1
|
Raitoharju E, Rajić S, Marttila S. Non-coding 886 ( nc886/ vtRNA2-1), the epigenetic odd duck - implications for future studies. Epigenetics 2024; 19:2332819. [PMID: 38525792 DOI: 10.1080/15592294.2024.2332819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding 886 (nc886, vtRNA2-1) is the only human polymorphically imprinted gene, in which the methylation status is not determined by genetics. Existing literature regarding the establishment, stability and consequences of the methylation pattern, as well as the nature and function of the nc886 RNAs transcribed from the locus, are contradictory. For example, the methylation status of the locus has been reported to be stable through life and across somatic tissues, but also susceptible to environmental effects. The nature of the produced nc886 RNA(s) has been redefined multiple times, and in carcinogenesis, these RNAs have been reported to have conflicting roles. In addition, due to the bimodal methylation pattern of the nc886 locus, traditional genome-wide methylation analyses can lead to false-positive results, especially in smaller datasets. Herein, we aim to summarize the existing literature regarding nc886, discuss how the characteristics of nc886 give rise to contradictory results, as well as to reinterpret, reanalyse and, where possible, replicate the results presented in the current literature. We also introduce novel findings on how the distribution of the nc886 methylation pattern is associated with the geographical origins of the population and describe the methylation changes in a large variety of human tumours. Through the example of this one peculiar genetic locus and RNA, we aim to highlight issues in the analysis of DNA methylation and non-coding RNAs in general and offer our suggestions for what should be taken into consideration in future analyses.
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
Lee YS, Lee YS. The mystique of epigenetic regulation: the remarkable case of a human noncoding RNA, nc886. Epigenomics 2024:1-17. [PMID: 39466123 DOI: 10.1080/17501911.2024.2415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
nc886 is a regulatory noncoding RNA that is transcribed by RNA polymerase III (Pol III), is variably expressed in different biological contexts, and plays roles in inflammation and cancer. Epigenetic mechanisms play an intriguing role in regulating nc886 expression. As a maternally imprinted gene and metastable epiallele, nc866 exhibits polymorphic imprinting, with a methylation status that is influenced by environmental and biological factors. Consequently, the promoter DNA methylation status and the different resulting RNA expression levels of nc886 are associated with physiological and pathological conditions. In this review, we summarize the literature and explore the significance in relation to diverse roles of nc886.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Rare Cancer Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| |
Collapse
|
3
|
Enkhmandakh B, Joshi P, Robson P, Vijaykumar A, Mina M, Shin DG, Bayarsaihan D. Single-cell Transcriptome Landscape of DNA Methylome Regulators Associated with Orofacial Clefts in the Mouse Dental Pulp. Cleft Palate Craniofac J 2024; 61:1480-1492. [PMID: 37161276 DOI: 10.1177/10556656231172296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVE Significant evidence links epigenetic processes governing the dynamics of DNA methylation and demethylation to an increased risk of syndromic and nonsyndromic cleft lip and/or cleft palate (CL/P). Previously, we characterized mesenchymal stem/stromal cells (MSCs) at different stages of osteogenic differentiation in the mouse incisor dental pulp. The main objective of this research was to characterize the transcriptional landscape of regulatory genes associated with DNA methylation and demethylation at a single-cell resolution. DESIGN We used single-cell RNA sequencing (scRNA-seq) data to characterize transcriptome in individual subpopulations of MSCs in the mouse incisor dental pulp. SETTINGS The biomedical research institution. PATIENTS/PARTICIPANTS This study did not include patients. INTERVENTIONS This study collected and analyzed data on the single-cell RNA expssion in the mouse incisor dental pulp. MAIN OUTCOME MEASURE(S) Molecular regulators of DNA methylation/demethylation exhibit differential transcriptional landscape in different subpopulations of osteogenic progenitor cells. RESULTS scRNA-seq analysis revealed that genes encoding DNA methylation and demethylation enzymes (DNA methyltransferases and members of the ten-eleven translocation family of methylcytosine dioxygenases), methyl-DNA binding domain proteins, as well as transcription factors and chromatin remodeling proteins that cooperate with DNA methylation machinery are differentially expressed within distinct subpopulations of MSCs that undergo different stages of osteogenic differentiation. CONCLUSIONS These findings suggest some mechanistic insights into a potential link between epigenetic alterations and multifactorial causes of CL/P phenotypes.
Collapse
Affiliation(s)
- Badam Enkhmandakh
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Single Cell Biology Laboratory, Farmington, CT, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
4
|
Ulschmid CM, Sun MR, Jabbarpour CR, Steward AC, Rivera-González KS, Cao J, Martin AA, Barnes M, Wicklund L, Madrid A, Papale LA, Joseph DB, Vezina CM, Alisch RS, Lipinski RJ. Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice. Proc Natl Acad Sci U S A 2024; 121:e2317668121. [PMID: 38194455 PMCID: PMC10801837 DOI: 10.1073/pnas.2317668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024] Open
Abstract
Orofacial clefts of the lip and palate are widely recognized to result from complex gene-environment interactions, but inadequate understanding of environmental risk factors has stymied development of prevention strategies. We interrogated the role of DNA methylation, an environmentally malleable epigenetic mechanism, in orofacial development. Expression of the key DNA methyltransferase enzyme DNMT1 was detected throughout palate morphogenesis in the epithelium and underlying cranial neural crest cell (cNCC) mesenchyme, a highly proliferative multipotent stem cell population that forms orofacial connective tissue. Genetic and pharmacologic manipulations of DNMT activity were then applied to define the tissue- and timing-dependent requirement of DNA methylation in orofacial development. cNCC-specific Dnmt1 inactivation targeting initial palate outgrowth resulted in OFCs, while later targeting during palatal shelf elevation and elongation did not. Conditional Dnmt1 deletion reduced cNCC proliferation and subsequent differentiation trajectory, resulting in attenuated outgrowth of the palatal shelves and altered development of cNCC-derived skeletal elements. Finally, we found that the cellular mechanisms of cleft pathogenesis observed in vivo can be recapitulated by pharmacologically reducing DNA methylation in multipotent cNCCs cultured in vitro. These findings demonstrate that DNA methylation is a crucial epigenetic regulator of cNCC biology, define a critical period of development in which its disruption directly causes OFCs, and provide opportunities to identify environmental influences that contribute to OFC risk.
Collapse
Affiliation(s)
- Caden M. Ulschmid
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Christopher R. Jabbarpour
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Austin C. Steward
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Kenneth S. Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
- Molecular and Environmental Toxicology Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Jocelyn Cao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Macy Barnes
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Lorena Wicklund
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Andy Madrid
- Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Ligia A. Papale
- Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Diya B. Joseph
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
- Molecular and Environmental Toxicology Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Reid S. Alisch
- Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI53706
- Molecular and Environmental Toxicology Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
5
|
Derakhshan M, Kessler NJ, Hellenthal G, Silver MJ. Metastable epialleles in humans. Trends Genet 2024; 40:52-68. [PMID: 38000919 DOI: 10.1016/j.tig.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
First identified in isogenic mice, metastable epialleles (MEs) are loci where the extent of DNA methylation (DNAm) is variable between individuals but correlates across tissues derived from different germ layers within a given individual. This property, termed systemic interindividual variation (SIV), is attributed to stochastic methylation establishment before germ layer differentiation. Evidence suggests that some putative human MEs are sensitive to environmental exposures in early development. In this review we introduce key concepts pertaining to human MEs, describe methods used to identify MEs in humans, and review their genomic features. We also highlight studies linking DNAm at putative human MEs to early environmental exposures and postnatal (including disease) phenotypes.
Collapse
Affiliation(s)
- Maria Derakhshan
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Noah J Kessler
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | - Matt J Silver
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, The Gambia.
| |
Collapse
|
6
|
Sun B, Reynolds K, Saha SK, Zhang S, McMahon M, Zhou CJ. Ezh2-dependent methylation in oral epithelia promotes secondary palatogenesis. Birth Defects Res 2023; 115:1851-1865. [PMID: 37435868 PMCID: PMC10784412 DOI: 10.1002/bdr2.2216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND In addition to genomic risk variants and environmental influences, increasing evidence suggests epigenetic modifications are important for orofacial development and their alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown. AIMS To investigate the epithelial role of Ezh2-dependent methylation in secondary palatogenesis. METHODS We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they have synergistic roles in palatogenesis. RESULTS We found that conditional inactivation of Ezh2 in oral epithelia results in partially penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis. CONCLUSION Ezh2-dependent histone H3K27 methylation represses expression of cell cycle regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate elevation which may result in failure of the secondary palate to close altogether.
Collapse
Affiliation(s)
| | | | - Subbroto Kuma Saha
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Shuwen Zhang
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Moira McMahon
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine of Shriners Hospital for Children – Northern California & Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Kini U. Genetics and orofacial clefts: a clinical perspective. Br Dent J 2023; 234:947-952. [PMID: 37349452 PMCID: PMC10287552 DOI: 10.1038/s41415-023-5994-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Orofacial clefts (OFCs) are the most common congenital craniofacial anomaly seen in humans. Most OFCs are sporadic and isolated - these are thought to be multifactorial in origin. Chromosomal and monogenic variants account for the syndromic forms and for some of the non-syndromic inherited forms. This review discusses the importance of genetic testing and the current clinical strategy to deliver a genomics service that is of direct benefit to patients and their families.
Collapse
Affiliation(s)
- Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals, UK; Spires Cleft Service, Oxford University Hospitals, UK; NDCLS, Radcliffe Department of Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
8
|
Petrin AL, Zeng E, Thomas MA, Moretti-Ferreira D, Marazita ML, Xie XJ, Murray JC, Moreno-Uribe LM. DNA methylation differences in monozygotic twins with Van der Woude syndrome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120948. [PMID: 36936396 PMCID: PMC10019782 DOI: 10.3389/fdmed.2023.1120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.
Collapse
Affiliation(s)
- A. L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - E. Zeng
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - M. A. Thomas
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D. Moretti-Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M. L. Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - X. J. Xie
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - J. C. Murray
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - L. M. Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| |
Collapse
|
9
|
Iwaya C, Suzuki A, Iwata J. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate. Int J Mol Sci 2023; 24:3552. [PMID: 36834963 PMCID: PMC9958963 DOI: 10.3390/ijms24043552] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
10
|
Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, Grimm SL, Jun G, Li Y, Chen R, Wiemels JL, Coarfa C, Waterland RA. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol 2023; 24:2. [PMID: 36631879 PMCID: PMC9835319 DOI: 10.1186/s13059-022-02827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Harry MacKay
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - C. Anthony Scott
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Shaobo Li
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Eleonora Laritsky
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Maria S. Baker
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Sandra L. Grimm
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Goo Jun
- grid.267308.80000 0000 9206 2401Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yumei Li
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Joseph L. Wiemels
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Robert A. Waterland
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
11
|
Lipinski RJ, Krauss RS. Gene-environment interactions in birth defect etiology: Challenges and opportunities. Curr Top Dev Biol 2023; 152:1-30. [PMID: 36707208 PMCID: PMC9942595 DOI: 10.1016/bs.ctdb.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.
Collapse
Affiliation(s)
- Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States,Corresponding authors: ;
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Corresponding authors: ;
| |
Collapse
|
12
|
Alvizi L, Brito LA, Kobayashi GS, Bischain B, da Silva CBF, Ramos SLG, Wang J, Passos-Bueno MR. m ir152 hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics 2022; 17:2278-2295. [PMID: 36047706 PMCID: PMC9665146 DOI: 10.1080/15592294.2022.2115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both in vitro and in vivo approaches to dissect the functional effects of epigenetic changes. We found a region in mir152 that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to mir152 overexpression. mir152 overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. In vivo analysis using zebrafish embryos revealed that mir152 upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to mir152 upregulation combined with mir152 hypomethylation and also analogous palatal alterations. We therefore propose that mir152 hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.
Collapse
Affiliation(s)
- Lucas Alvizi
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Luciano Abreu Brito
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | - Bárbara Bischain
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | | | | | - Jaqueline Wang
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil
| |
Collapse
|
13
|
Charoenvicha C, Sirimaharaj W, Khwanngern K, Chattipakorn N, Chattipakorn SC. Alterations in DNA Methylation in Orofacial Clefts. Int J Mol Sci 2022; 23:ijms232112727. [PMID: 36361518 PMCID: PMC9654384 DOI: 10.3390/ijms232112727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Orofacial clefts are among the most common craniofacial anomalies with multifactorial etiologies, including genetics and environments. DNA methylation, one of the most acknowledged mechanisms of epigenetics, is involved in the development of orofacial clefts. DNA methylation has been examined in patients with non-syndromic cleft lip with cleft palate (nsCL/P) from multiple specimens, including blood, saliva, lip, and palate, as well as experimental studies in mice. The results can be reported in two different trends: hypomethylation and hypermethylation. Both hypomethylation and hypermethylation can potentially increase the risk of nsCL/P depending on the types of specimens and the specific regions on each gene and chromosome. This is the most up-to-date review, intending to summarize evidence of the alterations of DNA methylation in association with the occurrence of orofacial clefts. To make things straightforward to understand, we have systematically categorized the data into four main groups: human blood, human tissues, animal models, and the factors associated with DNA methylation. With this review, we are moving closer to the core of DNA methylation associated with nsCL/P development; we hope this is the initial step to find a genetic tool for early detection and prevention of the occurrence of nsCL/P.
Collapse
Affiliation(s)
- Chirakan Charoenvicha
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Surgical Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wimon Sirimaharaj
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Khwanngern
- Plastic and Reconstructive Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +011-66-53-944-451; Fax: +011-66-53-222-844
| |
Collapse
|
14
|
Marttila S, Tamminen H, Rajić S, Mishra PP, Lehtimäki T, Raitakari O, Kähönen M, Kananen L, Jylhävä J, Hägg S, Delerue T, Peters A, Waldenberger M, Kleber ME, März W, Luoto R, Raitanen J, Sillanpää E, Laakkonen EK, Heikkinen A, Ollikainen M, Raitoharju E. Methylation status of VTRNA2-1/ nc886 is stable across populations, monozygotic twin pairs and in majority of tissues. Epigenomics 2022; 14:1105-1124. [PMID: 36200237 DOI: 10.2217/epi-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Gerontology Research Center, Tampere University, Tampere, 33014, Finland
| | - Hely Tamminen
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Fimlab Laboratories, Arvo Ylpön katu 4, Tampere, 33520, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Fimlab Laboratories, Arvo Ylpön katu 4, Tampere, 33520, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku & Turku University Hospital, Turku, 20014, Finland.,Research Centre of Applied & Preventive Cardiovascular Medicine, University of Turku, Turku, 20014, Finland.,Department of Clinical Physiology & Nuclear Medicine, Turku University Hospital, Turku, 20014, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
| | - Laura Kananen
- Faculty of Medicine & Health Technology, & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520,Finland.,Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden.,Faculty of Social Sciences (Health Sciences), & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Juulia Jylhävä
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden.,Faculty of Social Sciences (Health Sciences), & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Sara Hägg
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764,, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764,, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,Competence Cluster for Nutrition & Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, 07743, Germany.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg, 86156, Germany.,Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, 8010, Austria
| | - Riitta Luoto
- The Social Insurance Institute of Finland (Kela), Helsinki, 00250, Finland.,The UKK Institute for Health Promotion Research, Kaupinpuistonkatu 1, Tampere, 33500, Finland
| | - Jani Raitanen
- The UKK Institute for Health Promotion Research, Kaupinpuistonkatu 1, Tampere, 33500, Finland.,Faculty of Social Sciences (Health Sciences), Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Elina Sillanpää
- Gerontology Research Center & Faculty of Sport & Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland.,Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Eija K Laakkonen
- Gerontology Research Center & Faculty of Sport & Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| |
Collapse
|
15
|
Daltveit DS, Klungsøyr K, Engeland A, Ekbom A, Gissler M, Glimelius I, Grotmol T, Madanat-Harjuoja L, Ording AG, Sørensen HT, Troisi R, Bjørge T. Sex differences in childhood cancer risk among children with major birth defects: a Nordic population-based nested case-control study. Int J Epidemiol 2022; 52:450-465. [PMID: 36179253 PMCID: PMC10114053 DOI: 10.1093/ije/dyac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Childhood cancer is more common among children with birth defects, suggesting a common aetiology. Whether this association differs by sex is unclear. METHODS We performed a population-based nested case-control study using nationwide health registries in four Nordic countries. We included 21 898 cancer cases (0-19 years) and 218 980 matched population controls, born 1967-2014. Associations between childhood cancer and major birth defects were calculated as odds ratios (ORs) with 95% confidence intervals (CIs) using logistic regression models. Effect modification was evaluated using a counterfactual framework to estimate confidence intervals and P-values for the natural indirect effects. RESULTS Birth defects were present for 5.1% (1117/21 898) of childhood cancer cases and 2.2% (4873/218 980) of controls; OR of cancer was higher for chromosomal (OR = 10, 95% CI = 8.6-12) than for non-chromosomal defects (OR = 1.9, 95% CI = 1.8-2.1), strongest between genetic syndromes/microdeletion and renal tumours, Down syndrome and leukaemia, and nervous system defects and central nervous system tumours. The association between birth defects and cancer was stronger among females (OR = 2.8, 95% CI = 2.6-3.1) than males (OR = 2.1, 95% CI = 1.9-2.2, Pinteraction <0.001). Male sex was an independent risk factor for childhood cancer, but very little of the overall association between sex and childhood cancer was mediated through birth defects (4.8%, PNIE <0.001), although more at younger ages (10% below years and 28% below 1 year). CONCLUSIONS The birth defect-cancer associations were generally stronger among females than males. Birth defects did not act as a strong mediator for the modest differences in childhood cancer risk by sex, suggesting that other biological pathways are involved.
Collapse
Affiliation(s)
- Dagrun Slettebø Daltveit
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Norwegian Quality Registry of Cleft Lip and Palate, Surgical Clinic, Haukeland University Hospital, Bergen, Norway
| | - Kari Klungsøyr
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Anders Engeland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Division of Mental and Physical Health, Norwegian Institute of Public Health, Bergen, Norway
| | - Anders Ekbom
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Mika Gissler
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland.,Region Stockholm, Academic Primary Health Care Centre, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Glimelius
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Laura Madanat-Harjuoja
- Cancer Society of Finland, Finnish Cancer Registry, Helsinki, Finland.,Dana Farber Cancer Institute, Boston Children's Cancer and Blood Disorders Centre, Boston, MA, USA
| | - Anne Gulbech Ording
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Rebecca Troisi
- Trans-divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tone Bjørge
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
16
|
Suazo J, Salamanca C, Cáceres-Rojas G, González-Hormazábal P, Pantoja R, Leiva N, Pardo R. Vitamin B12 Transport Genes and Nonsyndromic Cleft Lip With or Without Cleft Palate in Chile. Reprod Sci 2022; 29:2921-2926. [PMID: 35471549 DOI: 10.1007/s43032-022-00957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The aims of this study were to assess the association between polymorphisms within genes involved in vitamin B12 transport and nonsyndromic cleft lip with or without cleft palate (NSCL/P) and global DNA methylation in Chile. From 247 cases and 453 controls, we obtained variant genotypes for CBLIF, CUBN, AMN, ABCC1, CD320, and TCN2 from a single nucleotide polymorphisms array. Global DNA methylation in 95 controls was obtained through LINE-1 methylation. After multiple comparison corrections, only rs780807 in CUBN remains associated with NSCL/P at dominant model (OR 0.564, p-value = 0.0006, q-value = 0.0450). Carriers of protective allele showed lower levels of DNA methylation than non-carriers (p = 0.0259). Further studies are necessary in order to explain relations with the phenotype and DNA methylation due to the absence of functional evidence for rs780807 in CUBN.
Collapse
Affiliation(s)
- José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile.
| | - Carlos Salamanca
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile.,Research Center in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Temuco, Chile.,Universidad Adventista de Chile, Chillán, Chile
| | - Gabriela Cáceres-Rojas
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile
| | - Patricio González-Hormazábal
- Human Genetics Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto Pantoja
- Unit of Oral and Maxillofacial Surgery, Hospital Clínico San Borja-Arriaran, Santiago, Chile.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Noemi Leiva
- Unit of Maxillofacial Malformations, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rosa Pardo
- Section of Genetics, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Neonatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Epigenetic Effect of Maternal Methyl-Group Donor Intake on Offspring’s Health and Disease. Life (Basel) 2022; 12:life12050609. [PMID: 35629277 PMCID: PMC9145757 DOI: 10.3390/life12050609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Maternal exposure to some dietary and environmental factors during embryonic development can affect offspring’s phenotype and, furthermore, the risk of developing diseases later in life. One potential mechanism responsible for this early programming may be the modification of the epigenome, such as DNA methylation. Methyl-group donors are essential for DNA methylation and are shown to have an important role in fetal development and later health. The main goal of the present review is to summarize the available literature data on the epigenetic effect (DNA methylation) of maternal methyl-group donor availability on reproductivity, perinatal outcome, and later health of the offspring. In our literature search, we found evidence for the association between alterations in DNA methylation patterns caused by different maternal methyl-group donor (folate, choline, methionine, betaine) intake and reproductivity, birth weight, neural tube defect, congenital heart defect, cleft lip and palate, brain development, and the development of obesity and associated non-communicable diseases in later life. We can conclude that maternal methyl-group donor availability could affect offspring’s health via alterations in DNA methylation and may be a major link between early environmental exposure and the development of diseases in the offspring. However, still, further studies are necessary to confirm the associations and causal relationships.
Collapse
|
18
|
Kostiniuk D, Tamminen H, Mishra PP, Marttila S, Raitoharju E. Methylation pattern of polymorphically imprinted nc886 is not conserved across mammalia. PLoS One 2022; 17:e0261481. [PMID: 35294436 PMCID: PMC8926257 DOI: 10.1371/journal.pone.0261481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Background In humans, the nc886 locus is a polymorphically imprinted metastable epiallele. Periconceptional conditions have an effect on the methylation status of nc886, and further, this methylation status is associated with health outcomes in later life, in line with the Developmental Origins of Health and Disease (DOHaD) hypothesis. Animal models would offer opportunities to study the associations between periconceptional conditions, nc886 methylation status and metabolic phenotypes further. Thus, we set out to investigate the methylation pattern of the nc886 locus in non-human mammals. Data We obtained DNA methylation data from the data repository GEO for mammals, whose nc886 gene included all three major parts of nc886 and had sequency similarity of over 80% with the human nc886. Our final sample set consisted of DNA methylation data from humans, chimpanzees, bonobos, gorillas, orangutangs, baboons, macaques, vervets, marmosets and guinea pigs. Results In human data sets the methylation pattern of nc886 locus followed the expected bimodal distribution, indicative of polymorphic imprinting. In great apes, we identified a unimodal DNA methylation pattern with 50% methylation level in all individuals and in all subspecies. In Old World monkeys, the between individual variation was greater and methylation on average was close to 60%. In guinea pigs the region around the nc886 homologue was non-methylated. Results obtained from the sequence comparison of the CTCF binding sites flanking the nc886 gene support the results on the DNA methylation data. Conclusions Our results indicate that unlike in humans, nc886 is not a polymorphically imprinted metastable epiallele in non-human primates or in guinea pigs, thus implying that animal models are not applicable for nc886 research. The obtained data suggests that the nc886 region may be classically imprinted in great apes, and potentially also in Old World monkeys, but not in guinea pigs.
Collapse
Affiliation(s)
- Daria Kostiniuk
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hely Tamminen
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
19
|
Wong EC, Fisher SC, Feldkamp ML, Romitti PA, Nestoridi E, Desrosiers TA. Factors associated with maternal consent for use of residual newborn bloodspots in the National Birth Defects Prevention Study. Birth Defects Res 2022; 114:238-248. [PMID: 35194969 DOI: 10.1002/bdr2.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE We investigated factors associated with maternal consent to use residual newborn dried bloodspots (DBS) in a national case-control study of birth defects. METHODS A subset of sites in the National Birth Defects Prevention Study (NBDPS; 1997-2011) asked participants to provide consent for investigators to retrieve DBS from local newborn screening programs to use for research on risk factors for birth defects. We assessed whether consent differed by factors including maternal age, education, parity, body mass index, language of interview, country of birth, and case-control status. RESULTS Of 5,850 mothers of cases and 2,534 mothers of controls, 57% provided consent for the DBS component. Mothers of cases were more likely to participate than mothers of controls (61% vs. 52%), as were mothers who self-reported white race, >12 years of education, and born in the United States. CONCLUSIONS Retrieval of DBS can be integrated into retrospective studies of neonatal outcomes including birth defects. In NBDPS, participation in the DBS component was moderate and varied by some sociodemographic factors. Further research is needed to better understand families' perspectives on using residual DBS for secondary research. Representative participation is important to reduce the potential for selection bias in future studies using DBS for children's health research.
Collapse
Affiliation(s)
- Eugene C Wong
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C Fisher
- Birth Defects Registry, New York State Department of Health, Albany, New York, USA
| | - Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Paul A Romitti
- College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Eirini Nestoridi
- Massachusetts Center for Birth Defects Research and Prevention, Massachusetts Department of Public Health, Boston, Massachusetts, USA
| | - Tania A Desrosiers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
20
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124:1-16. [DOI: 10.1016/j.diff.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
21
|
Sun S, Wang X, Ding L, Zhang Q, Li N, Sui X, Li C, Ju L, Zhao Q, Chen H, Ding R, Cao J. Association between preconceptional air pollution exposure and medical purposes for selective termination of pregnancy. ENVIRONMENTAL RESEARCH 2021; 202:111743. [PMID: 34331927 DOI: 10.1016/j.envres.2021.111743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to air pollutants is associated with adverse pregnancy outcomes. But evidence on the effects of preconceptional air pollution exposure on the risk of termination of pregnancy (TOP) caused by pregnancy losses and congenital malformations is lacking. METHODS The distributed lag nonlinear model (DLNM) was used to evaluate the impact of short-term air pollutants exposure on the risk of TOP. Stratified analyses by age (<35 years old, ≥ 35 years old) and season (warm season, cold season) were further conducted. Relative risk (RR) and 95 % confidential interval (95 % CI) were calculated for per interquartile range (IQR) increment in air pollutants during the study period. RESULTS PM2.5, PM10, and O3 exposure were significantly associated with elevated risk of TOP. The risk of TOP was associated with PM2.5 exposure from lag11 to lag15 in the single-pollutant model, and the strongest association was observed at lag13 (RR = 1.021, 95%CI:1.002-1.040). PM10 exposure from lag10 to lag15 was associated with increased TOP risk, with the corresponding peak association being at lag13 (RR = 1.020, 95%CI: 1.004-1.037). For O3, the single-day lag association appeared to be statistically significant from lag26 to lag27, with the highest RR of TOP cases being at lag27 (RR = 1.044, 95%CI: 1.005-1.084). Similar results were observed for pregnancy losses (PL). However, no significantly association between air pollution exposure and the risk of congenital malformations (CM) was found in this study. Stratified analyses showed that pregnant women with more advanced ages were more susceptible to PM2.5, PM10, and O3 exposure. The effect of PM2.5 exposure was statistically significant in cold season subgroups. CONCLUSION The findings suggest that exposure to PM2.5, PM10, and O3 before pregnancy are associated with the risk of TOP in Lu'an, China, reflecting the significance of preconceptional environmental exposure in the development of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xiaoyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Obstetrics and Gynecology, Lu'an Hospital Affiliated to Anhui Medical University, 21 West Wanxi Road, Lu'an, China
| | - Liu Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xinmiao Sui
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, 15 Yimin Road, Hefei, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
22
|
Oocyte age and preconceptual alcohol use are highly correlated with epigenetic imprinting of a noncoding RNA ( nc886). Proc Natl Acad Sci U S A 2021; 118:2026580118. [PMID: 33723081 PMCID: PMC8000112 DOI: 10.1073/pnas.2026580118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting occurs before fertilization, impacts every cell of the developing child, and may be sensitive to environmental perturbations. The noncoding RNA, nc886 (also called VTRNA2-1) is the only known example of the ∼100 human genes imprinted by DNA methylation, that shows polymorphic imprinting in the population. The nc886 gene is part of an ∼1.6-kb differentially methylated region (DMR) that is methylated in the oocyte and silenced on the maternal allele in about 75% of humans worldwide. Here, we show that the presence or absence of imprinting at the nc886 DMR in an individual is consistent across different tissues, confirming that the imprint is established before cellular differentiation and is maintained into adulthood. We investigated the relationships between the frequency of imprinting in newborns and maternal age, alcohol consumption and cigarette smoking before conception in more than 1,100 mother/child pairs from South Africa. The probability of imprinting in newborns was increased in older mothers and decreased in mothers who drank alcohol before conception. On the other hand, cigarette smoking had no apparent relationship with the frequency of imprinting. These data show an epigenetic change during oocyte maturation which is potentially subject to environmental influence. Much focus has been placed on avoiding alcohol consumption during pregnancy, but our data suggest that drinking before conception may affect the epigenome of the newborn.
Collapse
|
23
|
Marttila S, Viiri LE, Mishra PP, Kühnel B, Matias-Garcia PR, Lyytikäinen LP, Ceder T, Mononen N, Rathmann W, Winkelmann J, Peters A, Kähönen M, Hutri-Kähönen N, Juonala M, Aalto-Setälä K, Raitakari O, Lehtimäki T, Waldenberger M, Raitoharju E. Methylation status of nc886 epiallele reflects periconceptional conditions and is associated with glucose metabolism through nc886 RNAs. Clin Epigenetics 2021; 13:143. [PMID: 34294131 PMCID: PMC8296652 DOI: 10.1186/s13148-021-01132-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.
Collapse
Grants
- 755320 Horizon 2020 (Taxinomisis)
- WA 4081/1-1 German Research Foundation
- BB/S020845/1 Biotechnology and Biological Sciences Research Council
- 134309, 126925, 121584, 124282, 129378, 117787, 41071 Academy of Finland
- 286284 and 322098 Academy of Finland
- 01EA1902A Joint Programming Initiative A healthy diet for a healthy life (DIMENSION)
- 848146 Horizon 2020 (To_Aition)
- 9X047, 9S054, and 9AB059 Tampere University Hospital Medical Funds
- 742927 European Research Council (MULTIEPIGEN)
- 285902, 330809 and 338395 academy of finland
- X51001 Tampere University Hospital Medical Funds
- the Social Insurance Institution of Finland
- Kuopio, Tampere, and Turku University Hospital Medical Funds
- Juho Vainion Säätiö
- Paavo Nurmen Säätiö
- Sydäntutkimussäätiö
- Suomen Kulttuurirahasto
- Tampereen Tuberkuloosisäätiö
- Emil Aaltosen Säätiö
- Yrjö Jahnssonin Säätiö
- Signe ja Ane Gyllenbergin Säätiö
- Diabetesliitto
- the Tampere University Hospital Supporting Foundation
- the Finnish Society of Clinical Chemistry
- Foundation of Clinical Chemistry
- Laboratoriolääketieteen edistämissäätiö sr.
- Orionin Tutkimussäätiö
- the Paulo Foundation
- Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München
- German Federal Ministry of Education and Research
- State of Bavaria
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland.
- Gerontology Research Center, Tampere University, Tampere, Finland.
| | - Leena E Viiri
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Tiina Ceder
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research At Heinrich Heine University, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Neurogenetics and Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Annette Peters
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Department of Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Hospital, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emma Raitoharju
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland.
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland.
| |
Collapse
|
24
|
Marttila S, Viiri LE, Mishra PP, Kühnel B, Matias-Garcia PR, Lyytikäinen LP, Ceder T, Mononen N, Rathmann W, Winkelmann J, Peters A, Kähönen M, Hutri-Kähönen N, Juonala M, Aalto-Setälä K, Raitakari O, Lehtimäki T, Waldenberger M, Raitoharju E. Methylation status of nc886 epiallele reflects periconceptional conditions and is associated with glucose metabolism through nc886 RNAs. Clin Epigenetics 2021. [PMID: 34294131 DOI: 10.1186/s13148‐021‐01132‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Non-coding RNA 886 (nc886) is coded from a maternally inherited metastable epiallele. We set out to investigate the determinants and dynamics of the methylation pattern at the nc886 epiallele and how this methylation status associates with nc886 RNA expression. Furthermore, we investigated the associations between the nc886 methylation status or the levels of nc886 RNAs and metabolic traits in the YFS and KORA cohorts. The association between nc886 epiallele methylation and RNA expression was also validated in induced pluripotent stem cell (iPSC) lines. RESULTS We confirm that the methylation status of the nc886 epiallele is mostly binomial, with individuals displaying either a non- or hemi-methylated status, but we also describe intermediately and close to fully methylated individuals. We show that an individual's methylation status is associated with the mother's age and socioeconomic status, but not with the individual's own genetics. Once established, the methylation status of the nc886 epiallele remains stable for at least 25 years. This methylation status is strongly associated with the levels of nc886 non-coding RNAs in serum, blood, and iPSC lines. In addition, nc886 methylation status associates with glucose and insulin levels during adolescence but not with the indicators of glucose metabolism or the incidence of type 2 diabetes in adulthood. However, the nc886-3p RNA levels also associate with glucose metabolism in adulthood. CONCLUSIONS These results indicate that nc886 metastable epiallele methylation is tuned by the periconceptional conditions and it associates with glucose metabolism through the expression of the ncRNAs coded in the epiallele region.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland. .,Gerontology Research Center, Tampere University, Tampere, Finland.
| | - Leena E Viiri
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Tiina Ceder
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research At Heinrich Heine University, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Department of Neurogenetics and Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Annette Peters
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Department of Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Heart Hospital, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emma Raitoharju
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Pirkanmaa Hospital District and Fimlab Laboratories, Tampere, Finland. .,Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland.
| |
Collapse
|
25
|
Bukova I, Szczerkowska KI, Prochazkova M, Beck IM, Prochazka J, Sedlacek R. Loss of Wiz Function Affects Methylation Pattern in Palate Development and Leads to Cleft Palate. Front Cell Dev Biol 2021; 9:620692. [PMID: 34150743 PMCID: PMC8206640 DOI: 10.3389/fcell.2021.620692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
WIZ (Widely Interspaced Zinc Finger) is associated with the G9a-GLP protein complex, a key H3K9 methyltransferase suggesting a role in transcriptional repression. However, its role in embryonic development is poorly described. In order to assess the loss of function of WIZ, we generated CRISPR/Cas9 WIZ knockout mouse model with 32 nucleotide deletion. Observing the lethality status, we identified the WIZ knockouts to be subviable during embryonic development and non-viable after birth. Morphology of developing embryo was analyzed at E14.5 and E18.5 and our findings were supported by microCT scans. Wiz KO showed improper development in multiple aspects, specifically in the craniofacial area. In particular, shorter snout, cleft palate, and cleft eyelids were present in mutant embryos. Palatal shelves were hypomorphic and though elevated to a horizontal position on top of the tongue, they failed to make contact and fuse. By comparison of proliferation pattern and histone methylation in developing palatal shelves we brought new evidence of importance WIZ dependent G9a-GLP methylation complex in craniofacial development, especially in palate shelf fusion.
Collapse
Affiliation(s)
- Ivana Bukova
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katarzyna Izabela Szczerkowska
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Prochazkova
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Inken M. Beck
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
- Animal Research Centre, Ulm University, Ulm, Germany
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases and the Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
26
|
Stingone JA, Triantafillou S, Larsen A, Kitt JP, Shaw GM, Marsillach J. Interdisciplinary data science to advance environmental health research and improve birth outcomes. ENVIRONMENTAL RESEARCH 2021; 197:111019. [PMID: 33737076 PMCID: PMC8187296 DOI: 10.1016/j.envres.2021.111019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Rates of preterm birth and low birthweight continue to rise in the United States and pose a significant public health problem. Although a variety of environmental exposures are known to contribute to these and other adverse birth outcomes, there has been a limited success in developing policies to prevent these outcomes. A better characterization of the complexities between multiple exposures and their biological responses can provide the evidence needed to inform public health policy and strengthen preventative population-level interventions. In order to achieve this, we encourage the establishment of an interdisciplinary data science framework that integrates epidemiology, toxicology and bioinformatics with biomarker-based research to better define how population-level exposures contribute to these adverse birth outcomes. The proposed interdisciplinary research framework would 1) facilitate data-driven analyses using existing data from health registries and environmental monitoring programs; 2) develop novel algorithms with the ability to predict which exposures are driving, in this case, adverse birth outcomes in the context of simultaneous exposures; and 3) refine biomarker-based research, ultimately leading to new policies and interventions to reduce the incidence of adverse birth outcomes.
Collapse
Affiliation(s)
- Jeanette A Stingone
- Department of Epidemiology, Columbia University's Mailman School of Public Health, 722 West 168th St, Room 1608, New York, NY, 10032, USA.
| | - Sofia Triantafillou
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Larsen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jay P Kitt
- Departments of Chemistry and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Judit Marsillach
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Yoshioka H, Ramakrishnan SS, Suzuki A, Iwata J. Phenytoin Inhibits Cell Proliferation through microRNA-196a-5p in Mouse Lip Mesenchymal Cells. Int J Mol Sci 2021; 22:1746. [PMID: 33572377 PMCID: PMC7916186 DOI: 10.3390/ijms22041746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Cleft lip (CL) is one of the most common birth defects. It is caused by either genetic mutations or environmental factors. Recent studies suggest that environmental factors influence the expression of noncoding RNAs [e.g., microRNA (miRNA)], which can regulate the expression of genes crucial for cellular functions. In this study, we examined which miRNAs are associated with CL. Among 10 candidate miRNAs (miR-98-3p, miR-101a-3p, miR-101b-3p, miR-141-3p, miR-144-3p, miR-181a-5p, miR-196a-5p, miR-196b-5p, miR-200a-3p, and miR-710) identified through our bioinformatic analysis of CL-associated genes, overexpression of miR-181a-5p, miR-196a-5p, miR-196b-5p, and miR-710 inhibited cell proliferation through suppression of genes associated with CL in cultured mouse embryonic lip mesenchymal cells (MELM cells) and O9-1 cells, a mouse cranial neural crest cell line. In addition, we found that phenytoin, an inducer of CL, decreased cell proliferation through miR-196a-5p induction. Notably, treatment with a specific inhibitor for miR-196a-5p restored cell proliferation through normalization of expression of CL-associated genes in the cells treated with phenytoin. Taken together, our results suggest that phenytoin induces CL through miR-196a-5p induction, which suppresses the expression of CL-associated genes.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
28
|
Iwata J. Gene-Environment Interplay and MicroRNAs in Cleft Lip and Cleft Palate. ORAL SCIENCE INTERNATIONAL 2021; 18:3-13. [PMID: 36855534 PMCID: PMC9969970 DOI: 10.1002/osi2.1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cleft lip (CL) with/without cleft palate (CP) (hereafter CL/P) is the second most common congenital birth defect, affecting 7.94 to 9.92 children per 10,000 live births worldwide, followed by Down syndrome. An increasing number of genes have been identified as affecting susceptibility and/or as causative genes for CL/P in mouse genetic and chemically-induced CL and CP studies, as well as in human genome-wide association studies and linkage analysis. While marked progress has been made in the identification of genetic and environmental risk factors for CL/P, the interplays between these factors are not yet fully understood. This review aims to summarize our current knowledge of CL and CP from genetically engineered mouse models and environmental factors that have been studied in mice. Understanding the regulatory mechanism(s) of craniofacial development may not only advance our understanding of craniofacial developmental biology, but could also provide approaches for the prevention of birth defects and for tissue engineering in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Pediatric Research Center, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, 77030 USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, 77030 USA
| |
Collapse
|
29
|
Yoshioka H, Mikami Y, Ramakrishnan SS, Suzuki A, Iwata J. MicroRNA-124-3p Plays a Crucial Role in Cleft Palate Induced by Retinoic Acid. Front Cell Dev Biol 2021; 9:621045. [PMID: 34178974 PMCID: PMC8219963 DOI: 10.3389/fcell.2021.621045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans. Recent studies suggest that epigenetic factors, including microRNAs (miRs), are altered by various environmental factors. In this study, to investigate whether and how miRs are involved in cleft palate (CP) induced by excessive intake of all-trans RA (atRA), we evaluated top 10 candidate miRs, which were selected through our bioinformatic analyses, in mouse embryonic palatal mesenchymal (MEPM) cells as well as in mouse embryos treated with atRA. Among them, overexpression of miR-27a-3p, miR-27b-3p, and miR-124-3p resulted in the significant reduction of cell proliferation in MEPM cells through the downregulation of CP-associated genes. Notably, we found that excessive atRA upregulated the expression of miR-124-3p, but not of miR-27a-3p and miR-27b-3p, in both in vivo and in vitro. Importantly, treatment with a specific inhibitor for miR-124-3p restored decreased cell proliferation through the normalization of target gene expression in atRA-treated MEPM cells and atRA-exposed mouse embryos, resulting in the rescue of CP in mice. Taken together, our results indicate that atRA causes CP through the induction of miR-124-3p in mice.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yurie Mikami
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
30
|
Ritto FG, Sperber GH, Smith KS. Spontaneous Palatal Cleft Closure. Cleft Palate Craniofac J 2020; 58:662-664. [PMID: 32985238 DOI: 10.1177/1055665620960970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This case report presents a palatal cleft that healed spontaneously, with complete formation of mucosa and bone. Even though the nasal structures could initially be observed through the cleft palate, a thin membrane sealed any communication between the oral and nasal cavities. The origin of this tenuous membrane cannot be fully understood with current discernment of palate formation, but it probably served as a basis for the formation of the other tissues. No previous record of nonintervened spontaneous closure of a cleft palate has been reported.
Collapse
Affiliation(s)
- Fabio G Ritto
- Cleft Palate and Craniofacial Surgery, 6186University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Kevin S Smith
- Cleft Palate and Craniofacial Surgery, 6186University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
31
|
Neonatal Lead (Pb) Exposure and DNA Methylation Profiles in Dried Bloodspots. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186775. [PMID: 32957503 PMCID: PMC7559513 DOI: 10.3390/ijerph17186775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Lead (Pb) exposure remains a major concern in the United States (US) and around the world, even following the removal of Pb from gasoline and other products. Environmental Pb exposures from aging infrastructure and housing stock are of particular concern to pregnant women, children, and other vulnerable populations. Exposures during sensitive periods of development are known to influence epigenetic modifications which are thought to be one mechanism of the Developmental Origins of Health and Disease (DOHaD) paradigm. To gain insights into early life Pb exposure-induced health risks, we leveraged neonatal dried bloodspots in a cohort of children from Michigan, US to examine associations between blood Pb levels and concomitant DNA methylation profiles (n = 96). DNA methylation analysis was conducted via the Infinium MethylationEPIC array and Pb levels were assessed via high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). While at-birth Pb exposure levels were relatively low (average 0.78 µg/dL, maximum of 5.27 ug/dL), we identified associations between DNA methylation and Pb at 33 CpG sites, with the majority (82%) exhibiting reduced methylation with increasing Pb exposure (q < 0.2). Biological pathways related to development and neurological function were enriched amongst top differentially methylated genes by p-value. In addition to increases/decreases in methylation, we also demonstrate that Pb exposure is related to increased variability in DNA methylation at 16 CpG sites. More work is needed to assess the accuracy and precision of metals assessment using bloodspots, but this study highlights the utility of this unique resource to enhance environmental epigenetics research around the world.
Collapse
|
32
|
Garland MA, Sun B, Zhang S, Reynolds K, Ji Y, Zhou CJ. Role of epigenetics and miRNAs in orofacial clefts. Birth Defects Res 2020; 112:1635-1659. [PMID: 32926553 DOI: 10.1002/bdr2.1802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Orofacial clefts (OFCs) have multiple etiologies and likely result from an interplay between genetic and environmental factors. Within the last decade, studies have implicated specific epigenetic modifications and noncoding RNAs as additional facets of OFC etiology. Altered gene expression through DNA methylation and histone modification offer novel insights into how specific genes contribute to distinct OFC subtypes. Epigenetics research has also provided further evidence that cleft lip only (CLO) is a cleft subtype with distinct etiology. Polymorphisms or misexpression of genes encoding microRNAs, as well as their targets, contribute to OFC risk. The ability to experimentally manipulate epigenetic changes and noncoding RNAs in animal models, such as zebrafish, Xenopus, mice, and rats, has offered novel insights into the mechanisms of various OFC subtypes. Although much remains to be understood, recent advancements in our understanding of OFC etiology may advise future strategies of research and preventive care.
Collapse
Affiliation(s)
- Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|
33
|
Maternal Folic Acid Supplementation Mediates Offspring Health via DNA Methylation. Reprod Sci 2020; 27:963-976. [PMID: 32124397 DOI: 10.1007/s43032-020-00161-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 10/24/2022]
Abstract
The clinical significance of periconceptional folic acid supplementation (FAS) in the prevention of neonatal neural tube defects (NTDs) has been recognized for decades. Epidemiological data and experimental findings have consistently been indicating an association between folate deficiency in the first trimester of pregnancy and poor fetal development as well as offspring health (i.e., NTDs, isolated orofacial clefts, neurodevelopmental disorders). Moreover, compelling evidence has suggested adverse effects of folate overload during perinatal period on offspring health (i.e., immune diseases, autism, lipid disorders). In addition to several single-nucleotide polymorphisms (SNPs) in genes related to folate one-carbon metabolism (FOCM), folate concentrations in maternal serum/plasma/red blood cells must be considered when counseling FAS. Epigenetic information encoded by 5-methylcytosines (5mC) plays a critical role in fetal development and offspring health. S-adenosylmethionine (SAM), a methyl donor for 5mC, could be derived from FOCM. As such, folic acid plays a double-edged sword role in offspring health via mediating DNA methylation. However, the underlying epigenetic mechanism is still largely unclear. In this review, we summarized the link across DNA methylation, maternal FAS, and offspring health to provide more evidence for clinical guidance in terms of precise FAS dosage and time point. Future studies are, therefore, required to set up the reference intervals of folate concentrations at different trimesters of pregnancy for different populations and to clarify the epigenetic mechanism for specific offspring diseases.
Collapse
|
34
|
Affiliation(s)
- Chathura J Gunasekara
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert A Waterland
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Chen X, Zhang R. Microtia epigenetics: An overview of review and new viewpoint. Medicine (Baltimore) 2019; 98:e17468. [PMID: 31593107 PMCID: PMC6799854 DOI: 10.1097/md.0000000000017468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Microtia is a congenital malformation of the external and middle ear caused by the abnormal development of the first and second zygomatic arch and the first sulcus. There is currently no consensus concerning the pathogenesis and etiology of microtia; genetic and environmental factors may play a role. Gene-based studies have focused on finding the genes that cause microtia and on gene function defects. However, no clear pathogenic genes have so far been identified. Microtia is multifactorial; gene function defects cannot completely explain its pathogenesis. In recent years, the epigenetic aspects of microtia have begun to receive attention. CONCLUSIONS Analysis of the existing data suggests that certain key genes and pathways may be the underlying cause of congenital microtia. However, further exploration is needed.
Collapse
|
36
|
Green RM, Leach CL, Diewert VM, Aponte JD, Schmidt EJ, Cheverud JM, Roseman CC, Young NM, Marcucio RS, Hallgrimsson B. Nonlinear gene expression-phenotype relationships contribute to variation and clefting in the A/WySn mouse. Dev Dyn 2019; 248:1232-1242. [PMID: 31469941 DOI: 10.1002/dvdy.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cleft lip and palate is one of the most common human birth defects, but the underlying etiology is poorly understood. The A/WySn mouse is a spontaneously occurring model of multigenic clefting in which 20% to 30% of individuals develop an orofacial cleft. Recent work has shown altered methylation at a specific retrotransposon insertion downstream of the Wnt9b locus in clefting animals, which results in decreased Wnt9b expression. RESULTS Using a newly developed protocol that allows us to measure morphology, gene expression, and DNA methylation in the same embryo, we relate gene expression in an individual embryo directly to its three-dimensional morphology for the first time. We find that methylation at the retrotransposon relates to Wnt9b expression and morphology. IAP methylation relates to shape of the nasal process in a manner consistent with clefting. Embryos with low IAP methylation exhibit increased among-individual variance in facial shape. CONCLUSIONS Methylation and gene expression relate nonlinearly to nasal process morphology. Individuals at one end of a continuum of phenotypic states display a clinical phenotype and increased phenotypic variation. Variable penetrance and expressivity in this model is likely determined both by among-individual variation in methylation and changes in phenotypic robustness along the underlying liability distribution for orofacial clefting.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Courtney L Leach
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Virginia M Diewert
- Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jose David Aponte
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Eric J Schmidt
- School of PA Medicine, University of Lynchburg, Lynchburg, Virginia
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Charles C Roseman
- Department of Animal Biology, University of Illinois Urbana Champaign, Champaign, Illinois
| | - Nathan M Young
- Department of Orthopedics, University of California San Francisco, San Francisco, California
| | - Ralph S Marcucio
- Department of Orthopedics, University of California San Francisco, San Francisco, California
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|