1
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Kunkle B, Martin ER, Wang L. Critical evaluation of the reliability of DNA methylation probes on the Illumina MethylationEPIC v1.0 BeadChip microarrays. Epigenetics 2024; 19:2333660. [PMID: 38564759 PMCID: PMC10989698 DOI: 10.1080/15592294.2024.2333660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC v1.0 arrays. We conducted a comprehensive assessment of the EPIC v1.0 array probe reliability using 69 blood DNA samples, each measured twice, generated by the Alzheimer's Disease Neuroimaging Initiative study. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliability information for probes on the EPIC v1.0 array, will serve as a valuable resource for future DNAm studies.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Juan I. Young
- Dr. John T MacDonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A. Schmidt
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
| | - X. Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Brian Kunkle
- Dr. John T MacDonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eden R. Martin
- Dr. John T MacDonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
- Dr. John T MacDonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Rajaprakash M, Palmore M, Bakulski KM, Howerton E, Lyall K, Schmidt RJ, Newschaffer C, Croen LA, Hertz-Picciotto I, Volk H, Ladd-Acosta C, Fallin MD. DNA methylation signatures of prenatal socioeconomic position associated with 36-month language outcomes. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 154:104846. [PMID: 39357175 DOI: 10.1016/j.ridd.2024.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Socioeconomic position (SEP), which reflects one's position in society and access to resources, is strongly tied to neurodevelopment and is associated with epigenetic changes. AIM This study examined whether DNA methylation signatures of prenatal SEP, measured in birth samples, are associated with child neurodevelopmental outcomes at 36 months of age. METHODS Prenatal SEP DNA methylation scores were derived using 97 placenta and 127 cord blood biospecimens in the Early Autism Risk Longitudinal Investigation cohort. Participants completed the Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior Scales (VABS) at 36 months of age. Generalized regression analyses, adjusting for maternal age and race, were performed to test the association between SEP methylation score, for each birth biospecimen type, and MSEL and VABS scores. RESULTS Significant associations were observed between placenta SEP methylation score and MSEL Expressive Language outcomes (beta = -2.7, p = 0.046, 95 % CI [- 5.43, -0.05]) and Receptive Language outcomes (beta = -2.5, p = 0.037, 95 % CI [-4.82, -0.16]). In cord blood, methylation-SEP scores were significantly associated with Receptive Language outcomes (beta = -2.0, p = 0.037, 95 % CI [-3.85, -0.12]). No significant associations were observed with VABS scores. CONCLUSION Our results confirm associations between prenatal SEP and early childhood language development using a novel empiric DNA methylation measure of exposure.
Collapse
Affiliation(s)
- Meghna Rajaprakash
- Department of Neurology & Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Meredith Palmore
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen Howerton
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | - Rebecca J Schmidt
- Public Health Sciences and the MIND Institute, UC Davis School of Medicine, Davis, CA 95616, USA
| | | | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Irva Hertz-Picciotto
- Public Health Sciences and the MIND Institute, UC Davis School of Medicine, Davis, CA 95616, USA
| | - Heather Volk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - M Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Apsley AT, Ye Q, Etzel L, Wolf S, Hastings WJ, Mattern BC, Siegel SR, Shalev I. Biological stability of DNA methylation measurements over varying intervals of time and in the presence of acute stress. Epigenetics 2023; 18:2230686. [PMID: 37393564 PMCID: PMC10316737 DOI: 10.1080/15592294.2023.2230686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Identifying factors that influence the stability of DNA methylation measurements across biological replicates is of critical importance in basic and clinical research. Using a within-person between-group experimental design (n = 31, number of observations = 192), we report the stability of biological replicates over a variety of unique temporal scenarios, both in the absence and presence of acute psychosocial stress, and between individuals who have experienced early life adversity (ELA) and non-exposed individuals. We found that varying time intervals, acute stress, and ELA exposure influenced the stability of repeated DNA methylation measurements. In the absence of acute stress, probes were less stable as time passed; however, stress exerted a stabilizing influence on probes over longer time intervals. Compared to non-exposed individuals, ELA-exposed individuals had significantly lower probe stability immediately following acute stress. Additionally, we found that across all scenarios, probes used in most epigenetic-based algorithms for estimating epigenetic age or immune cell proportions had average or below-average stability, except for the Principal Component and DunedinPACE epigenetic ageing clocks, which were enriched for more stable probes. Finally, using highly stable probes in the absence of stress, we identified multiple probes that were hypomethylated in the presence of acute stress, regardless of ELA status. Two hypomethylated probes are located near the transcription start site of the glutathione-disulfide reductase gene (GSR), which has previously been shown to be an integral part of the stress response to environmental toxins. We discuss implications for future studies concerning the reliability and reproducibility of DNA methylation measurements.Abbreviations: DNAm - DNA methylation, CpG - 5'-cytosine-phosphate-guanine-3,' ICC - Interclass correlation coefficient, ELA - Early-life adversity, PBMCs - Peripheral blood mononuclear cells, mQTL - Methylation quantitative trait loci, TSS - Transcription start site, GSR - Glutathione-disulfide reductase gene, TSST - Trier social stress test, PC - Principal component.
Collapse
Affiliation(s)
- Abner T. Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
- Department of Molecular, Cellular and Integrative Biological Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Qiaofeng Ye
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Sarah Wolf
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Waylon J. Hastings
- Department of Psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - Brooke C. Mattern
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Sue Rutherford Siegel
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Kunkle B, Martin ER, Wang L. Critical evaluation of the reliability of DNA methylation probes on the Illumina MethylationEPIC BeadChip microarrays. RESEARCH SQUARE 2023:rs.3.rs-3068938. [PMID: 37461726 PMCID: PMC10350239 DOI: 10.21203/rs.3.rs-3068938/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC arrays. We conducted a comprehensive assessment of the EPIC array probe reliability using 138 duplicated blood DNAm samples generated by the Alzheimer's Disease Neuroimaging Initiative study. We introduced a novel statistical measure, the modified intraclass correlation, to better account for the disagreement in duplicate measurements. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliable information for probes on the EPIC array, will serve as a valuable resource for future DNAm studies.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X. Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Zhang W, Young JI, Gomez L, Schmidt MA, Lukacsovich D, Varma A, Chen XS, Kunkle B, Martin ER, Wang L. Critical evaluation of the reliability of DNA methylation probes on the Illumina MethylationEPIC BeadChip microarrays. RESEARCH SQUARE 2023:rs.3.rs-3068938. [PMID: 37461726 PMCID: PMC10350239 DOI: 10.21203/rs.3.rs-3068938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
DNA methylation (DNAm) plays a crucial role in a number of complex diseases. However, the reliability of DNAm levels measured using Illumina arrays varies across different probes. Previous research primarily assessed probe reliability by comparing duplicate samples between the 450k-450k or 450k-EPIC platforms, with limited investigations on Illumina EPIC arrays. We conducted a comprehensive assessment of the EPIC array probe reliability using 138 duplicated blood DNAm samples generated by the Alzheimer's Disease Neuroimaging Initiative study. We introduced a novel statistical measure, the modified intraclass correlation, to better account for the disagreement in duplicate measurements. We observed higher reliability in probes with average methylation beta values of 0.2 to 0.8, and lower reliability in type I probes or those within the promoter and CpG island regions. Importantly, we found that probe reliability has significant implications in the analyses of Epigenome-wide Association Studies (EWAS). Higher reliability is associated with more consistent effect sizes in different studies, the identification of differentially methylated regions (DMRs) and methylation quantitative trait locus (mQTLs), and significant correlations with downstream gene expression. Moreover, blood DNAm measurements obtained from probes with higher reliability are more likely to show concordance with brain DNAm measurements. Our findings, which provide crucial reliable information for probes on the EPIC array, will serve as a valuable resource for future DNAm studies.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Juan I. Young
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lissette Gomez
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Schmidt
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David Lukacsovich
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Achintya Varma
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - X. Steven Chen
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kunkle
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Eden R. Martin
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, the University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Holdsworth EA, Schell LM, Appleton AA. Maternal-infant interaction quality is associated with child NR3C1 CpG site methylation at 7 years of age. Am J Hum Biol 2023; 35:e23876. [PMID: 36779373 PMCID: PMC10909417 DOI: 10.1002/ajhb.23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Infancy is both a critical window for hypothalamic-pituitary-adrenal (HPA) axis development, and a sensitive period for social-emotional influences. We hypothesized that the social-emotional quality of maternal-infant interactions are associated with methylation of HPA-axis gene NR3C1 later in childhood. METHODS Using a subsample of 114 mother-infant pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC), linear regression models were created to predict variance in methylation of seven selected CpG sites from NR3C1 in whole blood at age 7 years, including the main predictor variable of the first principal component score of observed maternal-infant interaction quality (derived from the Thorpe Interaction Measure at 12 months of age) and covariates of cell-type proportion, maternal financial difficulties and marital status at 8 months postnatal, child birthweight, and sex. RESULTS CpG site cg27122725 methylation was negatively associated with warmer, more positive maternal interaction with her infant (β = 0.19, p = .02, q = 0.13). In sensitivity analyses, the second highest quartile of maternal behavior (neutral, hesitant behavior) was positively associated with cg12466613 methylation. The other five CpG sites were not significantly associated with maternal-infant interaction quality. CONCLUSIONS Narrow individual variation of maternal interaction with her infant is associated with childhood methylation of two CpG sites on NR3C1 that may be particularly sensitive to environmental influences. Infancy may be a sensitive period for even small influences from the social-emotional environment on the epigenetic determinants of HPA-axis function.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
| | - Lawrence M. Schell
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| | - Allison A. Appleton
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| |
Collapse
|
7
|
Joustra V, Li Yim AYF, Hageman I, Levin E, Adams A, Satsangi J, de Jonge WJ, Henneman P, D'Haens G. Long-term Temporal Stability of Peripheral Blood DNA Methylation Profiles in Patients With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 15:869-885. [PMID: 36581079 PMCID: PMC9972576 DOI: 10.1016/j.jcmgh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS There is great current interest in the potential application of DNA methylation alterations in peripheral blood leukocytes (PBLs) as biomarkers of susceptibility, progression, and treatment response in inflammatory bowel disease (IBD). However, the intra-individual stability of PBL methylation in IBD has not been characterized. Here, we studied the long-term stability of all probes located on the Illumina HumanMethylation EPIC BeadChip array. METHODS We followed a cohort of 46 adult patients with IBD (36 Crohn's disease [CD], 10 ulcerative colitis [UC]; median age, 44 years; interquartile range [IQR] 27-56 years; 50% female) that received standard care follow-up at the Amsterdam University Medical Centers. Paired PBL samples were collected at 2 time points with a median of 7 years (range, 2-9 years) in between. Differential methylation and intra-class correlation (ICC) analyses were used to identify time-associated differences and temporally stable CpGs, respectively. RESULTS Around 60% of all EPIC array loci presented poor intra-individual stability (ICC <0.50); 78.114 (≈9%) showed good (ICC, 0.75-0.89), and 41.274 (≈5%) showed excellent (ICC ≥0.90) stability, between both measured time points. Focusing on previously identified consistently differentially methylated positions indicated that 22 CD-, 11 UC-, and 24 IBD-associated loci demonstrated high stability (ICC ≥0.75) over time; of these, we observed a marked stability of CpG loci associated to the HLA genes. CONCLUSIONS Our data provide insight into the long-term stability of the PBL DNA methylome within an IBD context, facilitating the selection of biologically relevant and robust IBD-associated epigenetic biomarkers with increased potential for independent validation. These data also have potential implications in understanding disease pathogenesis.
Collapse
Affiliation(s)
- Vincent Joustra
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew Y F Li Yim
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ishtu Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Horaizon BV, Delft, the Netherlands
| | - Alex Adams
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jack Satsangi
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Rajaprakash M, Dean LT, Palmore M, Johnson SB, Kaufman J, Fallin DM, Ladd-Acosta C. DNA methylation signatures as biomarkers of socioeconomic position. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac027. [PMID: 36694711 PMCID: PMC9869656 DOI: 10.1093/eep/dvac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
This review article provides a framework for the use of deoxyribonucleic acid (DNA) methylation (DNAm) biomarkers to study the biological embedding of socioeconomic position (SEP) and summarizes the latest developments in the area. It presents the emerging literature showing associations between individual- and neighborhood-level SEP exposures and DNAm across the life course. In contrast to questionnaire-based methods of assessing SEP, we suggest that DNAm biomarkers may offer an accessible metric to study questions about SEP and health outcomes, acting as a personal dosimeter of exposure. However, further work remains in standardizing SEP measures across studies and evaluating consistency across domains, tissue types, and time periods. Meta-analyses of epigenetic associations with SEP are offered as one approach to confirm the replication of DNAm loci across studies. The development of DNAm biomarkers of SEP would provide a method for examining its impact on health outcomes in a more robust way, increasing the rigor of epidemiological studies.
Collapse
Affiliation(s)
- Meghna Rajaprakash
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lorraine T Dean
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meredith Palmore
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sara B Johnson
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joan Kaufman
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniele M Fallin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Watkins SH, Ho K, Testa C, Falk L, Soule P, Nguyen LV, FitzGibbon S, Slack C, Chen JT, Davey Smith G, De Vivo I, Simpkin AJ, Tilling K, Waterman PD, Krieger N, Suderman M, Relton C. The impact of low input DNA on the reliability of DNA methylation as measured by the Illumina Infinium MethylationEPIC BeadChip. Epigenetics 2022; 17:2366-2376. [PMID: 36239035 DOI: 10.1080/15592294.2022.2123898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DNA methylation (DNAm) is commonly assayed using the Illumina Infinium MethylationEPIC BeadChip, but there is currently little published evidence to define the lower limits of the amount of DNA that can be used whilst preserving data quality. Such evidence is valuable for analyses utilizing precious or limited DNA sources. We used a single pooled sample of DNA in quadruplicate at three dilutions to define replicability and noise, and an independent population dataset of 328 individuals (from a community-based study including US-born non-Hispanic Black and white persons) to assess the impact of total DNA input on the quality of data generated using the Illumina Infinium MethylationEPIC BeadChip. We found that data are less reliable and more noisy as DNA input decreases to 40ng, with clear reductions in data quality; and that low DNA input is associated with a reduction in power to detect EWAS associations, requiring larger sample sizes. We conclude that DNA input as low as 40ng can be used with the Illumina Infinium MethylationEPIC BeadChip, provided quality checks and sensitivity analyses are undertaken.
Collapse
Affiliation(s)
- Sarah Holmes Watkins
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Karen Ho
- Bristol Bioresource Laboratories, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Testa
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Louise Falk
- Integrative Cancer Epidemiology Programme (ICEP), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patrice Soule
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Linda V Nguyen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie FitzGibbon
- Bristol Bioresource Laboratories, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catherine Slack
- Bristol Bioresource Laboratories, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jarvis T Chen
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew J Simpkin
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Pamela D Waterman
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Di Lena P, Sala C, Nardini C. Evaluation of different computational methods for DNA methylation-based biological age. Brief Bioinform 2022; 23:6632619. [PMID: 35794713 DOI: 10.1093/bib/bbac274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years there has been a widespread interest in researching biomarkers of aging that could predict physiological vulnerability better than chronological age. Aging, in fact, is one of the most relevant risk factors for a wide range of maladies, and molecular surrogates of this phenotype could enable better patients stratification. Among the most promising of such biomarkers is DNA methylation-based biological age. Given the potential and variety of computational implementations (epigenetic clocks), we here present a systematic review of such clocks. Furthermore, we provide a large-scale performance comparison across different tissues and diseases in terms of age prediction accuracy and age acceleration, a measure of deviance from physiology. Our analysis offers both a state-of-the-art overview of the computational techniques developed so far and a heterogeneous picture of performances, which can be helpful in orienting future research.
Collapse
Affiliation(s)
- Pietro Di Lena
- Department of Computer Science and Engineering, University of Bologna, Mura Anteo Zamboni 7, 40126 Bologna, Italy
| | - Claudia Sala
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | | |
Collapse
|
11
|
Ye Z, Jiang L, Zhao M, Liu J, Dai H, Hou Y, Wang Z. Epigenome-wide screening of CpG markers to develop a multiplex methylation SNaPshot assay for age prediction. Leg Med (Tokyo) 2022; 59:102115. [PMID: 35810521 DOI: 10.1016/j.legalmed.2022.102115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
Age prediction can provide important information about the contributors of biological evidence left at crime scenes. DNA methylation has been regarded as the most promising age-predictive biomarker. Measuring themethylation level at the genome-wide scaleis an important step to screen specific markers for forensic age prediction. In present study, we screened out five age-related CpG sites from the public EPIC BeadChip data and evaluated them in a training set (115 blood) by multiplex methylation SNaPshot assay. Through full subset regression, the five markers were narrowed down to three, namely cg10501210 (C1orf132), cg16867657 (ELOVL2), and cg13108341 (DNAH9), of which the last one was a newly discovered age-related CpG site. An age prediction model was built based on these three markers, explaining 86.8% of the variation of age with a mean absolute deviation (MAD) of 4.038 years. Then, the multiplex methylation SNaPshot assay was adjusted according to the age prediction model. Considering that bloodstains are one of the most common biological samples in practical cases, three validation sets composed of 30 blood, 30 fresh bloodstains and 30 aged bloodstains were used for evaluation of the age prediction model. The MAD of each set was estimated as 4.734, 4.490, and 5.431 years, respectively, suggesting that our age prediction model was applicable for age prediction for blood and bloodstains in Chinese Han population of 11-71 age. In general, this study describes a workflow of screening CpG markers from public chip data and presents a 3-CpG markers model for forensic age prediction.
Collapse
Affiliation(s)
- Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing 100088, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing 100088, China.
| |
Collapse
|
12
|
Olstad EW, Nordeng HME, Sandve GK, Lyle R, Gervin K. Low reliability of DNA methylation across Illumina Infinium platforms in cord blood: implications for replication studies and meta-analyses of prenatal exposures. Clin Epigenetics 2022; 14:80. [PMID: 35765087 PMCID: PMC9238140 DOI: 10.1186/s13148-022-01299-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background There is an increasing interest in the role of epigenetics in epidemiology, but the emerging research field faces several critical biological and technical challenges. In particular, recent studies have shown poor correlation of measured DNA methylation (DNAm) levels within and across Illumina Infinium platforms in various tissues. In this study, we have investigated concordance between 450 k and EPIC Infinium platforms in cord blood. We could not replicate our previous findings on the association of prenatal paracetamol exposure with cord blood DNAm, which prompted an investigation of cross-platform DNAm differences. Results This study is based on two DNAm data sets from cord blood samples selected from the Norwegian Mother, Father and Child Cohort Study (MoBa). DNAm of one data set was measured using the 450 k platform and the other data set was measured using the EPIC platform. Initial analyses of the EPIC data could not replicate any of our previous significant findings in the 450 k data on associations between prenatal paracetamol exposure and cord blood DNAm. A subset of the samples (n = 17) was included in both data sets, which enabled analyses of technical sources potentially contributing to the negative replication. Analyses of these 17 samples with repeated measurements revealed high per-sample correlations (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\stackrel{\mathrm{-}}{\text{R}}\hspace{0.17em}\approx$$\end{document}R-≈ 0.99), but low per-CpG correlations (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\stackrel{\mathrm{-}}{\text{R}}$$\end{document}R- ≈ 0.24) between the platforms. 1.7% of the CpGs exhibited a mean DNAm difference across platforms > 0.1. Furthermore, only 26.7% of the CpGs exhibited a moderate or better cross-platform reliability (intra-class correlation coefficient ≥ 0.5). Conclusion The observations of low cross-platform probe correlation and reliability corroborate previous reports in other tissues. Our study cannot determine the origin of the differences between platforms. Nevertheless, it emulates the setting in studies using data from multiple Infinium platforms, often analysed several years apart. Therefore, the findings may have important implications for future epigenome-wide association studies (EWASs), in replication, meta-analyses and longitudinal studies. Cognisance and transparency of the challenges related to cross-platform studies may enhance the interpretation, replicability and validity of EWAS results both in cord blood and other tissues, ultimately improving the clinical relevance of epigenetic epidemiology. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01299-3.
Collapse
|
13
|
England-Mason G, Merrill SM, Gladish N, Moore SR, Giesbrecht GF, Letourneau N, MacIsaac JL, MacDonald AM, Kinniburgh DW, Ponsonby AL, Saffery R, Martin JW, Kobor MS, Dewey D. Prenatal exposure to phthalates and peripheral blood and buccal epithelial DNA methylation in infants: An epigenome-wide association study. ENVIRONMENT INTERNATIONAL 2022; 163:107183. [PMID: 35325772 DOI: 10.1016/j.envint.2022.107183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah M Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Sarah R Moore
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychology, Faculty of Arts, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Södermanland, Sweden
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada; Program in Child and Brain Development, CIFAR, Toronto, Ontario, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Raffington L, Belsky DW. Integrating DNA Methylation Measures of Biological Aging into Social Determinants of Health Research. Curr Environ Health Rep 2022; 9:196-210. [PMID: 35181865 DOI: 10.1007/s40572-022-00338-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Acceleration of biological processes of aging is hypothesized to drive excess morbidity and mortality in socially disadvantaged populations. DNA methylation measures of biological aging provide tools for testing this hypothesis. RECENT FINDINGS Next-generation DNA methylation measures of biological aging developed to predict mortality risk and physiological decline are more predictive of morbidity and mortality than the original epigenetic clocks developed to predict chronological age. These new measures show consistent evidence of more advanced and faster biological aging in people exposed to socioeconomic disadvantage and may be able to record the emergence of socially determined health inequalities as early as childhood. Next-generation DNA methylation measures of biological aging also indicate race/ethnic disparities in biological aging. More research is needed on these measures in samples of non-Western and non-White populations. New DNA methylation measures of biological aging open opportunities for refining inference about the causes of social disparities in health and devising policies to eliminate them. Further refining measures of biological aging by including more diversity in samples used for measurement development is a critical priority for the field.
Collapse
Affiliation(s)
- Laurel Raffington
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Daniel W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, 722 W 168th St. Rm 413, New York, NY, 10032, USA.
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
15
|
Xiong Z, Li M, Ma Y, Li R, Bao Y. GMQN: A Reference-Based Method for Correcting Batch Effects and Probe Bias in HumanMethylation BeadChip. Front Genet 2022; 12:810985. [PMID: 35069703 PMCID: PMC8777061 DOI: 10.3389/fgene.2021.810985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The Illumina HumanMethylation BeadChip is one of the most cost-effective methods to quantify DNA methylation levels at single-base resolution across the human genome, which makes it a routine platform for epigenome-wide association studies. It has accumulated tens of thousands of DNA methylation array samples in public databases, providing great support for data integration and further analysis. However, the majority of public DNA methylation data are deposited as processed data without background probes which are widely used in data normalization. Here, we present Gaussian mixture quantile normalization (GMQN), a reference based method for correcting batch effects as well as probe bias in the HumanMethylation BeadChip. Availability and implementation: https://github.com/MengweiLi-project/gmqn.
Collapse
Affiliation(s)
- Zhuang Xiong
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengwei Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingke Ma
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Rujiao Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Mustieles V, Rodríguez-Carrillo A, Vela-Soria F, D'Cruz SC, David A, Smagulova F, Mundo-López A, Olivas-Martínez A, Reina-Pérez I, Olea N, Freire C, Arrebola JP, Fernández MF. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150014. [PMID: 34788942 DOI: 10.1016/j.scitotenv.2021.150014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to altered behavior in children. Within the European Human Biomonitoring Initiative (HBM4EU), an adverse outcome pathway (AOP) network was constructed supporting the mechanistic link between BPA exposure and brain-derived neurotrophic factor (BDNF). OBJECTIVE To test this toxicologically-based hypothesis in the prospective INMA-Granada birth cohort (Spain). METHODS BPA concentrations were quantified by LC-MS/MS in spot urine samples from boys aged 9-11 years, normalized by creatinine and log-2 transformed. At adolescence (15-17 years), blood and urine specimens were collected, and serum and urinary BDNF protein levels were measured using immunoassays. DNA methylation levels at 6 CpGs in Exon IV of the BDNF gene were also assessed in peripheral blood using bisulfite-pyrosequencing. Adolescent's behavior was parent-rated using the Child Behavior Checklist (CBCL/6-18) in 148 boys. Adjusted linear regression and mediation models were fit. RESULTS Childhood urinary BPA concentrations were longitudinally and positively associated with thought problems (β = 0.76; 95% CI: 0.02, 1.49) and somatic complaints (β = 0.80; 95% CI: -0.16, 1.75) at adolescence. BPA concentrations were positively associated with BDNF DNA methylation at CpG6 (β = 0.21; 95% CI: 0.06, 0.36) and mean CpG methylation (β = 0.10; 95% CI: 0.01, 0.18), but not with total serum or urinary BDNF protein levels. When independent variables were categorized in tertiles, positive dose-response associations were observed between BPA-thought problems (p-trend = 0.08), BPA-CpG6 (p-trend ≤ 0.01), and CpG6-thought problems (p-trend ≤ 0.01). A significant mediated effect by CpG6 DNA methylation was observed (β = 0.23; 95% CI: 0.01, 0.57), accounting for up to 34% of the BPA-thought problems association. CONCLUSIONS In line with toxicological studies, BPA exposure was longitudinally associated with increased BDNF DNA methylation, supporting the biological plausibility of BPA-behavior relationships previously described in the epidemiological literature. Given its novelty and preliminary nature, this effect biomarker approach should be replicated in larger birth cohorts.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | | | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Fatima Smagulova
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | | | | | | | - Nicolás Olea
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Juan P Arrebola
- Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
17
|
Roberts ML, Kotchen TA, Pan X, Li Y, Yang C, Liu P, Wang T, Laud PW, Chelius TH, Munyura Y, Mattson DL, Liu Y, Cowley AW, Kidambi S, Liang M. Unique Associations of DNA Methylation Regions With 24-Hour Blood Pressure Phenotypes in Blacks. Hypertension 2022; 79:761-772. [PMID: 34994206 PMCID: PMC8917053 DOI: 10.1161/hypertensionaha.121.18584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epigenetic marks (eg, DNA methylation) may capture the effect of gene-environment interactions. DNA methylation is involved in blood pressure (BP) regulation and hypertension development; however, no studies have evaluated its relationship with 24-hour BP phenotypes (daytime, nighttime, and 24-hour average BPs). METHODS We examined the association of whole blood DNA methylation with 24-hour BP phenotypes and clinic BPs in a discovery cohort of 281 Blacks using reduced representation bisulfite sequencing. We developed a deep and region-specific methylation sequencing method, Bisulfite ULtrapLEx Targeted Sequencing and utilized it to validate our findings in a separate validation cohort (n=117). RESULTS Analysis of 38 215 DNA methylation regions (MRs), derived from 1 549 368 CpG sites across the genome, identified up to 72 regions that were significantly associated with 24-hour BP phenotypes. No MR was significantly associated with clinic BP. Two to 3 MRs were significantly associated with various 24-hour BP phenotypes after adjustment for age, sex, and body mass index. Together, these MRs explained up to 16.5% of the variance of 24-hour average BP, while age, sex, and BMI explained up to 11.0% of the variance. Analysis of one of the MRs in an independent cohort using Bisulfite ULtrapLEx Targeted Sequencing confirmed its association with 24-hour average BP phenotype. CONCLUSIONS We identified several MRs that explain a substantial portion of variances in 24-hour BP phenotypes, which might be excellent markers of cumulative effect of factors influencing 24-hour BP levels. The Bisulfite ULtrapLEx Targeted Sequencing workflow has potential to be suitable for clinical testing and population screenings on a large scale.
Collapse
Affiliation(s)
- Michelle L Roberts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| | - Theodore A Kotchen
- Department of Medicine, Medical College of Wisconsin, Milwaukee. (T.A.K., Y.M., S.K.)
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.).,Department of Mathematics, Shanghai Normal University, China (X.P.)
| | - Yingchuan Li
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.).,Department of Critical Care Medicine, Shanghai JiaoTong University affiliated the Sixth People's Hospital, China (Y.L.)
| | - Chun Yang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.).,The Sir Run Run Shaw Hospital, Institute of Translational Medicine, Zhejiang University, China (P.L.)
| | | | - Purushottam W Laud
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee. (P.W.L.)
| | - Thomas H Chelius
- Division of Epidemiology, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee. (T.H.C.)
| | - Yannick Munyura
- Department of Medicine, Medical College of Wisconsin, Milwaukee. (T.A.K., Y.M., S.K.)
| | - David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta (D.L.M.)
| | | | - Allen W Cowley
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| | - Srividya Kidambi
- Department of Medicine, Medical College of Wisconsin, Milwaukee. (T.A.K., Y.M., S.K.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee. (M.L.R., X.P., Y.L., C.Y., P.L., F.L.M., A.W.C., M.L.)
| |
Collapse
|
18
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
19
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
20
|
Xu Z, Taylor JA. Reliability of DNA methylation measures using Illumina methylation BeadChip. Epigenetics 2021; 16:495-502. [PMID: 32749174 PMCID: PMC8078668 DOI: 10.1080/15592294.2020.1805692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Illumina BeadChips are widely utilized in epigenome-wide association studies (EWAS). Several studies have reported that many probes on these arrays have poor reliability. Here, we compare different pre-processing methods to improve intra-class correlation coefficients (ICC). We describe the characteristics of ICC across the genome, within and between studies, and across different array platforms. Using technical duplicates from 128 subjects, we find that with raw data only 22.5% of the CpGs on 450 K array have 'acceptable' ICCs (>0.5). Data preprocessing steps, such as background correction and dye bias correction, can reduce technical noise and improve the percentage to 38.5%. Similar to previous studies, we found that ICC is associated with CpG methylation level such that 83% of CpGs with intermediate methylation (0.1< beta-value <0.9) have acceptable ICCs, whereas only 21% of CpGs with low or high methylation (beta-value <0.1 or >0.9) have acceptable ICCs. ICC is also correlated with CpG methylation variance; after mutual adjustment for beta-value and variance, only variance remains correlated. Many CpGs with poor ICCs (<0.5) are located in biologically important regulatory regions, including gene promoters and CpG islands. Poor ICC at these sites appears to be a consequence of low biologic variation among individuals rather than increased technical measurement variation. ICCs quality classifications are highly concordant across different array platforms and across different studies. We find that ICC can be reliably estimated with 30 pairs of duplicate samples. CpGs with acceptable ICC have higher study power and are more commonly reported in published epigenome-wide studies.
Collapse
Affiliation(s)
- Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| |
Collapse
|
21
|
Keyhan S, Burke E, Schrott R, Huang Z, Grenier C, Price T, Raburn D, Corcoran DL, Soubry A, Hoyo C, Murphy SK. Male obesity impacts DNA methylation reprogramming in sperm. Clin Epigenetics 2021; 13:17. [PMID: 33494820 PMCID: PMC7831195 DOI: 10.1186/s13148-020-00997-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Male obesity has profound effects on morbidity and mortality, but relatively little is known about the impact of obesity on gametes and the potential for adverse effects of male obesity to be passed to the next generation. DNA methylation contributes to gene regulation and is erased and re-established during gametogenesis. Throughout post-pubertal spermatogenesis, there are continual needs to both maintain established methylation and complete DNA methylation programming, even during epididymal maturation. This dynamic epigenetic landscape may confer increased vulnerability to environmental influences, including the obesogenic environment, that could disrupt reprogramming fidelity. Here we conducted an exploratory analysis that showed that overweight/obesity (n = 20) is associated with differences in mature spermatozoa DNA methylation profiles relative to controls with normal BMI (n = 47). RESULTS We identified 3264 CpG sites in human sperm that are significantly associated with BMI (p < 0.05) using Infinium HumanMethylation450 BeadChips. These CpG sites were significantly overrepresented among genes involved in transcriptional regulation and misregulation in cancer, nervous system development, and stem cell pluripotency. Analysis of individual sperm using bisulfite sequencing of cloned alleles revealed that the methylation differences are present in a subset of sperm rather than being randomly distributed across all sperm. CONCLUSIONS Male obesity is associated with altered sperm DNA methylation profiles that appear to affect reprogramming fidelity in a subset of sperm, suggestive of an influence on the spermatogonia. Further work is required to determine the potential heritability of these DNA methylation alterations. If heritable, these changes have the potential to impede normal development.
Collapse
Affiliation(s)
- Sanaz Keyhan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27713, USA
| | - Emily Burke
- Department of Biostatistics, Duke University, Durham, 27710, USA
| | - Rose Schrott
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, 501 W. Main Street, Suite 510, The Chestefield Building, PO Box 90534, Durham, NC, 27701, USA.,Duke University Integrated Toxicology and Environmental Health Program, The Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, 501 W. Main Street, Suite 510, The Chestefield Building, PO Box 90534, Durham, NC, 27701, USA
| | - Carole Grenier
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, 501 W. Main Street, Suite 510, The Chestefield Building, PO Box 90534, Durham, NC, 27701, USA
| | - Thomas Price
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27713, USA
| | - Doug Raburn
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27713, USA
| | - David L Corcoran
- Center for Genomics and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Adelheid Soubry
- Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven University, 2000, Leuven, Belgium
| | - Catherine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27633, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, 501 W. Main Street, Suite 510, The Chestefield Building, PO Box 90534, Durham, NC, 27701, USA. .,Duke University Integrated Toxicology and Environmental Health Program, The Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
22
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Henriksson P, Lentini A, Altmäe S, Brodin D, Müller P, Forsum E, Nestor CE, Löf M. DNA methylation in infants with low and high body fatness. BMC Genomics 2020; 21:769. [PMID: 33167873 PMCID: PMC7654595 DOI: 10.1186/s12864-020-07169-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Birth weight is determined by the interplay between infant genetics and the intrauterine environment and is associated with several health outcomes in later life. Many studies have reported an association between birth weight and DNA methylation in infants and suggest that altered epigenetics may underlie birthweight-associated health outcomes. However, birth weight is a relatively nonspecific measure of fetal growth and consists of fat mass and fat-free mass which may have different effects on health outcomes which motivates studies of infant body composition and DNA methylation. Here, we combined genome-wide DNA methylation profiling of buccal cells from 47 full-term one-week old infants with accurate measurements of infant fat mass and fat-free mass using air-displacement plethysmography. RESULTS No significant association was found between DNA methylation in infant buccal cells and infant body composition. Moreover, no association between infant DNA methylation and parental body composition or indicators of maternal glucose metabolism were found. CONCLUSIONS Despite accurate measures of body composition, we did not identify any associations between infant body fatness and DNA methylation. These results are consistent with recent studies that generally have identified only weak associations between DNA methylation and birthweight. Although our results should be confirmed by additional larger studies, our findings may suggest that differences in DNA methylation between individuals with low and high body fatness may be established later in childhood.
Collapse
Affiliation(s)
- Pontus Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.
| | - Antonio Lentini
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Brodin
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Patrick Müller
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Forsum
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Colm E Nestor
- Crown Princess Victoria Children's Hospital, and Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, 58183, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
24
|
Huang J, Bai L, Cui B, Wu L, Wang L, An Z, Ruan S, Yu Y, Zhang X, Chen J. Leveraging biological and statistical covariates improves the detection power in epigenome-wide association testing. Genome Biol 2020; 21:88. [PMID: 32252795 PMCID: PMC7132874 DOI: 10.1186/s13059-020-02001-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS), which seek the association between epigenetic marks and an outcome or exposure, involve multiple hypothesis testing. False discovery rate (FDR) control has been widely used for multiple testing correction. However, traditional FDR control methods do not use auxiliary covariates, and they could be less powerful if the covariates could inform the likelihood of the null hypothesis. Recently, many covariate-adaptive FDR control methods have been developed, but application of these methods to EWAS data has not yet been explored. It is not clear whether these methods can significantly improve detection power, and if so, which covariates are more relevant for EWAS data. RESULTS In this study, we evaluate the performance of five covariate-adaptive FDR control methods with EWAS-related covariates using simulated as well as real EWAS datasets. We develop an omnibus test to assess the informativeness of the covariates. We find that statistical covariates are generally more informative than biological covariates, and the covariates of methylation mean and variance are almost universally informative. In contrast, the informativeness of biological covariates depends on specific datasets. We show that the independent hypothesis weighting (IHW) and covariate adaptive multiple testing (CAMT) method are overall more powerful, especially for sparse signals, and could improve the detection power by a median of 25% and 68% on real datasets, compared to the ST procedure. We further validate the findings in various biological contexts. CONCLUSIONS Covariate-adaptive FDR control methods with informative covariates can significantly increase the detection power for EWAS. For sparse signals, IHW and CAMT are recommended.
Collapse
Affiliation(s)
- Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Ling Bai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Bowen Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liang Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Liwen Wang
- Department of General Surgery, Rui-Jin Hospital, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhiyin An
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shulin Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yue Yu
- Division of Digital Health Sciences, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Xianyang Zhang
- Department of Statistics, Texas A&M University, Blocker 449D, College Station, TX, 77843, USA.
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
25
|
Abstract
IMPORTANCE Higher overall leukocyte counts in women may be associated with increased risk of breast cancer, but the association of specific leukocyte subtypes with breast cancer risk remains unknown. OBJECTIVE To determine associations between circulating leukocyte subtypes and risk of breast cancer. DESIGN, SETTING, AND PARTICIPANTS Between 2003 and 2009, the Sister Study enrolled 50 884 women who had a sister previously diagnosed with breast cancer but were themselves breast cancer free. A case-cohort subsample was selected in July 2014 from the full Sister Study cohort. Blood samples were obtained at baseline, and women were followed up through October 2016. Data analysis was performed in April 2019. MAIN OUTCOMES AND MEASURES The main outcome was the development of breast cancer in women. Whole-blood DNA methylation was measured, and methylation values were deconvoluted using the Houseman method to estimate proportions of 6 leukocyte subtypes (B cells, natural killer cells, CD8+ and CD4+ T cells, monocytes, and granulocytes). Leukocyte subtype proportions were dichotomized at their population median value, and Cox proportional hazard models were used to estimate associations with breast cancer. RESULTS Among 2774 non-Hispanic white women included in the analysis (mean [SD] age at enrollment, 56.6 [8.8] years), 1295 women were randomly selected from the full cohort (of whom 91 developed breast cancer) along with an additional 1479 women who developed breast cancer during follow-up (mean [SD] time to diagnosis, 3.9 [2.2] years). Circulating proportions of B cells were positively associated with later breast cancer (hazard ratio [HR], 1.17; 95% CI, 1.01-1.36; P = .04). Among women who were premenopausal at blood collection, the association between B cells and breast cancer was significant (HR, 1.38; 95% CI, 1.05-1.82; P = .02), and an inverse association for circulating proportions of monocytes was found (HR, 0.75; 95% CI, 0.57-0.99; P = .05). Among all women, associations between leukocyte subtypes and breast cancer were time dependent: higher monocyte proportions were associated with decreased near-term risk (within 1 year of blood collection, HR, 0.62; 95% CI, 0.43-0.89; P = .01), whereas higher B cell proportions were associated with increased risk 4 or more years after blood collection (HR, 1.38; 95% CI, 1.15-1.67; P = .001). CONCLUSIONS AND RELEVANCE Circulating leukocyte profiles may be altered before clinical diagnoses of breast cancer and may be time-dependent markers for breast cancer risk, particularly among premenopausal women.
Collapse
Affiliation(s)
- Jacob K. Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
26
|
Konwar C, Del Gobbo G, Yuan V, Robinson WP. Considerations when processing and interpreting genomics data of the placenta. Placenta 2019; 84:57-62. [PMID: 30642669 PMCID: PMC6612459 DOI: 10.1016/j.placenta.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
The application of genomic approaches to placental research has opened exciting new avenues to help us understand basic biological properties of the placenta, improve prenatal screening/diagnosis, and measure effects of in utero exposures on child health outcomes. In the last decade, such large-scale genomic data (including epigenomics and transcriptomics) have become more easily accessible to researchers from many disciplines due to the increasing ease of obtaining such data and the rapidly evolving computational tools available for analysis. While the potential of large-scale studies has been widely promoted, less attention has been given to some of the challenges associated with processing and interpreting such data. We hereby share some of our experiences in assessing data quality, reproducibility, and interpretation in the context of genome-wide studies of the placenta, with the aim to improve future studies. There is rarely a single "best" approach, as that can depend on the study question and sample cohort. However, being consistent, thoroughly assessing potential confounders in the data, and communicating key variables in the methods section of the manuscript are critically important to help researchers to collaborate and build on each other's work.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Giulia Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Victor Yuan
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| |
Collapse
|
27
|
Kidney cytosine methylation changes improve renal function decline estimation in patients with diabetic kidney disease. Nat Commun 2019; 10:2461. [PMID: 31165727 PMCID: PMC6549146 DOI: 10.1038/s41467-019-10378-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic changes might provide the biological explanation for the long-lasting impact of metabolic alterations of diabetic kidney disease development. Here we examined cytosine methylation of human kidney tubules using Illumina Infinium 450 K arrays from 91 subjects with and without diabetes and varying degrees of kidney disease using a cross-sectional design. We identify cytosine methylation changes associated with kidney structural damage and build a model for kidney function decline. We find that the methylation levels of 65 probes are associated with the degree of kidney fibrosis at genome wide significance. In total 471 probes improve the model for kidney function decline. Methylation probes associated with kidney damage and functional decline enrich on kidney regulatory regions and associate with gene expression changes, including epidermal growth factor (EGF). Altogether, our work shows that kidney methylation differences can be detected in patients with diabetic kidney disease and improve kidney function decline models indicating that they are potentially functionally important. Patients with diabetes commonly develop diabetic kidney disease (DKD). Here Gluck et al. identify a set of probes differentially methylated in renal samples from patients with DKD, and find that inclusion of these methylation probes improves current prediction models of renal function decline.
Collapse
|
28
|
Peng F, Feng L, Chen J, Wang L, Li P, Ji A, Zeng C, Liu F, Li C. Validation of methylation-based forensic age estimation in time-series bloodstains on FTA cards and gauze at room temperature conditions. Forensic Sci Int Genet 2019; 40:168-174. [PMID: 30878720 DOI: 10.1016/j.fsigen.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 01/17/2023]
Abstract
We previously proposed a prediction model consisting of 9 CpG sites for forensic age estimation with high practical potentials in Chinese males. Here, we further evaluated the performance of this prediction model in two independent batches of time-series bloodstain samples naturally exposed to room temperature conditions. The first batch consists of 30 Han Chinese males (18-59 years of age) whose peripheral blood was converted into bloodstains on Flinders Technology Association (FTA) cards and naturally exposed to room temperature conditions for different time points up to 3 months. The second batch consists of 99 Han Chinese males (21-66 years of age) whose peripheral blood was divided into 3 replicates, converted into bloodstains on gauze, and naturally exposed to room temperature conditions for 3 months. For each time point and each replicate, the methylation levels at the 9 CpG sites were detected using the EpiTYPER system. Applying the 9-CpG age prediction model to these bloodstain samples resulted in highly accurate age predictions for all time points and replicates (0.81 <R2 < 0.91, 2.94 < MAD < 3.55 years). The updated model combining our previous and current data achieved similarly high prediction results. Therefore, our 9-CpG age prediction model was successfully validated in time-series bloodstain samples converted on both FTA card and gauze under natural room temperature conditions, demonstrating high potentials in future forensic applications to Han Chinese males.
Collapse
Affiliation(s)
- Fuduan Peng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lei Feng
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, China.
| | - Jing Chen
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Ling Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Pei Li
- Xingtai Public Security Bureau, Hebei, China
| | - Anquan Ji
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China; Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | - Caixia Li
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Ministry of Public Security, Beijing, China.
| |
Collapse
|
29
|
Walker RM, MacGillivray L, McCafferty S, Wrobel N, Murphy L, Kerr SM, Morris SW, Campbell A, McIntosh AM, Porteous DJ, Evans KL. Assessment of dried blood spots for DNA methylation profiling. Wellcome Open Res 2019; 4:44. [PMID: 30984878 PMCID: PMC6446498 DOI: 10.12688/wellcomeopenres.15136.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 11/26/2022] Open
Abstract
Background: DNA methylation reflects health-related environmental exposures and genetic risk, providing insights into aetiological mechanisms and potentially predicting disease onset, progression and treatment response. An increasingly recognised need for large-scale, longitudinally-profiled samples collected world-wide has made the development of efficient and straightforward sample collection and storage procedures a pressing issue. An alternative to the low-temperature storage of EDTA tubes of venous blood samples, which are frequently the source of the DNA used in such studies, is to collect and store at room temperature blood samples using purpose built filter paper, such as Whatman FTA® cards. Our goal was to determine whether DNA stored in this manner can be used to generate DNA methylation profiles comparable to those generated using blood samples frozen in EDTA tubes. Methods: DNA methylation profiles were obtained from matched EDTA tube and Whatman FTA® card whole-blood samples from 62 Generation Scotland: Scottish Family Health Study participants using the Infinium HumanMethylation450 BeadChip. Multiple quality control procedures were implemented, the relationship between the two sample types assessed, and epigenome-wide association studies (EWASs) performed for smoking status, age and the interaction between these variables and sample storage method. Results: Dried blood spot (DBS) DNA methylation profiles were of good quality and DNA methylation profiles from matched DBS and EDTA tube samples were highly correlated (mean
r = 0.991) and could distinguish between participants. EWASs replicated established associations for smoking and age, with no evidence for moderation by storage method. Conclusions: Our results support the use of Whatman FTA® cards for collecting and storing blood samples for DNA methylation profiling. This approach is likely to be particularly beneficial for large-scale studies and those carried out in areas where freezer access is limited. Furthermore, our results will inform consideration of the use of newborn heel prick DBSs for research use.
Collapse
Affiliation(s)
- Rosie M Walker
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Louise MacGillivray
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Sarah McCafferty
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Shona M Kerr
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Stewart W Morris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Archie Campbell
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK.,Division of Psychiatry, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - David J Porteous
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK.,Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| | - Kathryn L Evans
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Midlothian, EH4 2XU, UK
| |
Collapse
|
30
|
Zhou C, Li J, Li Q, Liu H, Ye D, Wu Z, Shen Z, Deng H. The clinical significance of HOXA9 promoter hypermethylation in head and neck squamous cell carcinoma. J Clin Lab Anal 2019; 33:e22873. [PMID: 30843252 PMCID: PMC6595302 DOI: 10.1002/jcla.22873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The purpose of the current study was to assess the association between HOXA9 (homeobox A9) promoter methylation and head and neck squamous cell carcinoma (HNSCC) and its diagnostic value. METHODS Quantitative methylation-specific PCR (qMSP) was applied to measure HOXA9 promoter methylation levels in 145 paired HNSCC and corresponding normal tissue samples. Data from the Cancer Genome Atlas (TCGA) database (n = 578; 528 HNSCC and 50 normal) were also analyzed. RESULTS Significantly higher levels of HOXA9 promoter methylation were detected in HNSCC, compared with normal, tissues (our cohort: P = 1.06E-35; TCGA cohort: P = 3.06E-39). Moreover, HOXA9 methylation was significantly increased in patients with advanced tumor (T) stage, lymph node metastasis, and advanced clinical stage. Areas under the receiver characteristic curves (AUCs) based on our cohort and TCGA data were 0.930 and 0.967, respectively. CONCLUSION In summary, our study reveals that HOXA9 promoter hypermethylation contributes to the risk of HNSCC and its progression and metastasis. Additionally, HOXA9 hypermethylation is a potential biomarker for the early diagnosis and screening of patients with HNSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jinyun Li
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Huigao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo, China
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.,Laboratory of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
31
|
Folger AT, Ding L, Ji H, Yolton K, Ammerman RT, Van Ginkel JB, Bowers K. Neonatal NR3C1 Methylation and Social-Emotional Development at 6 and 18 Months of Age. Front Behav Neurosci 2019; 13:14. [PMID: 30804765 PMCID: PMC6371639 DOI: 10.3389/fnbeh.2019.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
The variation in childhood social-emotional development within at-risk populations may be attributed in part to epigenetic mechanisms such as DNA methylation (DNAm) that respond to environmental stressors. These mechanisms may partially underlie the degree of vulnerability (and resilience) to negative social-emotional development within adverse psychosocial environments. Extensive research supports an association between maternal adversity and offspring DNAm of the NR3C1 gene, which encodes the glucocorticoid receptor (GR). A gap in knowledge remains regarding the relationship between NR3C1 DNAm, measured in neonatal (1-month of age) buccal cells, and subsequent social-emotional development during infancy and early childhood. We conducted a longitudinal cohort study of n = 53 mother-child dyads (n = 30 with developmental outcomes formed the basis of current study) who were enrolled in a home visiting (HV) program. Higher mean DNAm of the NR3C1 exon 1F promoter was significantly associated with lower 6-month Ages and Stages Questionnaire: Social-Emotional (ASQ:SE) scores-more positive infant social-emotional functioning. A similar trend was observed at 18-months of age in a smaller sample (n = 12). The findings of this pilot study indicate that in a diverse and disadvantaged population, the level of neonatal NR3C1 DNAm is related to later social-emotional development. Limitations and implications for future research are discussed.
Collapse
Affiliation(s)
- Alonzo T. Folger
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of Biostatistics and Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lili Ding
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of Biostatistics and Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
| | - Kimberly Yolton
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of General and Community Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Robert T. Ammerman
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of Behavioral Medicine and Clinical Psychology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Judith B. Van Ginkel
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine Bowers
- Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Division of Biostatistics and Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
32
|
Provenzi L, Brambilla M, Borgatti R, Montirosso R. Methodological Challenges in Developmental Human Behavioral Epigenetics: Insights Into Study Design. Front Behav Neurosci 2018; 12:286. [PMID: 30532698 PMCID: PMC6266797 DOI: 10.3389/fnbeh.2018.00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 11/21/2022] Open
Abstract
Developmental human behavioral epigenetics (DHBE) holds potential for contributing to better understanding of how early life exposures contribute to human developmental trajectories and to inform clinical practice and early interventions. Nonetheless, DHBE research to date is challenged by two major issues: (a) the frequent use of retrospective study designs; and (b) the major focus on epigenetic variations associated with early life adversities, rather than protective care exposures. In order for DHBE research to maintain its promises, these issues need to be addressed in a systematic way according to a careful methodological planning of study design. In this contribution, we provide pragmatic insights on methodological aspects that should be dealt with while designing DHBE studies. We propose different study designs for the retrospective and prospective investigation of both adversity- and care-related epigenetic variations. Examples from available scientific literature are provided to better describe the advantages and the limitations of each study design.
Collapse
Affiliation(s)
- Livio Provenzi
- Scientific Institute, IRCCS Eugenio Medea, 0-3 Center for the at-Risk Infant, Bosisio Parini, Italy
| | - Maddalena Brambilla
- Scientific Institute, IRCCS Eugenio Medea, 0-3 Center for the at-Risk Infant, Bosisio Parini, Italy
| | - Renato Borgatti
- Scientific Institute, IRCCS Eugenio Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Italy
| | - Rosario Montirosso
- Scientific Institute, IRCCS Eugenio Medea, 0-3 Center for the at-Risk Infant, Bosisio Parini, Italy
| |
Collapse
|
33
|
Abstract
Prenatal adversity shapes child neurodevelopment and risk for later mental health problems. The quality of the early care environment can buffer some of the negative effects of prenatal adversity on child development. Retrospective studies, in adult samples, highlight epigenetic modifications as sentinel markers of the quality of the early care environment; however, comparable data from pediatric cohorts are lacking. Participants were drawn from the Maternal Adversity Vulnerability and Neurodevelopment (MAVAN) study, a longitudinal cohort with measures of infant attachment, infant development, and child mental health. Children provided buccal epithelial samples (mean age = 6.99, SD = 1.33 years, n = 226), which were used for analyses of genome-wide DNA methylation and genetic variation. We used a series of linear models to describe the association between infant attachment and (a) measures of child outcome and (b) DNA methylation across the genome. Paired genetic data was used to determine the genetic contribution to DNA methylation at attachment-associated sites. Infant attachment style was associated with infant cognitive development (Mental Development Index) and behavior (Behavior Rating Scale) assessed with the Bayley Scales of Infant Development at 36 months. Infant attachment style moderated the effects of prenatal adversity on Behavior Rating Scale scores at 36 months. Infant attachment was also significantly associated with a principal component that accounted for 11.9% of the variation in genome-wide DNA methylation. These effects were most apparent when comparing children with a secure versus a disorganized attachment style and most pronounced in females. The availability of paired genetic data revealed that DNA methylation at approximately half of all infant attachment-associated sites was best explained by considering both infant attachment and child genetic variation. This study provides further evidence that infant attachment can buffer some of the negative effects of early adversity on measures of infant behavior. We also highlight the interplay between infant attachment and child genotype in shaping variation in DNA methylation. Such findings provide preliminary evidence for a molecular signature of infant attachment and may help inform attachment-focused early intervention programs.
Collapse
|
34
|
Zaimi I, Pei D, Koestler DC, Marsit CJ, De Vivo I, Tworoger SS, Shields AE, Kelsey KT, Michaud DS. Variation in DNA methylation of human blood over a 1-year period using the Illumina MethylationEPIC array. Epigenetics 2018; 13:1056-1071. [PMID: 30270718 PMCID: PMC6342169 DOI: 10.1080/15592294.2018.1530008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 09/22/2018] [Indexed: 12/29/2022] Open
Abstract
Assessing DNA methylation profiles in human blood has become a major focus of epidemiologic inquiry. Understanding variability in CpG-specific DNA methylation over moderate periods of time is a critical first step in identifying CpG sites that are candidates for DNA methylation-based etiologic, diagnostic and prognostic predictors of pathogenesis. Using the Illumina MethylationEPIC [850K] BeadArray, DNA methylation was profiled in paired whole blood samples collected approximately 1 year apart from 35 healthy women enrolled in the Nurses Study II cohort. The median intraclass correlation coefficient (ICC) across all CpG loci was 0.19 [Interquartile Range (IQR) 0.00-0.50]; 74.8% of ICCs were in the low range (0-0.5), 16.9% in the mid-range of ICCs (0.5-0.8), and 8.3% in the high-range of ICCs (0.8-1). ICCs were similar for CpG probes on the 450K Illumina array (median 0.17) and the new probes added to the 850K array (median 0.21). ICCs for CpG loci on the sex chromosomes and known metastable epialleles were high (median 0.71, 0.97, respectively), and ICCs among methylation quantitative trait loci (mQTL) CpGs were significantly higher as compared to non-mQTL CpGs (median 0.73, 0.16, respectively, P < 2 × 10-16). We observed wide variation in DNA methylation stability over a 1-year period. Probes considered non-stable, due to substantial variation over a moderate period of time and with minimal variability across individuals could be removed in large epidemiological studies. Moreover, adjusting for technical variation that arises from using high-dimensional arrays is critical.
Collapse
Affiliation(s)
- Ina Zaimi
- a Department of Public Health & Community Medicine, Tufts University School of Medicine , Tufts University , Boston , USA
| | - Dong Pei
- b Department of Biostatistics , University of Kansas Medical Center , Kansas City , USA
- c University of Kansas Cancer Center , The University of Kansas Medical Center , Kansas City , USA
| | - Devin C Koestler
- b Department of Biostatistics , University of Kansas Medical Center , Kansas City , USA
- c University of Kansas Cancer Center , The University of Kansas Medical Center , Kansas City , USA
| | - Carmen J Marsit
- d Department of Environmental Health and Department of Epidemiology, Rollins School of Public Health , Emory University , Atlanta , USA
| | - Immaculata De Vivo
- e Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , USA
| | - Shelley S Tworoger
- f Department of Cancer Epidemiology , Moffitt Cancer Center , Tampa , USA
- g Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , USA
| | - Alexandra E Shields
- h Department of Medicine , Harvard Medical School , Boston , MA , USA
- k Harvard/MGH Center on Genomics, Vulnerable Populations, and Health Disparities , Massachusetts General Hospital , Boston , MA , USA
| | - Karl T Kelsey
- i Department of Epidemiology , Brown University , Providence , USA
- j Department of Pathology and Laboratory Medicine , Brown University , Providence , USA
| | - Dominique S Michaud
- a Department of Public Health & Community Medicine, Tufts University School of Medicine , Tufts University , Boston , USA
- i Department of Epidemiology , Brown University , Providence , USA
| |
Collapse
|
35
|
Williams LA, Mills L, Hooten AJ, Langer E, Roesler M, Frazier AL, Krailo M, Nelson HH, Bestrashniy J, Amatruda JF, Poynter JN. Differences in DNA methylation profiles by histologic subtype of paediatric germ cell tumours: a report from the Children's Oncology Group. Br J Cancer 2018; 119:864-872. [PMID: 30287918 PMCID: PMC6189207 DOI: 10.1038/s41416-018-0277-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Abnormal DNA methylation may be important in germ cell tumour (GCT) aetiology, as germ cells undergo complete epigenetic reprogramming during development. GCTs show differences in global and promoter methylation patterns by histologic subtype. We conducted an epigenome-wide study to identify methylation differences by GCT histology. METHODS Using the Illumina HumanMethylation450K array we measured methylation in 154 paediatric GCTs (21 germinomas/seminomas/dysgerminoma, 70 yolk sac tumours [YST], 9 teratomas, and 54 mixed histology tumours). We identified differentially methylated regions (DMRs) between GCT histologies by comparing methylation beta values. RESULTS We identified 8,481 DMRs (FWER < 0.05). Unsupervised hierarchical clustering of individual probes within DMRs resulted in four high level clusters closely corresponding to tumour histology. Clusters corresponding to age, location, sex and FFPE status were not observed within these DMRs. Germinomas displayed lower levels of methylation across the DMRs relative to the other histologic subtypes. Pathway analysis on the top 10% of genes with differential methylation in germinomas/seminomas/dysgerminoma compared to YST suggested angiogenesis and immune cell-related pathways displayed decreased methylation in germinomas/seminomas/dysgerminoma relative to YST. CONCLUSIONS Paediatric GCT histologies have differential methylation patterns. The genes that are differentially methylated may provide insights into GCT aetiology including the timing of GCT initiation.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Lauren Mills
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anthony J Hooten
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Erica Langer
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michelle Roesler
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Mark Krailo
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heather H Nelson
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jessica Bestrashniy
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny N Poynter
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Thomas M, Knoblich N, Wallisch A, Glowacz K, Becker-Sadzio J, Gundel F, Brückmann C, Nieratschker V. Increased BDNF methylation in saliva, but not blood, of patients with borderline personality disorder. Clin Epigenetics 2018; 10:109. [PMID: 30134995 PMCID: PMC6106893 DOI: 10.1186/s13148-018-0544-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background The importance of epigenetic alterations in psychiatric disorders is increasingly acknowledged and the use of DNA methylation patterns as markers of disease is a topic of ongoing investigation. Recent studies suggest that patients suffering from Borderline Personality Disorder (BPD) display differential DNA methylation of various genes relevant for neuropsychiatric conditions. For example, several studies report differential methylation in the promoter region of the brain-derived neurotrophic factor gene (BDNF) in blood. However, little is known about BDNF methylation in other tissues. Results In the present study, we analyzed DNA methylation of the BDNF IV promoter in saliva and blood of 41 BPD patients and 41 matched healthy controls and found significant hypermethylation in the BPD patient’s saliva, but not blood. Further, we report that BDNF methylation in saliva of BPD patients significantly decreased after a 12-week psychotherapeutic intervention. Conclusions Providing a direct comparison of BDNF methylation in blood and saliva of the same individuals, our results demonstrate the importance of choice of tissue for the study of DNA methylation. In addition, they indicate a better suitability of saliva for the study of differential BDNF methylation in BPD patients. Further, our data appear to indicate a reversal of disease-specific alterations in BDNF methylation in response to psychotherapy, though further experiments are necessary to validate these results and determine the specificity of the effect. Electronic supplementary material The online version of this article (10.1186/s13148-018-0544-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mara Thomas
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nora Knoblich
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Annalena Wallisch
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Katarzyna Glowacz
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Julia Becker-Sadzio
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Friederike Gundel
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Christof Brückmann
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Calwerstr. 14, 72076, Tübingen, Germany.
| |
Collapse
|