1
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
2
|
Kordala AJ, Stoodley J, Ahlskog N, Hanifi M, Garcia Guerra A, Bhomra A, Lim WF, Murray LM, Talbot K, Hammond SM, Wood MJA, Rinaldi C. PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice. EMBO Mol Med 2023; 15:e17683. [PMID: 37724723 PMCID: PMC10630883 DOI: 10.15252/emmm.202317683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Collapse
Affiliation(s)
- Anna J Kordala
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Jessica Stoodley
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Nina Ahlskog
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | | | - Antonio Garcia Guerra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Amarjit Bhomra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Wooi Fang Lim
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
- Euan McDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | | | - Matthew JA Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| | - Carlo Rinaldi
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| |
Collapse
|
3
|
Lesbon JCC, Garnica TK, Xavier PLP, Rochetti AL, Reis RM, Müller S, Fukumasu H. A Screening of Epigenetic Therapeutic Targets for Non-Small Cell Lung Cancer Reveals PADI4 and KDM6B as Promising Candidates. Int J Mol Sci 2022; 23:ijms231911911. [PMID: 36233212 PMCID: PMC9570250 DOI: 10.3390/ijms231911911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnostic and therapeutic approaches for lung cancer, new therapies targeting metastasis by the specific regulation of cancer genes are needed. In this study, we screened a small library of epigenetic inhibitors in non-small-cell lung cancer (NSCLC) cell lines and evaluated 38 epigenetic targets for their potential role in metastatic NSCLC. The potential candidates were ranked by a streamlined approach using in silico and in vitro experiments based on publicly available databases and evaluated by real-time qPCR target gene expression, cell viability and invasion assays, and transcriptomic analysis. The survival rate of patients with lung adenocarcinoma is inversely correlated with the gene expression of eight epigenetic targets, and a systematic review of the literature confirmed that four of them have already been identified as targets for the treatment of NSCLC. Using nontoxic doses of the remaining inhibitors, KDM6B and PADI4 were identified as potential targets affecting the invasion and migration of metastatic lung cancer cell lines. Transcriptomic analysis of KDM6B and PADI4 treated cells showed altered expression of important genes related to the metastatic process. In conclusion, we showed that KDM6B and PADI4 are promising targets for inhibiting the metastasis of lung adenocarcinoma cancer cells.
Collapse
Affiliation(s)
- Jéssika Cristina Chagas Lesbon
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Taismara Kustro Garnica
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Pedro Luiz Porfírio Xavier
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Arina Lázaro Rochetti
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Hospital de Amor, Antenor Duarte Viléla, 1331-Dr. Paulo Prata, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str 15-60438, 60438 Frankfurt am Main, Germany
| | - Heidge Fukumasu
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias, 225-Jardim Elite, Pirassununga 13635-900, SP, Brazil
- Correspondence:
| |
Collapse
|
4
|
Němec V, Schwalm MP, Müller S, Knapp S. PROTAC degraders as chemical probes for studying target biology and target validation. Chem Soc Rev 2022; 51:7971-7993. [PMID: 36004812 DOI: 10.1039/d2cs00478j] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule degraders such as PROTACs (PROteolysis TArgeting Chimeras) have emerged as new promising pharmacological modalities and the first PROTAC drug candidates are now studied clinically. The catalytic properties of PROTACs, acting as chemical degraders of a protein of interest (POI), represent an attractive new strategy for drug development. The development and characterization of PROTACs requires an array of additional assay systems that track the degradation pathway leading ultimately to degradation of the POI, identifying critical steps for PROTAC optimization. In addition to their exciting translational potential, PROTACs represent versatile chemical tools that considerably expanded our chemical biology toolbox and significantly enlarged the proteome that can be modulated by small molecules. Similar to conventional chemical probes, PROTACs used as chemical probes in target validation require comprehensive characterization. As a consequence, PROTAC-specific quality criteria should be defined by the chemical biology community. These criteria need to comprise additional or alternative parameters compared to those for conventional occupancy-driven chemical probes, such as the maximum level of target degradation (Dmax), confirmation of a proteasome dependent degradation mechanism and, importantly, also kinetic parameters of POI degradation. The kinetic aspects are particularly relevant for PROTACs that harbor covalent binding moieties. Here, we review recent progress in the development of assay systems for PROTAC characterization and suggest a set of criteria for PROTACs as high quality chemical probes.
Collapse
Affiliation(s)
- Václav Němec
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Ostrop J, Zwiggelaar RT, Terndrup Pedersen M, Gerbe F, Bösl K, Lindholm HT, Díez-Sánchez A, Parmar N, Radetzki S, von Kries JP, Jay P, Jensen KB, Arrowsmith C, Oudhoff MJ. A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Front Cell Dev Biol 2021; 8:618552. [PMID: 33575256 PMCID: PMC7872100 DOI: 10.3389/fcell.2020.618552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal organoids are an excellent model to study epithelial biology. Yet, the selection of analytical tools to accurately quantify heterogeneous organoid cultures remains limited. Here, we developed a semi-automated organoid screening method, which we applied to a library of highly specific chemical probes to identify epigenetic regulators of intestinal epithelial biology. The role of epigenetic modifiers in adult stem cell systems, such as the intestinal epithelium, is still undefined. Based on this resource dataset, we identified several targets that affected epithelial cell differentiation, including HDACs, EP300/CREBBP, LSD1, and type I PRMTs, which were verified by complementary methods. For example, we show that inhibiting type I PRMTs, which leads enhanced epithelial differentiation, blocks the growth of adenoma but not normal organoid cultures. Thus, epigenetic probes are powerful tools to study intestinal epithelial biology and may have therapeutic potential.
Collapse
Affiliation(s)
- Jenny Ostrop
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Rosalie T. Zwiggelaar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Marianne Terndrup Pedersen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - François Gerbe
- Cancer Biology Department, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Korbinian Bösl
- Department of Bioinformatics, Computational Biological Unit, University of Bergen, Bergen, Norway
| | - Håvard T. Lindholm
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Silke Radetzki
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Jens Peter von Kries
- Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Philippe Jay
- Cancer Biology Department, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| | - Kim B. Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Menno J. Oudhoff
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Abstract
It is well established that medicinal chemists should depart from the flat, sp2-dominated nature of traditional drugs and incorporate complexities of bioactive natural products, such as sp3-richness, 3D topology and chirality. There is a gray area, however, in the relevance of newly developed chemical scaffolds that exhibit these complexities but do not correlate to anything observed in nature. This can leave synthetic methodologists searching for structural similarities between their newly developed products and known natural products in search of justification. This article offers a perspective on how these types of complex 'abiotic' scaffolds can be appreciated purely on the basis of their structural novelty, and identifies the unique advantages arising when a complex chemical entity unrecognized by nature is introduced to biological systems.
Collapse
|
7
|
The histone methyltransferase inhibitor A-366 enhances hemoglobin expression in erythroleukemia cells upon co-exposure with chemical inducers in culture. ACTA ACUST UNITED AC 2021; 28:2. [PMID: 33407944 PMCID: PMC7788816 DOI: 10.1186/s40709-020-00132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
Background Erythroleukemia is caused by the uncontrolled multiplication of immature erythroid progenitor cells which fail to differentiate into erythrocytes. By directly targeting this class of malignant cells, the induction of terminal erythroid differentiation represents a vital therapeutic strategy for this disease. Erythroid differentiation involves the execution of a well-orchestrated gene expression program in which epigenetic enzymes play critical roles. In order to identify novel epigenetic mediators of differentiation, this study explores the effects of multiple, highly specific, epigenetic enzyme inhibitors, in murine and human erythroleukemia cell lines. Results We used a group of compounds designed to uniquely target the following epigenetic enzymes: G9a/GLP, EZH1/2, SMYD2, PRMT3, WDR5, SETD7, SUV420H1 and DOT1L. The majority of the probes had a negative impact on both cell proliferation and differentiation. On the contrary, one of the compounds, A-366, demonstrated the opposite effect by promoting erythroid differentiation of both cell models. A-366 is a selective inhibitor of the G9a methyltransferase and the chromatin reader Spindlin1. Investigation of the molecular mechanism of action revealed that A-366 forced cells to exit from the cell cycle, a fact that favored erythroid differentiation. Further analysis led to the identification of a group of genes that mediate the A-366 effects and include CDK2, CDK4 and CDK6. Conclusions A-366, a selective inhibitor of G9a and Spindlin1, demonstrates a compelling role in the erythroid maturation process by promoting differentiation, a fact that is highly beneficial for patients suffering from erythroleukemia. In conclusion, this data calls for further investigation towards the delivery of epigenetic drugs and especially A-366 in hematopoietic disorders.
Collapse
|
8
|
Vilema-Enríquez G, Quinlan R, Kilfeather P, Mazzone R, Saqlain S, Del Molino Del Barrio I, Donato A, Corda G, Li F, Vedadi M, Németh AH, Brennan PE, Wade-Martins R. Inhibition of the SUV4-20 H1 histone methyltransferase increases frataxin expression in Friedreich's ataxia patient cells. J Biol Chem 2020; 295:17973-17985. [PMID: 33028632 PMCID: PMC7939392 DOI: 10.1074/jbc.ra120.015533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN-GAA-Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4-7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.
Collapse
Affiliation(s)
| | - Robert Quinlan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Roberta Mazzone
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saba Saqlain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Annalidia Donato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Trust, Oxford, United Kingdom
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
9
|
Abstract
The dynamic nature of histone post-translational modifications such as methylation or acetylation makes possible the alteration of disease associated epigenetic states through the manipulation of the associated epigenetic machinery. One approach is through small molecule perturbation. Chemical probes of epigenetic reader domains have been critical in improving our understanding of the biological consequences of modulating their targets, while also enabling the development of novel probe-based reagents. By appending a functional handle to a reader domain probe, a chemical toolbox of reagents can be created to facilitate chemiprecipitation of epigenetic complexes, evaluate probe selectivity, develop in vitro screening assays, visualize cellular target localization, enable target degradation and recruit epigenetic machinery to a site within the genome in a highly controlled fashion.
Collapse
|
10
|
Whatley KCL, Padalino G, Whiteland H, Geyer KK, Hulme BJ, Chalmers IW, Forde-Thomas J, Ferla S, Brancale A, Hoffmann KF. The repositioning of epigenetic probes/inhibitors identifies new anti-schistosomal lead compounds and chemotherapeutic targets. PLoS Negl Trop Dis 2019; 13:e0007693. [PMID: 31730617 PMCID: PMC6881072 DOI: 10.1371/journal.pntd.0007693] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background Praziquantel represents the frontline chemotherapy used to treat schistosomiasis, a neglected tropical disease (NTD) caused by infection with macro-parasitic blood fluke schistosomes. While this drug is safe, its inability to kill all schistosome lifecycle stages within the human host often requires repeat treatments. This limitation, amongst others, has led to the search for novel anti-schistosome replacement or combinatorial chemotherapies. Here, we describe a repositioning strategy to assess the anthelmintic activity of epigenetic probes/inhibitors obtained from the Structural Genomics Consortium. Methodology/Principle findings Thirty-seven epigenetic probes/inhibitors targeting histone readers, writers and erasers were initially screened against Schistosoma mansoni schistosomula using the high-throughput Roboworm platform. At 10 μM, 14 of these 37 compounds (38%) negatively affected schistosomula motility and phenotype after 72 hours of continuous co-incubation. Subsequent dose-response titrations against schistosomula and adult worms revealed epigenetic probes targeting one reader (NVS-CECR2-1), one writer (LLY-507 and BAY-598) and one eraser (GSK-J4) to be particularly active. As LLY-507/BAY-598 (SMYD2 histone methyltransferase inhibitors) and GSK-J4 (a JMJD3 histone demethylase inhibitor) regulate an epigenetic process (protein methylation) known to be critical for schistosome development, further characterisation of these compounds/putative targets was performed. RNA interference (RNAi) of one putative LLY-507/BAY-598 S. mansoni target (Smp_000700) in adult worms replicated the compound-mediated motility and egg production defects. Furthermore, H3K36me2, a known product catalysed by SMYD2 activity, was also reduced by LLY-507 (25%), BAY-598 (23%) and siSmp_000700 (15%) treatment of adult worms. Oviposition and packaging of vitelline cells into in vitro laid eggs was also significantly affected by GSK-J4 (putative cell permeable prodrug inhibitor of Smp_034000), but not by the related structural analogue GSK-J1 (cell impermeable inhibitor). Conclusion/Significance Collectively, these results provide further support for the development of next-generation drugs targeting schistosome epigenetic pathway components. In particular, the progression of histone methylation/demethylation modulators presents a tractable strategy for anti-schistosomal control. Human schistosomiasis is caused by infection with parasitic blood fluke worms. Global control of this NTD is currently facilitated by administration of a single drug, praziquantel (PZQ). This mono-chemotherapeutic strategy of schistosomiasis control presents challenges as PZQ is not active against all human-dwelling schistosome lifecycle stages and the evolution of PZQ resistant parasites remains a threat. Therefore, new drugs to be used in combination with or in replacement of PZQ are urgently needed. Here, continuing our studies on Schistosoma mansoni epigenetic processes, we performed anthelmintic screening of 37 epigenetic probes/epigenetic inhibitors obtained from the Structural Genomics Consortium (SGC). The results of these studies highlighted that schistosome protein methylation/demethylation processes are acutely vulnerable. In particular, compounds affecting schistosome SMYD (LLY-507, BAY-598) or JMJD (GSK-J4) homologues are especially active on schistosomula and adult worms during in vitro phenotypic drug screens. The active epigenetic probes identified here as well as their corresponding S. mansoni protein targets offers new starting points for the development of next-generation anti-schistosomals.
Collapse
Affiliation(s)
- Kezia C. L. Whatley
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Kathrin K. Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Iain W. Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom
| | - Karl F. Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Harding RJ, Loppnau P, Ackloo S, Lemak A, Hutchinson A, Hunt B, Holehouse AS, Ho JC, Fan L, Toledo-Sherman L, Seitova A, Arrowsmith CH. Design and characterization of mutant and wildtype huntingtin proteins produced from a toolkit of scalable eukaryotic expression systems. J Biol Chem 2019; 294:6986-7001. [PMID: 30842263 PMCID: PMC6497952 DOI: 10.1074/jbc.ra118.007204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
The gene mutated in individuals with Huntington's disease (HD) encodes the 348-kDa huntingtin (HTT) protein. Pathogenic HD CAG-expansion mutations create a polyglutamine (polyQ) tract at the N terminus of HTT that expands above a critical threshold of ∼35 glutamine residues. The effect of these HD mutations on HTT is not well understood, in part because it is difficult to carry out biochemical, biophysical, and structural studies of this large protein. To facilitate such studies, here we have generated expression constructs for the scalable production of HTT in multiple eukaryotic expression systems. Our set of HTT expression clones comprised both N- and C-terminally FLAG-tagged HTT constructs with polyQ lengths representative of the general population, HD patients, and juvenile HD patients, as well as the more extreme polyQ expansions used in some HD tissue and animal models. Our expression system yielded milligram quantities of pure recombinant HTT protein, including many of the previously mapped post-translational modifications. We characterized both apo and HTT-HTT-associated protein 40 (HAP40) complex samples produced with this HD resource, demonstrating that this toolkit can be used to generate physiologically meaningful HTT complexes. We further demonstrate that these resources can produce sufficient material for protein-intensive experiments, such as small-angle X-ray scattering, providing biochemical insight into full-length HTT protein structure. The work outlined and the tools generated here lay a foundation for further biochemical and structural work on the HTT protein and for studying its functional interactions with other biomolecules.
Collapse
Affiliation(s)
- Rachel J Harding
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada,
| | - Peter Loppnau
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Suzanne Ackloo
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Alexander Lemak
- the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ashley Hutchinson
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Brittany Hunt
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Alex S Holehouse
- the Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130
| | - Jolene C Ho
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Lixin Fan
- the Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core of NCI, National Institutes of Health, Frederick, Maryland 21701, and
| | | | - Alma Seitova
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- From the Structural Genomics Consortium, University of Toronto, Ontario M5G 1L7, Canada,
- the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
12
|
Affiliation(s)
- Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Physiological Sciences Department , School of Medicine and Health Sciences, University of Barcelona (UB) , Barcelona , Catalonia , Spain.,c Institucio Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms modify gene activity in a stable manner without altering DNA sequence. They participate in the adaptation to the environment, as well as in the pathogenesis of common complex disorders. We provide an overview of the role of epigenetic mechanisms in bone biology and pathology. RECENT FINDINGS Extensive evidence supports the involvement of epigenetic mechanisms (DNA methylation, post-translational modifications of histone tails, and non-coding RNAs) in the differentiation of bone cells and mechanotransduction. A variety of epigenetic abnormalities have been described in patients with osteoporosis, osteoarthritis, and skeletal cancers, but their actual pathogenetic roles are still unclear. A few drugs targeting epigenetic marks have been approved for neoplastic disorders, and many more are being actively investigated. Advances in the field of epigenetics underscore the complex interactions between genetic and environmental factors as determinants of osteoporosis and other common disorders. Likewise, they help to explain the mechanisms by which prenatal and post-natal external factors, from nutrition to psychological stress, impact our body and influence the risk of later disease.
Collapse
Affiliation(s)
- Alvaro Del Real
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain
| | | | - Laura López-Delgado
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla IDIVAL, University of Cantabria, 39008, Santander, Spain.
| |
Collapse
|
14
|
Gerken PA, Wolstenhulme JR, Tumber A, Hatch SB, Zhang Y, Müller S, Chandler SA, Mair B, Li F, Nijman SMB, Konietzny R, Szommer T, Yapp C, Fedorov O, Benesch JLP, Vedadi M, Kessler BM, Kawamura A, Brennan PE, Smith MD. Discovery of a Highly Selective Cell-Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angew Chem Int Ed Engl 2017; 56:15555-15559. [PMID: 28976073 PMCID: PMC5725665 DOI: 10.1002/anie.201706788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/07/2017] [Indexed: 12/13/2022]
Abstract
Histone lysine demethylases (KDMs) are of critical importance in the epigenetic regulation of gene expression, yet there are few selective, cell-permeable inhibitors or suitable tool compounds for these enzymes. We describe the discovery of a new class of inhibitor that is highly potent towards the histone lysine demethylases KDM2A/7A. A modular synthetic approach was used to explore the chemical space and accelerate the investigation of key structure-activity relationships, leading to the development of a small molecule with around 75-fold selectivity towards KDM2A/7A versus other KDMs, as well as cellular activity at low micromolar concentrations.
Collapse
Affiliation(s)
- Philip A. Gerken
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Anthony Tumber
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Stephanie B. Hatch
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Yijia Zhang
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Susanne Müller
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Shane A. Chandler
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Barbara Mair
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Fengling Li
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Sebastian M. B. Nijman
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Rebecca Konietzny
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Tamas Szommer
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Clarence Yapp
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Oleg Fedorov
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Justin L. P. Benesch
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Masoud Vedadi
- Structural Genomics ConsortiumUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Benedikt M. Kessler
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Akane Kawamura
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Paul E. Brennan
- Structural Genomics Consortium and Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordRoosevelt DriveOxfordOX3 7DQUK
| | - Martin D. Smith
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
15
|
Gerken PA, Wolstenhulme JR, Tumber A, Hatch SB, Zhang Y, Müller S, Chandler SA, Mair B, Li F, Nijman SMB, Konietzny R, Szommer T, Yapp C, Fedorov O, Benesch JLP, Vedadi M, Kessler BM, Kawamura A, Brennan PE, Smith MD. Discovery of a Highly Selective Cell-Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philip A. Gerken
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Jamie R. Wolstenhulme
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Anthony Tumber
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Stephanie B. Hatch
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Yijia Zhang
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Susanne Müller
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Shane A. Chandler
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Barbara Mair
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Fengling Li
- Structural Genomics Consortium; University of Toronto; Toronto Ontario M5G 1L7 Canada
| | - Sebastian M. B. Nijman
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Rebecca Konietzny
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Tamas Szommer
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Clarence Yapp
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Oleg Fedorov
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Justin L. P. Benesch
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Masoud Vedadi
- Structural Genomics Consortium; University of Toronto; Toronto Ontario M5G 1L7 Canada
| | - Benedikt M. Kessler
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Akane Kawamura
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Paul E. Brennan
- Structural Genomics Consortium and Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Roosevelt Drive Oxford OX3 7DQ UK
| | - Martin D. Smith
- Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
16
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|