1
|
Mia MS, Nayan SB, Islam MN, Talukder MEK, Hasan MS, Riazuddin M, Shadhin MST, Hossain MN, Wani TA, Zargar S, Rabby MG. Genome-wide exploration: Evolution, structural characterization, molecular docking, molecular dynamics simulation and expression analysis of sugar transporter (ST) gene family in potato (Solanum tuberosum). Comput Biol Chem 2025; 117:108402. [PMID: 40054022 DOI: 10.1016/j.compbiolchem.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/09/2025]
Abstract
Sugars are the basic structural components of carbohydrates. Sugar transport is crucial for plants to ensure their optimal growth and development. Long-distance sugar transport occurs through either diffusion-based passive or active transport mediated by transporter proteins. In potatoes, STs play a vital role in sugar transport and total sugar accumulation. To better understand the roles of these transporters, in-depth structural, protein characterization, and tissue-specific expression analysis were performed. A total of 61 StSTs were identified and classified into eight sub-families (STP, PLT, ERD6L, INT, TMT, pGlcT, SUC, and VGT). The majority of StSTs were found in the plasma membrane, and all of them were dispersed throughout the 12 chromosomes. Exon and motif counts ranged from 1-18 and 1-10, respectively. In synteny analysis with four plant genomes, the highest (38) orthologous gene pair was found with S. lycopersicum (tomato). In 3D protein modeling, the alpha helix and transmembrane helices range varied from 32 % to 78 % and 53 %-57 %, respectively. During molecular docking analysis, the lowest binding energy was observed for Glu-StINT1 (ΔG: - 6.6 kcal/mol), Fru-StVGT1 (ΔG: - 6.1 kcal/mol), Gal-StSTP10 (ΔG: - 6.5 kcal/mol), and Suc-StINT2 (ΔG: - 7.5 kcal/mol), among 244 docking results. These complexes showed significant hydrogen and hydrophobic interactions, due to having significant amino acid residues. The molecular dynamics (MD) simulation of four complexes (Glu-StINT1, Fru-StVGT1, Gal-StSTP10, and Suc-StINT2) validated the ligand's stable attachment to the intended target proteins and it can be predicted that these complexes are the best sugar transporters of potato. In RNA-seq mediated expression analysis, StSTP12, StERD6L-6, 12, StpGlcT3, StVGT1, and StVGT2, were significantly upregulated in vegetative tissues/organs, revealing their significant role in vegetative organ development. In addition, stu-miRNA395 was the largest family interacting with StERD6L-1 and StTMT2 genes, demonstrating their significant role in sulfate metabolism. The detection and visualization of potential transcription factors (TFs) like ERF, Dof, MYB, BBR-BPC, LBD, and NAC in conjunction with the StSTs gene indicate their significant contribution to stress tolerance and DNA conversion and transcription into RNA. A significant interaction of StSTs in the PPI network might be due to their cumulative role in the same signaling pathways. The integration of these findings will guide the development of programming-based sugar transporter-mediated genetic circuits to improve the sugar accumulation in potatoes using synthetic biology approaches.
Collapse
Affiliation(s)
- Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sourav Biswas Nayan
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Numan Islam
- Department of Food Science and Technology, University of Nebraska Lincoln, USA
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sakib Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Riazuddin
- Dept. of Food Engineering, North Pacific International University of Bangladesh, Bangladesh
| | - Md Saklain Tanver Shadhin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Nayim Hossain
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
2
|
Ikram AU, Chen H, Chen J. H 2O 2 sulfenylates CHE to activate systemic acquired resistance. TRENDS IN PLANT SCIENCE 2025; 30:238-240. [PMID: 39743404 DOI: 10.1016/j.tplants.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Salicylic acid (SA) is an important systemic acquired resistance (SAR) signal in plants. However, the mobile signal that directly regulates systematic SA biosynthesis was previously unknown. Recently, Cao et al. found that hydrogen peroxide acts as a mobile signal by sulfenylating CCA1 HIKING EXPEDITION (CHE) and inducing SA production in systemic tissues.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Amadu MK, Beyene Y, Chaikam V, Tongoona PB, Danquah EY, Ifie BE, Burgueno J, Prasanna BM, Gowda M. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and agronomic traits under drought and optimum conditions in maize. BMC PLANT BIOLOGY 2025; 25:135. [PMID: 39893411 PMCID: PMC11786572 DOI: 10.1186/s12870-025-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Drought is a major abiotic stress in sub-Saharan Africa, impacting maize growth and development leading to severe yield loss. Drought tolerance is a complex trait regulated by multiple genes, making direct grain yield selection ineffective. To dissect the genetic architecture of grain yield and flowering traits under drought stress, a genome-wide association study (GWAS) was conducted on a panel of 236 maize lines testcrossed and evaluated under managed drought and optimal growing conditions in multiple environments using seven multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO, and FARMCPU) from mrMLM and GAPIT R packages. Genomic prediction with RR-BLUP model was applied on BLUEs across locations under optimum and drought conditions. RESULTS A total of 172 stable and reliable quantitative trait nucleotides (QTNs) were identified, of which 77 are associated with GY, AD, SD, ASI, PH, EH, EPO and EPP under drought and 95 are linked to GY, AD, SD, ASI, PH, EH, EPO and EPP under optimal conditions. Among these QTNs, 17 QTNs explained over 10% of the phenotypic variation (R2 ≥ 10%). Furthermore, 43 candidate genes were discovered and annotated. Two major candidate genes, Zm00001eb041070 closely associated with grain yield near peak QTN, qGY_DS1.1 (S1_216149215) and Zm00001eb364110 closely related to anthesis-silking interval near peak QTN, qASI_DS8.2 (S8_167256316) were identified, encoding AP2-EREBP transcription factor 60 and TCP-transcription factor 20, respectively under drought stress. Haplo-pheno analysis identified superior haplotypes for qGY_DS1.1 (S1_216149215) associated with the higher grain yield under drought stress. Genomic prediction revealed moderate to high prediction accuracies under optimum and drought conditions. CONCLUSION The lines carrying superior haplotypes can be used as potential donors in improving grain yield under drought stress. Integration of genomic selection with GWAS results leads not only to an increase in the prediction accuracy but also to validate the function of the identified candidate genes as well increase in the accumulation of favorable alleles with minor and major effects in elite breeding lines. This study provides valuable insight into the genetic architecture of grain yield and secondary traits under drought stress.
Collapse
Affiliation(s)
- Manigben Kulai Amadu
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- CSIR-Savanna Agricultural Research Institute, PO. Box 52, Tamale, Nyankpala, Ghana
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| | - Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Pangirayi B Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Eric Y Danquah
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Beatrice E Ifie
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3EE, UK
| | - Juan Burgueno
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, El Batán, Edo. de Mexico, CP 52640, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| |
Collapse
|
4
|
Li P, Zhang L, Yan XT, Zheng C, Zhang XY, Chen JP, Liu SS, Wang XW. Suppression of TGA2-Mediated Salicylic Acid Defence by Tomato Yellow Leaf Curl Virus C2 via Disruption of TCP7-Like Transcription Factor Activity in Tobacco. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39873187 DOI: 10.1111/pce.15411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a significant threat to tomato cultivation globally, transmitted exclusively by the whitefly Bemisia tabaci. While previous research suggests that the TYLCV C2 protein plays a role in fostering mutualistic interactions between the virus and its insect vectors, the specific mechanisms remain unclear. In this study, we show that the C2 protein interferes with the salicylic acid (SA) defence pathway by disrupting TCP7-like transcription factor-mediated regulation of TGA2 expression. Whitefly infestation increases the expression of TCP7-like transcription factors (TCP7-L1 and TCP7-L2), which subsequently trigger TGA2-dependent activation of BGL2 transcription, enhancing plant resistance to whiteflies. However, the TYLCV C2 protein interacts with these TCP7-like factors, reducing their binding affinity to the TGA2 promoter, which in turn suppresses BGL2 expression in the SA signalling pathway. These findings provide new insights into how TYLCV C2 modulates TCP7-like protein activity to impair SA-mediated defences, contributing to the mutualistic relationship between TYLCV and whiteflies. This work deepens our understanding of the complex regulatory networks underlying these virus-vector-host interactions.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Tian Yan
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chao Zheng
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xin-Yue Zhang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ping Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Jone MJH, Siddique MNA, Biswas MK, Hossain MR. Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo). Genes Genomics 2025:10.1007/s13258-025-01617-y. [PMID: 39849192 DOI: 10.1007/s13258-025-01617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done. OBJECTIVE The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions. METHODS The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools. RESULTS A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification. CONCLUSION This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.
Collapse
Affiliation(s)
- Md Jahid Hasan Jone
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nure Adil Siddique
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mohammad Rashed Hossain
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
6
|
Yu L, Ma X, Dai M, Chang Y, Wang N, Zhang J, Zhang M, Yao N, Umar AW, Liu X. Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation. Molecules 2025; 30:254. [PMID: 39860123 PMCID: PMC11767934 DOI: 10.3390/molecules30020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Safflower (Carthamus tinctorius L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored. Here, we report the comprehensive identification and characterization of 26 safflower TCP genes (CtTCPs), categorized into Class I (PROLIFERATING CELL FACTOR, PCF) and Class II (CINCINNATA and TEOSINTE BRANCHED1/CYCLOIDEA, CIN and CYC/TB1) subfamilies. Comparative phylogenetics, conserved motif, and gene structure analyses revealed a high degree of evolutionary conservation and functional divergence within the gene family. Promoter analyses uncovered light-, hormone-, and stress-responsive cis-elements, underscoring their regulatory potential. Functional insights from qRT-PCR analyses demonstrated dynamic CtTCP expression under abiotic stresses, including abscisic acid (ABA), Methyl Jasmonate (MeJA), Cold, and ultraviolet radiation b (UV-B) treatments. Notably, ABA stress triggered a significant increase in flavonoid accumulation, correlated with the upregulation of key flavonoid biosynthesis genes and select CtTCPs. These findings illuminate the complex regulatory networks underlying safflower's abiotic stress responses and secondary metabolism, offering a molecular framework to enhance crop resilience and metabolic engineering for sustainable agriculture.
Collapse
Affiliation(s)
- Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Xintong Ma
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Mingran Dai
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Yue Chang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Jian Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Min Zhang
- Monitoring and Testing Center for Ginseng and Antler Products, Ministry of Agriculture and Rural Affairs, Jilin Agriculture University, Changchun 130118, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (L.Y.); (X.M.); (M.D.); (Y.C.); (N.W.); (J.Z.); (N.Y.)
- Institute for Safflower Industry Research of Shihezi University/Pharmacy College of Shihezi University/Key Laborataty of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| |
Collapse
|
7
|
Lechon T, Kent NA, Murray JAH, Scofield S. Regulation of meristem and hormone function revealed through analysis of directly-regulated SHOOT MERISTEMLESS target genes. Sci Rep 2025; 15:240. [PMID: 39747964 PMCID: PMC11696002 DOI: 10.1038/s41598-024-83985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species. However, little is known about STM-DNA interactions in the regulatory regions of target genes in Arabidopsis. Here, we identify and map STM binding sites in the Arabidopsis genome using global ChIP-seq analysis to reveal potential directly-regulated STM target genes. We show that in the majority of target loci, STM binds within 1 kb upstream of the TSS, with other loci showing STM binding at more distal enhancer sites, and we reveal enrichment of DNA motifs containing a TGAC and/or TGAT core in STM-bound target gene cis-regulatory elements. We further demonstrate that many STM-bound genes are transcriptionally responsive to altered levels of STM activity, and show that among these, transcriptional regulators with key roles in meristem and hormone function are highly represented. Finally, we use a subset of these target genes to perform Bayesian network analysis to infer gene regulatory associations and to construct a refined GRN for STM-mediated control of meristem function.
Collapse
Affiliation(s)
- Tamara Lechon
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
8
|
Xiang H, Stojilkovic B, Gheysen G. Decoding Plant-Pathogen Interactions: A Comprehensive Exploration of Effector-Plant Transcription Factor Dynamics. MOLECULAR PLANT PATHOLOGY 2025; 26:e70057. [PMID: 39854033 PMCID: PMC11757022 DOI: 10.1111/mpp.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics. These include modulating activity of TFs, influencing their incorporation into multimeric complexes, directly changing TF expression levels, promoting their degradation via the ubiquitin-proteasome system, and inducing their subcellular relocalization. The review systematically presents documented interactions, elucidating key mechanisms and their profound impact on host-pathogen dynamics. It emphasises the central role of TFs in plant defence and investigates the convergent evolution of effectors targeting TFs. By providing this overview, we offer valuable insights into this dynamic interaction landscape and suggest potential directions for future research.
Collapse
Affiliation(s)
- Hui Xiang
- Faculty of Bioscience EngineeringGhent UniversityGentBelgium
| | - Boris Stojilkovic
- Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- John Innes CentreNorwichUK
| | | |
Collapse
|
9
|
Drcelic M, Skiljaica A, Polak B, Bauer N, Seruga Music M. ' Candidatus Phytoplasma solani' Predicted Effector SAP11-like Alters Morphology of Transformed Arabidopsis Plants and Interacts with AtTCP2 and AtTCP4 Plant Transcription Factors. Pathogens 2024; 13:893. [PMID: 39452764 PMCID: PMC11510232 DOI: 10.3390/pathogens13100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for only a few phytoplasma species where it was shown that the SAP11 effector alters plant morphology by destabilizing plant transcription factors: TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCPs). To explore the possible role of the SAP11-like effector from 'Ca. P. solani', we used Arabidopsis thaliana as a model plant. The SAP11-like effector gene from 'Ca. P. solani' was introduced into arabidopsis by floral dip and transgenic lines were regenerated. In planta bimolecular fluorescence complementation (BIFC) assays in agroinfiltrated Nicotiana benthamiana leaf cells were conducted to detect interactions between SAP11-like and AtTCP2 and AtTCP4 using confocal microscopy. SAP11-like from 'Ca. P. solani' induced significant phenotypic changes in arabidopsis, including crinkled leaves with reduced size, lower biomass, more axillary branches, changes in root morphology, and crinkled and smaller siliques. The BIFC assays proved in planta interaction of SAP11-like effector with AtTCP2 and AtTCP4. To our knowledge, this is the first characterization of the interaction between the 'Ca. P. solani' effector and plant transcription factors, suggesting a potential mechanism of modulating plant development and induction of characteristic symptoms in 'Ca. P. solani'-infected plants.
Collapse
Affiliation(s)
| | | | | | | | - Martina Seruga Music
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia; (M.D.); (A.S.); (B.P.); (N.B.)
| |
Collapse
|
10
|
Cao L, Karapetyan S, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 2024; 385:1211-1217. [PMID: 39265009 PMCID: PMC11586058 DOI: 10.1126/science.adj7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
12
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
14
|
Chong X, Liu Y, Li P, Wang Y, Zhou T, Chen H, Wang H. Heterologous Expression of Chrysanthemum TCP Transcription Factor CmTCP13 Enhances Salinity Tolerance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2118. [PMID: 39124235 PMCID: PMC11313808 DOI: 10.3390/plants13152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) proteins play critical roles in plant development and stress responses; however, their functions in chrysanthemum (Chrysanthemum morifolium) have not been well-studied. In this study, we isolated and characterized the chrysanthemum TCP transcription factor family gene CmTCP13, a homolog of AtTCP13. This gene encoded a protein harboring a conserved basic helix-loop-helix motif, and its expression was induced by salinity stress in chrysanthemum plants. Subcellular localization experiments showed that CmTCP13 localized in the nucleus. Sequence analysis revealed the presence of multiple stress- and hormone-responsive cis-elements in the promoter region of CmTCP13. The heterologous expression of CmTCP13 in Arabidopsis plants enhanced their tolerance to salinity stress. Under salinity stress, CmTCP13 transgenic plants exhibited enhanced germination, root length, seedling growth, and chlorophyll content and reduced relative electrical conductivity compared with those exhibited by wild-type (WT) plants. Moreover, the expression levels of stress-related genes, including AtSOS3, AtP5CS2, AtRD22, AtRD29A, and AtDREB2A, were upregulated in CmTCP13 transgenic plants than in WT plants under salt stress. Taken together, our results demonstrate that CmTCP13 is a critical regulator of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Xinran Chong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Yanan Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China
| | - Peiling Li
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yue Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ting Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Liu Z, Shi X, Wang Z, Qu M, Gao C, Wang C, Wang Y. Acetylation of transcription factor BpTCP20 by acetyltransferase BpPDCE23 modulates salt tolerance in birch. PLANT PHYSIOLOGY 2024; 195:2354-2371. [PMID: 38501602 DOI: 10.1093/plphys/kiae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors function in abiotic stress responses. However, how TCPs confer salt tolerance is unclear. Here, we characterized a TCP transcription factor, BpTCP20, that responds to salt stress in birch (Betula platyphylla Suk). Plants overexpressing BpTCP20 displayed increased salt tolerance, and Bptcp20 knockout mutants displayed reduced salt tolerance relative to the wild-type (WT) birch. BpTCP20 conferred salt tolerance by mediating stomatal closure and reducing reactive oxygen species (ROS) accumulation. Chromatin immunoprecipitation sequencing showed that BpTCP20 binds to NeuroD1, T-box, and two unknown elements (termed TBS1 and TBS2) to regulate target genes. In birch, salt stress led to acetylation of BpTCP20 acetylation at lysine 259. A mutated BpTCP20 variant (abolished for acetylation, termed BpTCP20259) was overexpressed in birch, which led to decreased salt tolerance compared with plants overexpressing BpTCP20. However, BpTCP20259-overexpressing plants still displayed increased salt tolerance relative to untransformed WT plants. BpTCP20259 showed reduced binding to the promoters of target genes and decreased target gene activation, leading to decreased salt tolerance. In addition, we identified dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (BpPDCE23), an acetyltransferase that interacts with and acetylates BpTCP20 to enhance its binding to DNA motifs. Together, these results suggest that BpTCP20 is a transcriptional regulator of salt tolerance, whose activity is modulated by BpPDCE23-mediated acetylation.
Collapse
Affiliation(s)
- Zhujun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xinxin Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ming Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
16
|
Nejamkin A, Del Castello F, Lamattina L, Foresi N, Correa Aragunde N. Redox regulation in primary nitrate response: Nitric oxide in the spotlight. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108625. [PMID: 38643539 DOI: 10.1016/j.plaphy.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Nitrogen (N) is the main macronutrient of plants that determines growth and productivity. Nitrate is the major source form of N in soils and its uptake and assimilatory pathway has been extensively studied. The early events that occur after the perception of nitrate is known as primary nitrate response (PNR). In this review, new findings on the redox signal that impacts PNR are discussed. We will focus on the novel role of Nitric Oxide (NO) as a signal molecule and the mechanisms that are involved to control NO homeostasis during PNR. Moreover, the role of Reactive Oxygen Species (ROS) and the possible interplay with NO in the PNR are discussed. The sources of NO during PNR will be analyzed as well as the regulation of its intracellular levels. Furthermore, we explored the relevance of the direct action of NO through the S-nitrosation of the transcription factor NLP7, one of the master regulators in the nitrate signaling cascade. This review gives rise to an interesting field with new actors to mark future research directions. This allows us to increase the knowledge of the physiological and molecular fine-tuned modulation during nitrate signaling processes in plants. The discussion of new experimental data will stimulate efforts to further refine our understanding of the redox regulation of nitrate signaling.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Natalia Correa Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina.
| |
Collapse
|
17
|
Pandey MK, Gangurde SS, Shasidhar Y, Sharma V, Kale SM, Khan AW, Shah P, Joshi P, Bhat RS, Janila P, Bera SK, Varshney RK. High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut. BMC PLANT BIOLOGY 2024; 24:262. [PMID: 38594614 PMCID: PMC11005153 DOI: 10.1186/s12870-024-04987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Yaduru Shasidhar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Aamir W Khan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Priya Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pushpesh Joshi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sandip K Bera
- ICAR-Directorate of Groundnut Research, Junagadh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia.
| |
Collapse
|
18
|
Basak P, Gurjar MS, Kumar TPJ, Kashyap N, Singh D, Jha SK, Saharan MS. Transcriptome analysis of Bipolaris sorokiniana - Hordeum vulgare provides insights into mechanisms of host-pathogen interaction. Front Microbiol 2024; 15:1360571. [PMID: 38577688 PMCID: PMC10993733 DOI: 10.3389/fmicb.2024.1360571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Spot blotch disease incited by Bipolaris sorokiniana severely affects the cultivation of barley. The resistance to B. sorokiniana is quantitative in nature and its interaction with the host is highly complex which necessitates in-depth molecular analysis. Thus, the study aimed to conduct the transcriptome analysis to decipher the mechanisms and pathways involved in interactions between barley and B. sorokiniana in both the resistant (EC0328964) and susceptible (EC0578292) genotypes using the RNA Seq approach. In the resistant genotype, 6,283 genes of Hordeum vulgare were differentially expressed out of which 5,567 genes were upregulated and 716 genes were downregulated. 1,158 genes of Hordeum vulgare were differentially expressed in the susceptible genotype, out of which 654 genes were upregulated and 504 genes were downregulated. Several defense-related genes like resistant gene analogs (RGAs), disease resistance protein RPM1, pathogenesis-related protein PRB1-2-like, pathogenesis-related protein 1, thaumatin-like protein PWIR2 and defensin Tm-AMP-D1.2 were highly expressed exclusively in resistant genotype only. The pathways involved in the metabolism and biosynthesis of secondary metabolites were the most prominently represented pathways in both the resistant and susceptible genotypes. However, pathways involved in MAPK signaling, plant-pathogen interaction, and plant hormone signal transduction were highly enriched in resistant genotype. Further, a higher number of pathogenicity genes of B. sorokiniana was found in response to the susceptible genotype. The pathways encoding for metabolism, biosynthesis of secondary metabolites, ABC transporters, and ubiquitin-mediated proteolysis were highly expressed in susceptible genotype in response to the pathogen. 14 and 11 genes of B. sorokiniana were identified as candidate effectors from susceptible and resistant host backgrounds, respectively. This investigation will offer valuable insights in unraveling the complex mechanisms involved in barley- B. sorokiniana interaction.
Collapse
Affiliation(s)
- Poulami Basak
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Natasha Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
19
|
Chandran AEJ, Finkler A, Hait TA, Kiere Y, David S, Pasmanik-Chor M, Shkolnik D. Calcium regulation of the Arabidopsis Na+/K+ transporter HKT1;1 improves seed germination under salt stress. PLANT PHYSIOLOGY 2024; 194:1834-1852. [PMID: 38057162 PMCID: PMC10904324 DOI: 10.1093/plphys/kiad651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.
Collapse
Affiliation(s)
- Ancy E J Chandran
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Aharon Hait
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sivan David
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Metsada Pasmanik-Chor
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
20
|
Correa Marrero M, Capdevielle S, Huang W, Al-Subhi AM, Busscher M, Busscher-Lange J, van der Wal F, de Ridder D, van Dijk ADJ, Hogenhout SA, Immink RGH. Protein interaction mapping reveals widespread targeting of development-related host transcription factors by phytoplasma effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1281-1297. [PMID: 37965720 DOI: 10.1111/tpj.16546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Phytoplasmas are pathogenic bacteria that reprogram plant host development for their own benefit. Previous studies have characterized a few different phytoplasma effector proteins that destabilize specific plant transcription factors. However, these are only a small fraction of the potential effectors used by phytoplasmas; therefore, the molecular mechanisms through which phytoplasmas modulate their hosts require further investigation. To obtain further insights into the phytoplasma infection mechanisms, we generated a protein-protein interaction network between a broad set of phytoplasma effectors and a large, unbiased collection of Arabidopsis thaliana transcription factors and transcriptional regulators. We found widespread, but specific, interactions between phytoplasma effectors and host transcription factors, especially those related to host developmental processes. In particular, many unrelated effectors target specific sets of TCP transcription factors, which regulate plant development and immunity. Comparison with other host-pathogen protein interaction networks shows that phytoplasma effectors have unusual targets, indicating that phytoplasmas have evolved a unique and unusual infection strategy. This study contributes a rich and solid data source that guides further investigations of the functions of individual effectors, as demonstrated for some herein. Moreover, the dataset provides insights into the underlying molecular mechanisms of phytoplasma infection.
Collapse
Affiliation(s)
- Miguel Correa Marrero
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sylvain Capdevielle
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Ali M Al-Subhi
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, 11 Al Khod 123, al-Seeb, Oman
| | - Marco Busscher
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Froukje van der Wal
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
21
|
Dujak C, Coleto-Alcudia V, Aranzana MJ. Genomic analysis of fruit size and shape traits in apple: unveiling candidate genes through GWAS analysis. HORTICULTURE RESEARCH 2024; 11:uhad270. [PMID: 38419968 PMCID: PMC10901474 DOI: 10.1093/hr/uhad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 03/02/2024]
Abstract
Genomic tools facilitate the efficient selection of improved genetic materials within a breeding program. Here, we focus on two apple fruit quality traits: shape and size. We utilized data from 11 fruit morphology parameters gathered across three years of harvest from 355 genotypes of the apple REFPOP collection, which serves as a representative sample of the genetic variability present in European-cultivated apples. The data were then employed for genome-wide association studies (GWAS) using the FarmCPU and the BLINK models. The analysis identified 59 SNPs associated with fruit size and shape traits (35 with FarmCPU and 45 with BLINK) responsible for 71 QTNs. These QTNs were distributed across all chromosomes except for chromosomes 10 and 15. Thirty-four QTNs, identified by 27 SNPs, were related for size traits, and 37 QTNs, identified by 26 SNPs, were related to shape attributes. The definition of the haploblocks containing the most relevant SNPs served to propose candidate genes, among them the genes of the ovate family protein MdOFP17 and MdOFP4 that were in a 9.7kb haploblock on Chromosome 11. RNA-seq data revealed low or null expression of these genes in the oblong cultivar "Skovfoged" and higher expression in the flat "Grand'mere." The Gene Ontology enrichment analysis support a role of OFPs and hormones in shape regulation. In conclusion, this comprehensive GWAS analysis of the apple REFPOP collection has revealed promising genetic markers and candidate genes associated with apple fruit shape and size attributes, providing valuable insights that could enhance the efficiency of future breeding programs.
Collapse
Affiliation(s)
- Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Veredas Coleto-Alcudia
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UABUB, Plant and Animal Genomics, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Genomics and Biotechnology, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
22
|
Hur YS, Oh J, Kim N, Kim S, Son O, Kim J, Um JH, Ji Z, Kim MH, Ko JH, Ohme-Takagi M, Choi G, Cheon CI. Arabidopsis transcription factor TCP13 promotes shade avoidance syndrome-like responses by directly targeting a subset of shade-responsive gene promoters. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:241-257. [PMID: 37824096 DOI: 10.1093/jxb/erad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
TCP13 belongs to a subgroup of TCP transcription factors implicated in the shade avoidance syndrome (SAS), but its exact role remains unclear. Here, we show that TCP13 promotes the SAS-like response by enhancing hypocotyl elongation and suppressing flavonoid biosynthesis as a part of the incoherent feed-forward loop in light signaling. Shade is known to promote the SAS by activating PHYTOCHROME-INTERACTING FACTOR (PIF)-auxin signaling in plants, but we found no evidence in a transcriptome analysis that TCP13 activates PIF-auxin signaling. Instead, TCP13 mimics shade by activating the expression of a subset of shade-inducible and cell elongation-promoting SAUR genes including SAUR19, by direct targeting of their promoters. We also found that TCP13 and PIF4, a molecular proxy for shade, repress the expression of flavonoid biosynthetic genes by directly targeting both shared and distinct sets of biosynthetic gene promoters. Together, our results indicate that TCP13 promotes the SAS-like response by directly targeting a subset of shade-responsive genes without activating the PIF-auxin signaling pathway.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeonghwa Oh
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Namuk Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Sunghan Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Ora Son
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Jiyoung Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Ji-Hyun Um
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Zuowei Ji
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Choong-Ill Cheon
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
23
|
Yu G, Sun B, Zhu Z, Mehareb EM, Teng A, Han J, Zhang H, Liu J, Liu X, Raza G, Zhang B, Zhang Y, Wang K. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:573-589. [PMID: 37897092 DOI: 10.1111/tpj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Bo Sun
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Eid M Mehareb
- Sugar Crops Research Institute (SRCI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ailing Teng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jiayong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Xinlong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Yuebin Zhang
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| |
Collapse
|
24
|
Yang J, Fan S, Guo M, Xie Z, Cheng Q, Gao P, Cheng C. DNA barcoding and comparative RNA-Seq analysis provide new insights into leaf formation using a novel resource of high-yielding Epimedium koreanum. FRONTIERS IN PLANT SCIENCE 2023; 14:1290836. [PMID: 38170141 PMCID: PMC10760978 DOI: 10.3389/fpls.2023.1290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.
Collapse
Affiliation(s)
- Jiaxin Yang
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Siqing Fan
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Min Guo
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Qiqing Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
26
|
Kulkarni CC, Cholin SS, Bajpai AK, Ondrasek G, Mesta RK, Rathod S, Patil HB. Comparative Root Transcriptome Profiling and Gene Regulatory Network Analysis between Eastern and Western Carrot ( Daucus carota L.) Cultivars Reveals Candidate Genes for Vascular Tissue Patterning. PLANTS (BASEL, SWITZERLAND) 2023; 12:3449. [PMID: 37836190 PMCID: PMC10575051 DOI: 10.3390/plants12193449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Carrot (Daucus carota L.) is a highly consumed vegetable rich in carotenoids, known for their potent antioxidant, anti-inflammatory, and immune-protecting properties. While genetic and molecular studies have largely focused on wild and Western carrot cultivars (cvs), little is known about the evolutionary interactions between closely related Eastern and Western cvs. In this study, we conducted comparative transcriptome profiling of root tissues from Eastern (UHSBC-23-1) and Western (UHSBC-100) carrot cv. to better understand differentially expressed genes (DEGs) associated with storage root development and vascular cambium (VC) tissue patterning. Through reference-guided TopHat mapping, we achieved an average mapping rate of 73.87% and identified a total of 3544 DEGs (p < 0.05). Functional annotation and gene ontology classification revealed 97 functional categories, including 33 biological processes, 19 cellular components, 45 metabolic processes, and 26 KEGG pathways. Notably, Eastern cv. exhibited enrichment in cell wall, plant-pathogen interaction, and signal transduction terms, while Western cv. showed dominance in photosynthesis, metabolic process, and carbon metabolism terms. Moreover, constructed gene regulatory network (GRN) for both cvs. obtained orthologs with 1222 VC-responsive genes of Arabidopsis thaliana. In Western cv, GRN revealed VC-responsive gene clusters primarily associated with photosynthetic processes and carbon metabolism. In contrast, Eastern cv. exhibited a higher number of stress-responsive genes, and transcription factors (e.g., MYB15, WRKY46, AP2/ERF TF connected via signaling pathways with NAC036) were identified as master regulators of xylem vessel differentiation and secondary cell wall thickening. By elucidating the comparative transcriptome profiles of Eastern and Western cvs. for the first time, our study provides valuable insights into the differentially expressed genes involved in root development and VC tissue patterning. The identification of key regulatory genes and their roles in these processes represents a significant advancement in our understanding of the evolutionary relations and molecular mechanisms underlying secondary growth of carrot and regulation by vascular cambium.
Collapse
Affiliation(s)
- Chaitra C. Kulkarni
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- Kittur Rani Chennamma College of Horticulture, Arabhavi, Gokak 591218, Belgaum Dt., Karnataka, India
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Sarvamangala S. Cholin
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Akhilesh K. Bajpai
- Shodhaka Life Sciences Pvt. Ltd., Electronic City, Phase-I, Bengaluru 560100, Karnataka, India
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - R. K. Mesta
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Santosha Rathod
- Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - H. B. Patil
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| |
Collapse
|
27
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
28
|
Park SC, Yoon AM, Kim YM, Lee MY, Lee JR. Antifungal Action of Arabidopsis thaliana TCP21 via Induction of Oxidative Stress and Apoptosis. Antioxidants (Basel) 2023; 12:1767. [PMID: 37760070 PMCID: PMC10525234 DOI: 10.3390/antiox12091767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The realm of antimicrobial proteins in plants is extensive but remains relatively uncharted. Understanding the mechanisms underlying the action of plant antifungal proteins (AFPs) holds promise for antifungal strategies. This study aimed to bridge this knowledge gap by comprehensively screening Arabidopsis thaliana species to identify novel AFPs. Using MALDI-TOF analysis, we identified a member of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) family of transcription factors as a novel AFP, A. thaliana TCP21 (AtTCP21; accession number NP_196450). Bacterially purified recombinant AtTCP21 inhibited the growth of various pathogenic fungal cells. AtTCP21 was more potent than melittin, a well-known AFP, in combating Colletotrichum gloeosporioides. Growth inhibition assays against various fungal pathogens and yeasts confirmed the pH-dependent antimicrobial activity of AtTCP21. Without inducing any membrane alterations, AtTCP21 penetrates the fungal cell wall and membrane, where it instigates a repressive milieu for fungal cell growth by generating intracellular reactive oxygen species and mitochondrial superoxides; resulting in morphological changes and apoptosis. Our findings demonstrate the redox-regulating effects of AtTCP21 and point to its potential as an antimicrobial agent.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-C.P.); (Y.-M.K.)
| | - A-Mi Yoon
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea;
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea; (S.-C.P.); (Y.-M.K.)
| | - Min-Young Lee
- Department of Clinical Laboratory Science, Daejeon Health Institute of Technology, Daejeon 34504, Republic of Korea;
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea;
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Yuan W, Beitel F, Srikant T, Bezrukov I, Schäfer S, Kraft R, Weigel D. Pervasive under-dominance in gene expression underlying emergent growth trajectories in Arabidopsis thaliana hybrids. Genome Biol 2023; 24:200. [PMID: 37667232 PMCID: PMC10478501 DOI: 10.1186/s13059-023-03043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Complex traits, such as growth and fitness, are typically controlled by a very large number of variants, which can interact in both additive and non-additive fashion. In an attempt to gauge the relative importance of both types of genetic interactions, we turn to hybrids, which provide a facile means for creating many novel allele combinations. RESULTS We focus on the interaction between alleles of the same locus, i.e., dominance, and perform a transcriptomic study involving 141 random crosses between different accessions of the plant model species Arabidopsis thaliana. Additivity is rare, consistently observed for only about 300 genes enriched for roles in stress response and cell death. Regulatory rare-allele burden affects the expression level of these genes but does not correlate with F1 rosette size. Non-additive, dominant gene expression in F1 hybrids is much more common, with the vast majority of genes (over 90%) being expressed below the parental average. Unlike in the additive genes, regulatory rare-allele burden in the dominant gene set is strongly correlated with F1 rosette size, even though it only mildly covaries with the expression level of these genes. CONCLUSIONS Our study underscores under-dominance as the predominant gene action associated with emergence of rosette growth trajectories in the A. thaliana hybrid model. Our work lays the foundation for understanding molecular mechanisms and evolutionary forces that lead to dominance complementation of rare regulatory alleles.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Fiona Beitel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Sabine Schäfer
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Robin Kraft
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Broucke E, Dang TTV, Li Y, Hulsmans S, Van Leene J, De Jaeger G, Hwang I, Wim VDE, Rolland F. SnRK1 inhibits anthocyanin biosynthesis through both transcriptional regulation and direct phosphorylation and dissociation of the MYB/bHLH/TTG1 MBW complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1193-1213. [PMID: 37219821 DOI: 10.1111/tpj.16312] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Plants have evolved an extensive specialized secondary metabolism. The colorful flavonoid anthocyanins, for example, not only stimulate flower pollination and seed dispersal, but also protect different tissues against high light, UV and oxidative stress. Their biosynthesis is highly regulated by environmental and developmental cues and induced by high sucrose levels. Expression of the biosynthetic enzymes involved is controlled by a transcriptional MBW complex, comprising (R2R3) MYB- and bHLH-type transcription factors and the WD40 repeat protein TTG1. Anthocyanin biosynthesis is not only useful, but also carbon- and energy-intensive and non-vital. Consistently, the SnRK1 protein kinase, a metabolic sensor activated in carbon- and energy-depleting stress conditions, represses anthocyanin biosynthesis. Here we show that Arabidopsis SnRK1 represses MBW complex activity both at the transcriptional and post-translational level. In addition to repressing expression of the key transcription factor MYB75/PAP1, SnRK1 activity triggers MBW complex dissociation, associated with loss of target promoter binding, MYB75 protein degradation and nuclear export of TTG1. We also provide evidence for direct interaction with and phosphorylation of multiple MBW complex proteins. These results indicate that repression of expensive anthocyanin biosynthesis is an important strategy to save energy and redirect carbon flow to more essential processes for survival in metabolic stress conditions.
Collapse
Affiliation(s)
- Ellen Broucke
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Thi Tuong Vi Dang
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Yi Li
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Van den Ende Wim
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
- KU Leuven Plant Institute (LPI), Kasteelpark Arenberg 31, 3001 Heverlee, Leuven, Belgium
| |
Collapse
|
31
|
Wang F, Cai X, Wei H, Zhang L, Dong A, Su W. Histone methylation readers MRG1/MRG2 interact with the transcription factor TCP14 to positively modulate cytokinin sensitivity in Arabidopsis. J Genet Genomics 2023; 50:589-599. [PMID: 36870415 DOI: 10.1016/j.jgg.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Cytokinins influence many aspects of plant growth and development. Although cytokinin biosynthesis and signaling have been well studied in planta, little is known about the regulatory effects of epigenetic modifications on the cytokinin response. Here, we reveal that mutations to Morf Related Gene (MRG) proteins MRG1/MRG2, which are readers of trimethylated histone H3 lysine 4 and lysine 36 (H3K4me3 and H3K36me3), result in cytokinin hyposensitivity during various developmental processes, including callus induction and root and seedling growth inhibition. Similar to the mrg1 mrg2 mutant, plants with a defective AtTCP14, which belongs to the TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) transcription factor family, are insensitive to cytokinin. Furthermore, the transcription of several genes related to cytokinin signaling pathway is altered. Specifically, the expression of Arabidopsis thalianaHISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2 (AHP2) decreases significantly in the mrg1 mrg2 and tcp14-2 mutants. We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo. Thus, MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression. In summary, our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xixi Cai
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huizhe Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Linghao Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wei Su
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
32
|
Cao L, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE linking local infection to establishment of systemic acquired resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550865. [PMID: 37546937 PMCID: PMC10402168 DOI: 10.1101/2023.07.27.550865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For 30 years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been hotly debated. We found that, upon pathogen challenge, the cysteine residue of transcription factor CHE undergoes sulfenylation in systemic tissues, enhancing its binding to the promoter of SA-synthesis gene, ICS1, and increasing SA production. This occurs independently of previously reported pipecolic acid (Pip) signal. Instead, H2O2 produced by NADPH oxidase, RBOHD, is the mobile signal that sulfenylates CHE in a concentration-dependent manner. This modification serves as a molecular switch that activates CHE-mediated SA-increase and subsequent Pip-accumulation in systemic tissues to synergistically induce SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
33
|
Mohanan MV, Pushpanathan A, Jayanarayanan AN, Selvarajan D, Ramalingam S, Govind H, Chinnaswamy A. Isolation of 5' regulatory region of COLD1 gene and its functional characterization through transient expression analysis in tobacco and sugarcane. 3 Biotech 2023; 13:228. [PMID: 37304407 PMCID: PMC10256666 DOI: 10.1007/s13205-023-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Chilling Tolerant Divergence 1 (COLD1) gene consists of Golgi pH Receptor (GPHR) as well as Abscisic Acid-linked G Protein-Coupled Receptor (ABA_GPCR), which are the major transmembrane proteins in plants. This gene expression has been found to be differentially regulated, under various stress conditions, in wild Saccharum-related genera, Erianthus arundinaceus, compared to commercial sugarcane variety. In this study, Rapid Amplification of Genomic Ends (RAGE) technique was employed to isolate the 5' upstream region of COLD1 gene to gain knowledge about the underlying stress regulatory mechanism. The current study established the cis-acting elements, main promoter regions, and Transcriptional Start Site (TSS) present within the isolated 5' upstream region (Cold1P) of COLD1, with the help of specific bioinformatics techniques. Phylogenetic analysis results revealed that the isolated Cold1P promoter is closely related to the species, Sorghum bicolor. Cold1P promoter-GUS gene construct was generated in pCAMBIA 1305.1 vector that displayed a constitutive expression of the GUS reporter gene in both monocot as well as dicot plants. The histochemical GUS assay outcomes confirmed that Cold1P can drive expression in both monocot as well as dicot plants. Cold1P's activities under several abiotic stresses such as cold, heat, salt, and drought, revealed its differential expression profile in commercial sugarcane variety. The highest activity of the GUS gene was found after 24 h of cold stress, driven by the isolated Cold1P promoter. The outcomes from GUS fluorimetric assay correlated with that of the GUS expression findings. This is the first report on Cold1P isolated from the species, E. arundinaceus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03650-8.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
34
|
Adak S, Agarwal T, Das P, Ray S, Lahiri Majumder A. Characterization of myo-inositol oxygenase from rice ( OsMIOX): influence of salinity stress in different indica rice cultivars. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:927-945. [PMID: 37649879 PMCID: PMC10462604 DOI: 10.1007/s12298-023-01340-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Myo-inositol oxygenase (MIOX), the only catabolic enzyme of the inositol pathway, catalyzes conversion of myo-inositol to D-GlcA (glucuronic acid). The present study encompasses bioinformatic analysis of MIOX gene across phylogenetically related plant lineages and representative animal groups. Comparative motif analysis of the MIOX gene(s) across various plant groups suggested existence of abiotic- stress related cis-acting elements such as, DRE, MYB, MYC, STRE, MeJa among others. A detailed analysis revealed a single isoform of MIOX gene, located in chromosome 6 of indica rice (Oryza sativa) with an open reading frame of 938 bp coding for 308 amino acids producing a protein of ~ 35 kD. Secondary structure prediction of the protein gave the predicted number of 144 alpha helices and 154 random coils. The three-dimensional structure suggested it to be a monomeric protein with a single domain. Bacterial overexpression of the protein, purification and enzyme assay showed optimal catalytic activity at pH 7.5-8 at an optimal temperature of 37 °C with Michaelis constant of 40.92 mM. The range of Km was determined as 22.74-28.7 mM and the range of Vmax was calculated as 3.51-3.6 µM/min, respectively. Four salt-tolerant and salt-sensitive rice cultivars displayed differential gene expression of OsMIOX at different time points in different tissues under salinity and drought stress as observed from qRT-PCR data, microarray results and protein expression profile in immunoblot analysis. Gel volumetric analysis confirmed a very high expression of MIOX in roots and leaves on 7th day following germination. Microarray data showed high expression of MIOX at all developmental stages including seedling growth and reproduction. These data suggest that OsMIOX might have a role to play in rice abiotic stress responses mediated through the myo-inositol oxidation pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01340-6.
Collapse
Affiliation(s)
- Sanghamitra Adak
- Division of Plant Biology, Bose Institute, Kolkata, 700054 India
| | - Tanushree Agarwal
- Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Priyanka Das
- Division of Plant Biology, Bose Institute, Kolkata, 700054 India
| | - Sudipta Ray
- Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, Kolkata, 700054 India
- Present Address: Department of Microbiology and Biotechnology, Sister Nivedita University, DG 1/2, Action Area I, New Town, Kolkata, 700156 India
| |
Collapse
|
35
|
Xiong W, Risse J, Berke L, Zhao T, van de Geest H, Oplaat C, Busscher M, Ferreira de Carvalho J, van der Meer IM, Verhoeven KJF, Schranz ME, Vijverberg K. Phylogenomic analysis provides insights into MADS-box and TCP gene diversification and floral development of the Asteraceae, supported by de novo genome and transcriptome sequences from dandelion ( Taraxacum officinale). FRONTIERS IN PLANT SCIENCE 2023; 14:1198909. [PMCID: PMC10338227 DOI: 10.3389/fpls.2023.1198909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
The Asteraceae is the largest angiosperm family with more than 25,000 species. Individual studies have shown that MADS-box and TCP transcription factors are regulators of the development and symmetry of flowers, contributing to their iconic flower-head (capitulum) and floret. However, a systematic study of MADS-box and TCP genes across the Asteraceae is lacking. We performed a comparative analysis of genome sequences of 33 angiosperm species including our de novo assembly of diploid sexual dandelion (Taraxacum officinale) and 11 other Asteraceae to investigate the lineage-specific evolution of MADS-box and TCP genes in the Asteraceae. We compared the phylogenomic results of MADS-box and TCP genes with their expression in T. officinale floral tissues at different developmental stages to demonstrate the regulation of genes with Asteraceae-specific attributes. Here, we show that MADS-box MIKCc and TCP-CYCLOIDEA (CYC) genes have expanded in the Asteraceae. The phylogenomic analysis identified AGAMOUS-like (AG-like: SEEDSTICK [STK]-like), SEPALATA-like (SEP3-like), and TCP-PROLIFERATING CELL FACTOR (PCF)-like copies with lineage-specific genomic contexts in the Asteraceae, Cichorioideae, or dandelion. Different expression patterns of some of these gene copies suggest functional divergence. We also confirm the presence and revisit the evolutionary history of previously named “Asteraceae-Specific MADS-box genes (AS-MADS).” Specifically, we identify non-Asteraceae homologs, indicating a more ancient origin of this gene clade. Syntenic relationships support that AS-MADS is paralogous to FLOWERING LOCUS C (FLC) as demonstrated by the shared ancient duplication of FLC and SEP3.
Collapse
Affiliation(s)
- Wei Xiong
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Judith Risse
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Lidija Berke
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Carla Oplaat
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Marco Busscher
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
- Bioscience, Wageningen University and Research, Wageningen, Netherlands
| | - Julie Ferreira de Carvalho
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kitty Vijverberg
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Zhang M, Qin S, Yan J, Li L, Xu M, Liu Y, Zhang W. Genome-wide identification and analysis of TCP family genes in Medicago sativa reveal their critical roles in Na +/K + homeostasis. BMC PLANT BIOLOGY 2023; 23:301. [PMID: 37280506 DOI: 10.1186/s12870-023-04318-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Medicago sativa is the most important forage world widely, and is characterized by high quality and large biomass. While abiotic factors such as salt stress can negatively impact the growth and productivity of alfalfa. Maintaining Na+/K+ homeostasis in the cytoplasm helps reduce cell damage and nutritional deprivation, which increases a salt-tolerance of plant. Teosinte Branched1/ Cycloidea/ Proliferating cell factors (TCP) family genes, a group of plant-specific transcription factors (TFs), involved in regulating plant growth and development and abiotic stresses. Recent studies have shown TCPs control the Na+/K+ concentration of plants during salt stress. In order to improve alfalfa salt tolerance, it is important to identify alfalfa TCP genes and investigate if and how they regulate alfalfa Na+/K+ homeostasis. RESULTS Seventy-one MsTCPs including 23 non-redundant TCP genes were identified in the database of alfalfa genome (C.V XinJiangDaYe), they were classified into class I PCF (37 members) and class II: CIN (28 members) and CYC/TB1 (9 members). Their distribution on chromosome were unequally. MsTCPs belonging to PCF were expressed specifically in different organs without regularity, which belonging to CIN class were mainly expressed in mature leaves. MsTCPs belongs to CYC/TB1 clade had the highest expression level at meristem. Cis-elements in the promoter of MsTCPs were also predicted, the results indicated that most of the MsTCPs will be induced by phytohormone and stress treatments, especially by ABA-related stimulus including salinity stress. We found 20 out of 23 MsTCPs were up-regulated in 200 mM NaCl treatment, and MsTCP3/14/15/18 were significantly induced by 10 μM KCl, a K+ deficiency treatment. Fourteen non-redundant MsTCPs contained miR319 target site, 11 of them were upregulated in MIM319 transgenic alfalfa, and among them four (MsTCP3/4/10A/B) genes were directly degraded by miR319. MIM319 transgene alfalfa plants showed a salt sensitive phenotype, which caused by a lower content of potassium in alfalfa at least partly. The expression of potassium transported related genes showed significantly higher expression in MIM319 plants. CONCLUSIONS We systematically analyzes the MsTCP gene family at a genome-wide level and reported that miR319-TCPs model played a function in K+ up-taking and/ or transportation especially in salt stress. The study provide valuable information for future study of TCP genes in alfalfa and supplies candidate genes for salt-tolerance alfalfa molecular-assisted breeding.
Collapse
Affiliation(s)
- Mingxiao Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangqian Qin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingzhi Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Ishizaki T, Ueda Y, Takai T, Maruyama K, Tsujimoto Y. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111627. [PMID: 36737003 DOI: 10.1016/j.plantsci.2023.111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Tillering is an important trait in rice productivity. We introduced mutations into the coding region of rice TEOSINTE BRANCHED1 (OsTB1), which is a negative regulator of tillering, using CRISPR/Cas9. The frameshift mutants exhibited substantially enhanced tillering and produced 3.5 times more panicles than the non-mutated plants at maturity. This enhanced tillering resulted in increased spikelet number; however, grain yields did not increase due to substantially reduced filled grain rate and 1,000-grain weight. In contrast, in-frame mutations in OsTB1 had the effect of slightly increasing tiller numbers, and the in-frame mutants had 40% more panicles than non-mutated plants. The grain yield of in-frame mutants also did not increase on nutrient-rich soil; however, under phosphorus-deficient conditions, where tillering is constrained, the in-frame mutants gave a significantly higher grain yield than non-mutated plants due to higher spikelet number and maintained filled grain rate. Rice grassy tiller1 (OsGT1)/OsHox12, which is directly regulated by OsTB1 to suppress tillering, was moderately down-regulated in in-frame mutants, suggesting that OsTB1 with the in-frame mutation shows partial function of intact OsTB1 in regulating OsGT1/OsHox12. We propose that mildly enhanced tillering by in-frame mutation of OsTB1 can improve grain yield under low phosphorus conditions.
Collapse
Affiliation(s)
- Takuma Ishizaki
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa 907-0002, Japan.
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Toshiyuki Takai
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Yasuhiro Tsujimoto
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
38
|
Wu Y, Zhang J, Li C, Deng X, Wang T, Dong L. Genome-wide analysis of TCP transcription factor family in sunflower and identification of HaTCP1 involved in the regulation of shoot branching. BMC PLANT BIOLOGY 2023; 23:222. [PMID: 37101166 PMCID: PMC10134548 DOI: 10.1186/s12870-023-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Sunflower is an important ornamental plant, which can be used for fresh cut flowers and potted plants. Plant architecture regulation is an important agronomic operation in its cultivation and production. As an important aspect of plant architecture formation, shoot branching has become an important research direction of sunflower. RESULTS TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are essential in regulating various development process. However, the role of TCPs in sunflowers has not yet been studied. This study, 34 HaTCP genes were identified and classified into three subfamilies based on the conservative domain and phylogenetic analysis. Most of the HaTCPs in the same subfamily displayed similar gene and motif structures. Promoter sequence analysis has demonstrated the presence of multiple stress and hormone-related cis-elements in the HaTCP family. Expression patterns of HaTCPs revealed several HaTCP genes expressed highest in buds and could respond to decapitation. Subcellular localization analysis showed that HaTCP1 was located in the nucleus. Paclobutrazol (PAC) and 1-naphthylphthalamic acid (NPA) administration significantly delayed the formation of axillary buds after decapitation, and this suppression was partially accomplished by enhancing the expression of HaTCP1. Furthermore, HaTCP1 overexpressed in Arabidopsis caused a significant decrease in branch number, indicating that HaTCP1 played a key role in negatively regulating sunflower branching. CONCLUSIONS This study not only provided the systematic analysis for the HaTCP members, including classification, conserved domain and gene structure, expansion pattern of different tissues or after decapitation. But also studied the expression, subcellular localization and function of HaTCP1. These findings could lay a critical foundation for further exploring the functions of HaTCPs.
Collapse
Affiliation(s)
- Yu Wu
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Jianbin Zhang
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Chaoqun Li
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Xinyi Deng
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Tian Wang
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China
| | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Changjiang Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
39
|
Kim Y, Wang J, Ma C, Jong C, Jin M, Cha J, Wang J, Peng Y, Ni H, Li H, Yang M, Chen Q, Xin D. GmTCP and GmNLP Underlying Nodulation Character in Soybean Depending on Nitrogen. Int J Mol Sci 2023; 24:ijms24097750. [PMID: 37175456 PMCID: PMC10178161 DOI: 10.3390/ijms24097750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Soybean is a cereal crop with high protein and oil content which serves as the main source of plant-based protein and oil for human consumption. The symbiotic relationship between legumes and rhizobia contributes significantly to soybean yield and quality, but the underlying molecular mechanisms remain poorly understood, hindering efforts to improve soybean productivity. In this study, we conducted a transcriptome analysis and identified 22 differentially expressed genes (DEGs) from nodule-related quantitative trait loci (QTL) located in chromosomes 12 and 19. Subsequently, we performed functional characterisation and haplotype analysis to identify key candidate genes among the 22 DEGs that are responsive to nitrate. Our findings identified GmTCP (TEOSINTE-BRANCHED1/CYCLOIDEA/PCF) and GmNLP (NIN-LIKE PROTEIN) as the key candidate genes that regulate the soybean nodule phenotype in response to nitrogen concentration. We conducted homologous gene mutant analysis in Arabidopsis thaliana, which revealed that the homologous genes of GmTCP and GmNLP play a vital role in regulating root development in response to nitrogen concentration. We further performed overexpression and gene knockout of GmTCP and GmNLP through hairy root transformation in soybeans and analysed the effects of GmTCP and GmNLP on nodulation under different nitrogen concentrations using transgenic lines. Overexpressing GmTCP and GmNLP resulted in significant differences in soybean hairy root nodulation phenotypes, such as nodule number (NN) and nodule dry weight (NDW), under varying nitrate conditions. Our results demonstrate that GmTCP and GmNLP are involved in regulating soybean nodulation in response to nitrogen concentration, providing new insights into the mechanism of soybean symbiosis establishment underlying different nitrogen concentrations.
Collapse
Affiliation(s)
- Yunchol Kim
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinhui Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Chao Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Cholnam Jong
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Myongil Jin
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinmyong Cha
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jing Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Yang Peng
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Hejia Ni
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Haibo Li
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Mingliang Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
40
|
Wang C, Feng G, Xu X, Huang L, Nie G, Li D, Zhang X. Genome-Wide Identification, Characterization, and Expression of TCP Genes Family in Orchardgrass. Genes (Basel) 2023; 14:genes14040925. [PMID: 37107682 PMCID: PMC10138293 DOI: 10.3390/genes14040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-specific TCP transcription factors regulate several plant growth and development processes. Nevertheless, little information is available about the TCP family in orchardgrass (Dactylis glomerata L.). This study identified 22 DgTCP transcription factors in orchardgrass and determined their structure, phylogeny, and expression in different tissues and developmental stages. The phylogenetic tree classified the DgTCP gene family into two main subfamilies, including class I and II supported by the exon-intron structure and conserved motifs. The DgTCP promoter regions contained various cis-elements associated with hormones, growth and development, and stress responses, including MBS (drought inducibility), circadian (circadian rhythms), and TCA-element (salicylic acid responsiveness). Moreover, DgTCP9 possibly regulates tillering and flowering time. Additionally, several stress treatments upregulated DgTCP1, DgTCP2, DgTCP6, DgTCP12, and DgTCP17, indicting their potential effects regarding regulating responses to the respective stress. This research offers a valuable basis for further studies of the TCP gene family in other Gramineae and reveals new ideas for increasing gene utilization.
Collapse
Affiliation(s)
- Cheng Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
41
|
Xu J, Qin L, Xu X, Shen H, Yang X. Bacillus paralicheniformis RP01 Enhances the Expression of Growth-Related Genes in Cotton and Promotes Plant Growth by Altering Microbiota inside and outside the Root. Int J Mol Sci 2023; 24:ijms24087227. [PMID: 37108389 PMCID: PMC10138817 DOI: 10.3390/ijms24087227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can promote plant growth in various ways, allowing PGPB to replace chemical fertilizers to avoid environmental pollution. PGPB is also used for bioremediation and in plant pathogen control. The isolation and evaluation of PGPB are essential not only for practical applications, but also for basic research. Currently, the known PGPB strains are limited, and their functions are not fully understood. Therefore, the growth-promoting mechanism needs to be further explored and improved. The Bacillus paralicheniformis RP01 strain with beneficial growth-promoting activity was screened from the root surface of Brassica chinensis using a phosphate-solubilizing medium. RP01 inoculation significantly increased plant root length and brassinosteroid content and upregulated the expression of growth-related genes. Simultaneously, it increased the number of beneficial bacteria that promoted plant growth and reduced the number of detrimental bacteria. The genome annotation findings also revealed that RP01 possesses a variety of growth-promoting mechanisms and a tremendous growth-promoting potential. This study isolated a highly potential PGPB and elucidated its possible direct and indirect growth-promoting mechanisms. Our study results will help enrich the PGPB library and provide a reference for plant-microbe interactions.
Collapse
Affiliation(s)
- Jinzhi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Lijun Qin
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| |
Collapse
|
42
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|
43
|
Reinar WB, Greulich A, Stø IM, Knutsen JB, Reitan T, Tørresen OK, Jentoft S, Butenko MA, Jakobsen KS. Adaptive protein evolution through length variation of short tandem repeats in Arabidopsis. SCIENCE ADVANCES 2023; 9:eadd6960. [PMID: 36947624 PMCID: PMC10032594 DOI: 10.1126/sciadv.add6960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered protein regions are of high importance for biotic and abiotic stress responses in plants. Tracts of identical amino acids accumulate in these regions and can vary in length over generations because of expansions and retractions of short tandem repeats at the genomic level. However, little attention has been paid to what extent length variation is shaped by natural selection. By environmental association analysis on 2514 length variable tracts in 770 whole-genome sequenced Arabidopsis thaliana, we show that length variation in glutamine and asparagine amino acid homopolymers, as well as in interaction hotspots, correlate with local bioclimatic habitat. We determined experimentally that the promoter activity of a light-stress gene depended on polyglutamine length variants in a disordered transcription factor. Our results show that length variations affect protein function and are likely adaptive. Length variants modulating protein function at a global genomic scale has implications for understanding protein evolution and eco-evolutionary biology.
Collapse
Affiliation(s)
- William B. Reinar
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Anne Greulich
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ida M. Stø
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jonfinn B. Knutsen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Trond Reitan
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Melinka A. Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
44
|
Wang L, Hou J, Xu H, Zhang Y, Huang R, Wang D, He XQ. The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. PLANT COMMUNICATIONS 2023; 4:100494. [PMID: 36419363 PMCID: PMC10030372 DOI: 10.1016/j.xplc.2022.100494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 05/04/2023]
Abstract
Secondary vascular development is a key biological characteristic of woody plants and the basis of wood formation. Our understanding of gene expression regulation and dynamic changes in microRNAs (miRNAs) during secondary vascular development is still limited. Here we present an integrated analysis of the miRNA and mRNA transcriptome of six phase-specific tissues-the shoot apex, procambium, primary vascular tissue, cambium, secondary phloem, and secondary xylem-in Populus tomentosa. Several novel regulatory modules, including the PtoTCP20-miR396d-PtoGRF15 module, were identified during secondary vascular development in Populus. A series of biochemical and molecular experiments confirmed that PtoTCP20 activated transcription of the miR396d precursor gene and that miR396d targeted PtoGRF15 to downregulate its expression. Plants overexpressing miR396d (35S:miR396d) showed enhanced secondary growth and increased xylem production. Conversely, during the transition from primary to secondary vascular development, plants with downregulated PtoTCP20expression (PtoTCP20-SRDX), downregulated miR396 expression (35S:STTM396), and PtoGRF15 overexpression (35S:PtoGRF15) showed delayed secondary growth. Novel regulatory modules were identified by integrated analysis of the miRNA and mRNA transcriptome, and the regulatory role of the PtoTCP20-miR396d-PtoGRF15 signaling cascade in secondary vascular development was validated in Populus, providing information to support improvements in forest cultivation and wood properties.
Collapse
Affiliation(s)
- Lingyan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huimin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yufei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runzhou Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Laanen P, Cuypers A, Saenen E, Horemans N. Flowering under enhanced ionising radiation conditions and its regulation through epigenetic mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:246-259. [PMID: 36731286 DOI: 10.1016/j.plaphy.2023.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
As sessile organisms, plants have to deal with unfavourable conditions by acclimating or adapting in order to survive. Regulation of flower induction is one such mechanism to ensure reproduction and species survival. Flowering is a tightly regulated process under the control of a network of genes, which can be affected by environmental cues and stress. The effects of ionising radiation (IR) on flowering, however, have been poorly studied. Understanding the effects of ionising radiation on flowering, including the timing, gene pathways, and epigenetics involved, is crucial in the continuing effort of environmental radiation protection. The review shows that plants alter their flowering pattern in response to IR, with various flowering related genes (eg. FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT), CONSTANS (CO), GIGANTEA (GI), APETALA1 (AP1), LEAFY (LFY)) and epigenetic processes (DNA methylation, and miRNA expression eg. miRNA169, miR156, miR172) being affected. Thereby, showing a hypothetical IR-induced flowering mechanism. Further research on the interaction between IR and flowering in plants is, however, needed to elucidate the mechanisms behind the stress-induced flowering response.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Ann Cuypers
- Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium.
| |
Collapse
|
46
|
Camoirano A, Alem AL, Gonzalez DH, Viola IL. The N-terminal region located upstream of the TCP domain is responsible for the antagonistic action of the Arabidopsis thaliana TCP8 and TCP23 transcription factors on flowering time. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111571. [PMID: 36535527 DOI: 10.1016/j.plantsci.2022.111571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
TCP proteins (TCPs) are plant-exclusive transcription factors that exert effects on multiple aspects of plant development, from germination to flower and fruit formation. TCPs are divided into two main classes, I and II. In this study, we found that the Arabidopsis thaliana class I TCP transcription factor TCP8 is a positive regulator of flowering time. TCP8 mutation and constitutive expression delayed and accelerated flowering, respectively. Accordingly, TCP8 mutant plants showed a delay in the maximum expression of FT and reduced SOC1 transcript levels, while plants overexpressing TCP8 presented increased transcript levels of both genes. Notably, the related class I protein TCP23 showed the opposite behavior, since TCP23 mutation and overexpression accelerated and retarded flowering, respectively. To elucidate the molecular basis of these differences, we analyzed TCP8 and TCP23 comparatively. We found that both proteins are able to physically interact and bind class I TCP motifs, but only TCP8 shows transcriptional activation activity when expressed in plants, which is negatively affected by TCP23. From the analysis of plants expressing different chimeras between the TCPs, we found that the N-terminal region located upstream of the TCP domain is responsible for the opposite effect that TCP8 and TCP23 exert over flowering time and regulation of FT and SOC1 expression. These results suggest that structural features outside the TCP domain modulate the specificity of action of class I TCPs.
Collapse
Affiliation(s)
- Alejandra Camoirano
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Antonela L Alem
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
47
|
Ooi SE, Sarpan N, Taranenko E, Feshah I, Nuraziyan A, Roowi SH, Burhan MN, Jayanthi N, Rahmah ARS, Teh OK, Ong-Abdullah M, Tatarinova TV. Small RNAs and Karma methylation in Elaeis guineensis mother palms are linked to high clonal mantling. PLANT MOLECULAR BIOLOGY 2023; 111:345-363. [PMID: 36609897 DOI: 10.1007/s11103-022-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The mantled phenotype is an abnormal somaclonal variant arising from the oil palm cloning process and severe phenotypes lead to oil yield losses. Hypomethylation of the Karma retrotransposon within the B-type MADS-box EgDEF1 gene has been associated with this phenotype. While abnormal Karma-EgDEF1 hypomethylation was detected in mantled clones, we examined the methylation state of Karma in ortets that gave rise to high mantling rates in their clones. Small RNAs (sRNAs) were proposed to play a role in Karma hypomethylation as part of the RNA-directed DNA methylation process, hence differential expression analysis of sRNAs between the ortet groups was conducted. While no sRNA was differentially expressed at the Karma-EgDEF1 region, three sRNA clusters were differentially regulated in high-mantling ortets. The first two down-regulated clusters were possibly derived from long non-coding RNAs while the third up-regulated cluster was derived from the intron of a DnaJ chaperone gene. Several predicted mRNA targets for the first two sRNA clusters conversely displayed increased expression in high-mantling relative to low-mantling ortets. These predicted mRNA targets may be associated with defense or pathogenesis response. In addition, several differentially methylated regions (DMRs) were identified in Karma and its surrounding regions, mainly comprising subtle CHH hypomethylation in high-mantling ortets. Four of the 12 DMRs were located in a region corresponding to hypomethylated areas at the 3'end of Karma previously reported in mantled clones. Further investigations on these sRNAs and DMRs may indicate the predisposition of certain ortets towards mantled somaclonal variation.
Collapse
Affiliation(s)
- Siew-Eng Ooi
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Norashikin Sarpan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, CA, USA
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia, 660036
| | - Ishak Feshah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Azimi Nuraziyan
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | - Nagappan Jayanthi
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Rahman Siti Rahmah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ooi-Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei, Taiwan, R.O.C
| | - Meilina Ong-Abdullah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, USA.
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia, 660036.
- Vavilov Institute for General Genetics, Moscow, Russia.
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
48
|
Hao J, Zheng L, Han Y, Zhang H, Hou K, Liang X, Chen C, Wang Z, Qian J, Lin Z, Wang Z, Zeng H, Shen C. Genome-wide identification and expression analysis of TCP family genes in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2023; 14:1161534. [PMID: 37123846 PMCID: PMC10130365 DOI: 10.3389/fpls.2023.1161534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction The anti-tumor vindoline and catharanthine alkaloids are naturally existed in Catharanthus roseus (C. roseus), an ornamental plant in many tropical countries. Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play important roles in various plant developmental processes. However, the roles of C. roseus TCPs (CrTCPs) in terpenoid indole alkaloid (TIA) biosynthesis are largely unknown. Methods Here, a total of 15 CrTCP genes were identified in the newly updated C. roseus genome and were grouped into three major classes (P-type, C-type and CYC/TB1). Results Gene structure and protein motif analyses showed that CrTCPs have diverse intron-exon patterns and protein motif distributions. A number of stress responsive cis-elements were identified in promoter regions of CrTCPs. Expression analysis showed that three CrTCP genes (CrTCP2, CrTCP4, and CrTCP7) were expressed specifically in leaves and four CrTCP genes (CrTCP13, CrTCP8, CrTCP6, and CrTCP10) were expressed specifically in flowers. HPLC analysis showed that the contents of three classic TIAs, vindoline, catharanthine and ajmalicine, were significantly increased by ultraviolet-B (UV-B) and methyl jasmonate (MeJA) in leaves. By analyzing the expression patterns under UV-B radiation and MeJA application with qRT-PCR, a number of CrTCP and TIA biosynthesis-related genes were identified to be responsive to UV-B and MeJA treatments. Interestingly, two TCP binding elements (GGNCCCAC and GTGGNCCC) were identified in several TIA biosynthesis-related genes, suggesting that they were potential target genes of CrTCPs. Discussion These results suggest that CrTCPs are involved in the regulation of the biosynthesis of TIAs, and provide a basis for further functional identification of CrTCPs.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Lijun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yidie Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Jiayi Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhihao Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zitong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Chenjia Shen, ; Houqing Zeng,
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Chenjia Shen, ; Houqing Zeng,
| |
Collapse
|
49
|
The generation of the flower by self-organisation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:42-54. [PMID: 36346254 DOI: 10.1016/j.pbiomolbio.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The essence of the Turing-Child theory (Schiffmann, 1991, 2017) is the direct and spontaneous conversion of chemical energy into simultaneous differentiation and morphogenesis, and all localised biological work and localised entropy-reducing processes. This is done via the identification of the Turing instability with cAMP and ATP being the Turing morphogens that mutually fulfil the five Turing inequalities. A flower model like the ABC model is derived from experiments with mutations. But what actually generates the model in real development? That is, how do genes of class A come to be expressed in the sepal and petal whorls, genes of class B in the petal and stamen whorls, and genes of class C in the stamen and carpel whorls. We suggest that the generation of the ABC model occurs via sequential compartmentalisation by Turing-Child eigenfunction patterns similar to the one occurring in Drosophila (Schiffmann, 2012). We also suggest a similar mechanism for the generation of the dorso-lateral-ventral polarity and bilateral symmetry. A mechanism for the generation of the regular location of the floral organs is also suggested. The symmetry and regularity of flowers, which are the source of their attraction and beauty, stem from the symmetry and regularity of the Turing-Child eigenfunctions. The central problem in developmental biology is the endless regress. This endless regress is halted by the Turing-Child pre-patterns and this is illustrated on a central example in flower generation. Both the shape and the chemistry - the steady-state rate of ATP synthesis and hydrolysis - of the Turing-Child pre-patterns are exactly what is required. Art and science meet in flower formation.
Collapse
|
50
|
Navarro-Cartagena S, Micol JL. Is auxin enough? Cytokinins and margin patterning in simple leaves. TRENDS IN PLANT SCIENCE 2023; 28:54-73. [PMID: 36180378 DOI: 10.1016/j.tplants.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.
Collapse
Affiliation(s)
- Sergio Navarro-Cartagena
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|