon in which chemicals exert epigenetic effects and produce toxicity, has been attracting attention in recent years due to advances in toxicology accompanying the development of life sciences. However, it has been difficult to identify epigenetic toxicants due to the lack of a simple experimental system to evaluate epigenetic toxicity. In this study, we developed a prototype of an in vitro reporter assay system for assessing the effects of chemicals on DNA methylation using two promoters showing different degrees of DNA methylation, Agouti IAP and Daz1 promoters, and a luciferase reporter. The system successfully detected DNA demethylating activity using 5-azacytidine, a chemical having DNA demethylation activity, as a positive control chemical, and demethylation of cytosine of CpG in the promoter was confirmed by pyrosequencing analysis. Next, in order to improve the detection sensitivity of the DNA demethylating activity of this system, we tried to increase the basal level of methylation of the Daz1 promoter by pre-methylase treatment of the reporter vectors. As a result, the detection sensitivity of the system was successfully improved in cells where the basal level of methylation was indeed increased by methylase treatment. Thus, the developed assay system here is effective for the simple evaluation of chemicals that affect DNA methylation.
Collapse
Affiliation(s)
- Maky Ideta-Otsuka
- Laboratory of Instrumental Analysis, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Misato Miyai
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, USA.,Institute for Advanced Life Sciences, Hoshi University
| | - Ayaka Tsuchimoto
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Hideki Tamura
- Institute for Advanced Life Sciences, Hoshi University
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, School of Agricultural Science, Tohoku University
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| | - Katsuhide Igarashi
- Laboratory of Biofunctional Science, School of Pharmacy and Pharmaceutical Sciences, Hoshi University.,Institute for Advanced Life Sciences, Hoshi University
| |
Collapse
|
6
|
Li L, Li F, Xia Y, Yang X, Lv Q, Fang F, Wang Q, Bu W, Wang Y, Zhang K, Wu Y, Shen J, Jiang M. UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes. EBioMedicine 2020; 57:102835. [PMID: 32574963 PMCID: PMC7317242 DOI: 10.1016/j.ebiom.2020.102835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about whether UVB can directly influence epigenetic regulatory pathways to induce cutaneous squamous cell carcinoma (CSCC). This study aimed to identify epigenetic-regulated signalling pathways through global methylation and gene expression profiling and to elucidate their function in CSCC development. METHODS Global DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) and genome-wide gene expression analysis by RNA sequencing (RNA-seq) in eight pairs of matched CSCC and adjacent normal skin tissues were used to investigate the potential candidate gene(s). Clinical samples, animal models, cell lines, and UVB irradiation were applied to validate the mechanism and function of the genes of interest. FINDINGS We identified the downregulation of the TGF-β/BMP-SMAD-ID4 signalling pathway in CSCC and increased methylation of inhibitor of DNA binding/differentiation 4 (ID4). In normal human and mouse skin tissues and cutaneous cell lines, UVB exposure induced ID4 DNA methylation, upregulated DNMT1 and downregulated ten-eleven translocation (TETs). Similarly, we detected the upregulation of DNMT1 and downregulation of TETs accompanying ID4 DNA methylation in CSCC tissues. Silencing of DNMT1 and overexpression of TET1 and TET2 in A431 and Colo16 cells led to increased ID4 expression. Finally, we showed that overexpression of ID4 reduced cell proliferation, migration, and invasion, and increased apoptosis in CSCC cell lines and reduced tumourigenesis in mouse models. INTERPRETATION The results indicate that ID4 is downregulated by UVB irradiation via DNA methylation. ID4 acts as a tumour suppressor gene in CSCC development. FUNDING CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-021, 2017-I2M-1-017), the Natural Science Foundation of Jiangsu Province (BK20191136), and the Fundamental Research Funds for the Central Universities (3332019104).
Collapse
Affiliation(s)
- Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fengjuan Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yudong Xia
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Xueyuan Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qun Lv
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fang Fang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qiang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Ke Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yi Wu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfang Shen
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Mingjun Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
7
|
Zwergel C, Fioravanti R, Stazi G, Sarno F, Battistelli C, Romanelli A, Nebbioso A, Mendes E, Paulo A, Strippoli R, Tripodi M, Pechalrieu D, Arimondo PB, De Luca T, Del Bufalo D, Trisciuoglio D, Altucci L, Valente S, Mai A. Novel Quinoline Compounds Active in Cancer Cells through Coupled DNA Methyltransferase Inhibition and Degradation. Cancers (Basel) 2020; 12:E447. [PMID: 32075099 PMCID: PMC7073229 DOI: 10.3390/cancers12020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
DNA methyltransferases (DNMTs) play a relevant role in epigenetic control of cancer cell survival and proliferation. Since only two DNMT inhibitors (azacitidine and decitabine) have been approved to date for the treatment of hematological malignancies, the development of novel potent and specific inhibitors is urgent. Here we describe the design, synthesis, and biological evaluation of a new series of compounds acting at the same time as DNMTs (mainly DNMT3A) inhibitors and degraders. Tested against leukemic and solid cancer cell lines, 2a-c and 4a-c (the last only for leukemias) displayed up to submicromolar antiproliferative activities. In HCT116 cells, such compounds induced EGFP gene expression in a promoter demethylation assay, confirming their demethylating activity in cells. In the same cell line, 2b and 4c chosen as representative samples induced DNMT1 and -3A protein degradation, suggesting for these compounds a double mechanism of DNMT3A inhibition and DNMT protein degradation.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Giulia Stazi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Federica Sarno
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Eduarda Mendes
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Alexandra Paulo
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Istituto Pasteur- Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza Università di Roma, 00185 Rome, Italy
| | - Dany Pechalrieu
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
| | - Paola B. Arimondo
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
- Epigenetic Chemical Biology, Institute Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris, France
| | - Teresa De Luca
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via Degli Apuli 4, 00185 Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| |
Collapse
|
8
|
Hattori N, Sako M, Kimura K, Iida N, Takeshima H, Nakata Y, Kono Y, Ushijima T. Novel prodrugs of decitabine with greater metabolic stability and less toxicity. Clin Epigenetics 2019; 11:111. [PMID: 31370878 PMCID: PMC6670186 DOI: 10.1186/s13148-019-0709-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND DNA demethylation therapy is now used in practice for hematological tumors and is being developed for solid tumors. Nevertheless, it is difficult to achieve stable pharmacokinetics with the current DNA-demethylating agents, azacitidine (AZA) and decitabine (DAC), because of their rapid deamination by cytidine deaminase in vivo and spontaneous hydrolytic cleavage. Here, we aimed to develop metabolically stable prodrugs of AZA and DAC as novel DNA-demethylating agents. RESULTS Thirty-five 5'-O-trialkylsilylated AZAs/DACs were synthesized with potential resistance to deamination. Out of these, 11 compounds exhibited demethylating activity similar to that of DAC and guadecitabine, and a suitable aqueous solubility. Pharmacokinetic analysis in mice showed that OR-2003 displayed the highest serum concentration and the area under the curve in an intraperitoneal experiment, whereas OR-2100 exhibited high stability to cytidine deaminase. Treatment of cells with OR-2003 and OR-2100 depleted DNA methyltransferase 1 completely and induced both gene-specific and genome-wide demethylation. The treatment suppressed the growth of multiple types of cancer cells and induced re-expression of tumor suppressor genes. The anti-tumor effect and DNA demethylation effect of OR-2003 and OR-2100 were comparable to that of DAC with fewer adverse effects in vivo. CONCLUSIONS We developed two novel prodrugs of DAC that exhibited greater stability, comparable DNA demethylation activity, and less toxicity. These compounds are expected to overcome the difficulty in achieving stable pharmacokinetics in patients, leading to maximum DNA demethylation activity with minimum adverse effects.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Magoichi Sako
- Research and Development Division, Pharmaceutical Research Center, OHARA Pharmaceutical Co., Ltd., Koga, Japan
| | - Kana Kimura
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Naoko Iida
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | - Yoshitaka Nakata
- Research and Development Division, Pharmaceutical Research Center, OHARA Pharmaceutical Co., Ltd., Koga, Japan
| | - Yutaka Kono
- Research and Development Division, Pharmaceutical Research Center, OHARA Pharmaceutical Co., Ltd., Koga, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Zwergel C, Schnekenburger M, Sarno F, Battistelli C, Manara MC, Stazi G, Mazzone R, Fioravanti R, Gros C, Ausseil F, Florean C, Nebbioso A, Strippoli R, Ushijima T, Scotlandi K, Tripodi M, Arimondo PB, Altucci L, Diederich M, Mai A, Valente S. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin Epigenetics 2019; 11:68. [PMID: 31060628 PMCID: PMC6501426 DOI: 10.1186/s13148-019-0663-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background DNA methyltransferases (DNMTs) are epigenetic enzymes involved in embryonic development, cell differentiation, epithelial to mesenchymal transition, and control of gene expression, whose overexpression or enhanced catalytic activity has been widely reported in cancer initiation and progression. To date, two DNMT inhibitors (DNMTi), 5-azacytidine (5-AZA) and 5-aza-2′-deoxycytidine (DAC), are approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Nevertheless, they are chemically instable and quite toxic for healthy cells; thus, the discovery of novel DNMTi is urgent. Results Here, we report the identification of a new quinoline-based molecule, MC3353, as a non-nucleoside inhibitor and downregulator of DNMT. This compound was able, in promoter demethylating assays, to induce enhanced green fluorescence protein (EGFP) gene expression in HCT116 cells and transcription in a cytomegalovirus (CMV) promoter-driven luciferase reporter system in KG-1 cells. Moreover, MC3353 displayed a strong antiproliferative activity when tested on HCT116 colon cancer cells after 48 h of treatment at 0.5 μM. At higher doses, this compound provided a cytotoxic effect in double DNMT knockout HCT116 cells. MC3353 was also screened on a different panel of cancer cells (KG-1 and U-937 acute myeloid leukemia, RAJI Burkitt’s lymphoma, PC-3 prostate cancer, and MDA-MB-231 breast cancer), where it arrested cell proliferation and reduced viability after 48 h of treatment with IC50 values ranging from 0.3 to 0.9 μM. Compared to healthy cell models, MC3353 induced apoptosis (e.g., U-937 and KG-1 cells) or necrosis (e.g., RAJI cells) at lower concentrations. Importantly, together with the main DNMT3A enzyme inhibition, MC3353 was also able to downregulate the DNMT3A protein level in selected HCT116 and PC-3 cell lines. Additionally, this compound provided impairment of the epithelial-to-mesenchymal transition (EMT) by inducing E-cadherin while reducing matrix metalloproteinase (MMP2) mRNA and protein levels in PC-3 and HCT116 cells. Last, tested on a panel of primary osteosarcoma cell lines, MC3353 markedly inhibited cell growth with low single-digit micromolar IC50 ranging from 1.1 to 2.4 μM. Interestingly, in Saos-2 osteosarcoma cells, MC3353 induced both expression of genes and mineralized the matrix as evidence of osteosarcoma to osteoblast differentiation. Conclusions The present work describes MC3353 as a novel DNMTi displaying a stronger in cell demethylating ability than both 5-AZA and DAC, providing re-activation of the silenced ubiquitin C-terminal hydrolase L1 (UCHL1) gene. MC3353 displayed dose- and time-dependent antiproliferative activity in several cancer cell types, inducing cell death and affecting EMT through E-cadherin and MMP2 modulation. In addition, this compound proved efficacy even in primary osteosarcoma cell models, through the modulation of genes involved in osteoblast differentiation. Electronic supplementary material The online version of this article (10.1186/s13148-019-0663-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Federica Sarno
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Giulia Stazi
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Roberta Mazzone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Christina Gros
- Center for High-Throughput Chemical Biology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Frédéric Ausseil
- Pierre Fabre Laboratories, 3 Avenue Hubert Curien, Toulouse, 31100, France
| | - Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Angela Nebbioso
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, Paris, 75724, France
| | - Lucia Altucci
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Korea
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
|