1
|
Liu L, Xiao C, Gao Y, Jiang T, Xu K, Chen J, Lin Z, Chen J, Tian S, Lu L. Inoculation of multi-metal-resistant Bacillus sp. to a hyperaccumulator plant Sedum alfredii for facilitating phytoextraction of heavy metals from contaminated soil. CHEMOSPHERE 2024; 366:143464. [PMID: 39368497 DOI: 10.1016/j.chemosphere.2024.143464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Co-contamination of soil by multiple heavy metals is a significant global challenge. An effective strategy to address this issue involves using hyperaccumulators such as Sedum alfredii (S. alfredii). The efficiency of phytoremediation can be improved by supplementing with plant growth-promoting bacteria (PGPB). However, bacteria resources of PGPB resistant to multi-heavy metal contamination are still lacking. This study focused nine different strains of Bacillus and screened for resistance to heavy metals including cadmium (Cd), zinc (Zn), copper (Cu), and lead (Pb). A superior strain, Bacillus subtilis PY79 (B. subtilis), showed tolerance for all tested metals. Inoculation with B. subtilis in the rhizosphere of S. alfredii increased the accumulation of Cd, Zn, Cu, and Pb by 88.02%, 58.99%, 90.22%, and 54.97% in the plant shoots after 30 days respectively. B. subtilis application lowered the pH of the rhizosphere soil, thereby increasing the bioavailability of nutrients and heavy metals. Furthermore, B. subtilis helped S. alfredii recruit PGPB and heavy metal-resistant bacteria such as Edaphobacter, Niastella, and Chitinophaga, enhancing the growth and phytoremediation efficiency. Moreover, inoculation with B. subtilis not only upregulated genes of the ABC, HMA, ZIP, and MTP families involved in the translocation and detoxification of heavy metals but also increased the secretion of antioxidants within the cells. These findings indicate that B. subtilis enhances the tolerance, uptake, and translocation of heavy metals in S. alfredii, offering valuable insights for the phytoremediation of multi-metal-contaminated soils.
Collapse
Affiliation(s)
- Lianghui Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Chun Xiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Gao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Tianchi Jiang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Kuan Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jing Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Sarkar S, Rhein HS, Pittman JK, Hirschi KD. A dominant-negative Arabidopsis cation exchanger 1 (CAX1): N-terminal autoinhibition and membrane topology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39175446 DOI: 10.1111/tpj.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Calcium (Ca2+) is essential for plant growth and cellular homeostasis, with cation exchangers (CAXs) regulating Ca2+ transport into plant vacuoles. In Arabidopsis, multiple CAXs feature a common structural arrangement, comprising an N-terminal autoinhibitory domain followed by two pseudosymmetrical modules. Mutations in CAX1 enhance stress tolerance, notably tolerance to anoxia (a condition marked by oxygen depletion), crucial for flood resilience. Here we engineered a dominant-negative CAX1 variant, named ½N-CAX1, incorporating the autoinhibitory domain and the N-terminal pseudosymmetrical module, which, when expressed in wild-type Arabidopsis plants, phenocopied the anoxia tolerance of cax1. Physiological evaluations, yeast assays, and calcium imaging demonstrated that wild-type plants expressing ½N-CAX1 have phenotypes consistent with inhibition of CAX1, which is likely through direct interaction of ½N-CAX1 with CAX1. Eliminating segments within the N-terminal pseudosymmetrical module, as well as incorporating modules from other plant CAXs and expressing these variants into wild-type plants, failed to produce anoxia tolerance. This underscores the requirement for both the CAX1 autoinhibitory domain and the intact pseudosymmetrical module to produce the dominant-negative phenotype. Our study elucidates the interaction of this ½N-CAX1 variant with CAX1 and its impact on anoxia tolerance, offering insights into further approaches for engineering plant stress tolerance.
Collapse
Affiliation(s)
- Shayan Sarkar
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hormat Shadgou Rhein
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jon K Pittman
- Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Kendal D Hirschi
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
3
|
Pittman JK, Hirschi KD. CAX control: multiple roles of vacuolar cation/H + exchangers in metal tolerance, mineral nutrition and environmental signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39030923 DOI: 10.1111/plb.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Plant vacuolar transporters, particularly CAX (Cation/H+ Exchangers) responsible for Ca2+/H+ exchange on the vacuole tonoplast, play a central role in governing cellular pH, ion balance, nutrient storage, metal accumulation, and stress responses. Furthermore, CAX variants have been employed to enhance the calcium content of crops, contributing to biofortification efforts. Recent research has uncovered the broader significance of these transporters in plant signal transduction and element partitioning. The use of genetically encoded Ca2+ sensors has begun to highlight the crucial role of CAX isoforms in generating cytosolic Ca2+ signals, underscoring their function as pivotal hubs in diverse environmental and developmental signalling networks. Interestingly, it has been observed that the loss of CAX function can be advantageous in specific stress conditions, both for biotic and abiotic stressors. Determining the optimal timing and approach for modulating the expression of CAX is a critical concern. In the future, strategically manipulating the temporal loss of CAX function in agriculturally important crops holds promise to bolster plant immunity, enhance cold tolerance, and fortify resilience against one of agriculture's most significant challenges, namely flooding.
Collapse
Affiliation(s)
- J K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - K D Hirschi
- Children's Nutrition Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
De Benedictis M, Gallo A, Migoni D, Papadia P, Roversi P, Santino A. Cadmium treatment induces endoplasmic reticulum stress and unfolded protein response in Arabidopsisthaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:281-290. [PMID: 36736010 DOI: 10.1016/j.plaphy.2023.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
We report about the response of Arabidopsis thaliana to chronic and temporary Cd2+ stress, and the Cd2+ induced activation of ER stress and unfolded protein response (UPR). Cd2+-induced UPR proceeds mainly through the bZIP60 arm, which in turn activates relevant ER stress marker genes such as BiP3, CNX, PDI5 and ERdj3B in a concentration- (chronic stress) or time- (temporary stress) dependent manner. A more severe Cd-stress triggers programmed cell death (PCD) through the activation of the NAC089 transcription factor. Toxic effects of Cd2+ exposure are reduced in the Atbzip28/bzip60 double mutant in terms of primary root length and fresh shoot weight, likely due to reduced UPR and PCD activation. We also hypothesised that the enhanced Cd2+ tolerance of the Atbzip28/bzip60 double mutant is due to an increase in brassinosteroids signaling, since the amount of the brassinosteroid insensitive1 receptor (BRI1) protein decreases under Cd2+ stress only in Wt plants. These data highlight the complexity of the UPR pathway, since the ER stress response is strictly related to the type of the treatment applied and the multifaceted connections of ER signaling. The reduced sensing of Cd2+ stress in plants with UPR defects can be used as a novel strategy for phytoremediation.
Collapse
Affiliation(s)
- Maria De Benedictis
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Antonia Gallo
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, Di.S.Te.B.A. (Dipartimento di Scienze e Technologie Biologic e Ambientali), University of Salento, Lecce, Italy
| | - Pietro Roversi
- Institute of Agricultural Biology and Biotechnology, C.N.R., Unit of Milan, Milano, Italy; Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy.
| |
Collapse
|
6
|
Yang J, Mathew IE, Rhein H, Barker R, Guo Q, Brunello L, Loreti E, Barkla BJ, Gilroy S, Perata P, Hirschi KD. The vacuolar H+/Ca transporter CAX1 participates in submergence and anoxia stress responses. PLANT PHYSIOLOGY 2022; 190:2617-2636. [PMID: 35972350 PMCID: PMC9706465 DOI: 10.1093/plphys/kiac375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 05/04/2023]
Abstract
A plant's oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1-4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.
Collapse
Affiliation(s)
- Jian Yang
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hormat Rhein
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard Barker
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Qi Guo
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Luca Brunello
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, 56124 Pisa, Italy
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Simon Gilroy
- Department of Botany, Birge Hall, University of Wisconsin, Wisconsin, USA
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'Anna, San Giuliano Terme, Pisa, Italy
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children’s Nutrition Research, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Jia Y, Jiang X, Xu J, Cao M, Luo J. Cd and pb Co-Pollution Increased Ecological Risk and Changed Rhizosphere Characteristics of Arabidopsis Thaliana During Phytoremediation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:909-916. [PMID: 35234979 DOI: 10.1007/s00128-022-03473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Previous studies have reported that co-contamination can result in more complex effects on the phytoremediation efficiency of plants relative to those of a single pollutant. However, the effect of co-contamination on plant rhizosphere characteristics has rarely been revealed. This study was carried out to assess the changes in soil pH, the content and fractionation of dissolved organic matter (DOM), and the metal solubility in the rhizosphere of Arabidopsis thaliana when treated with Cd and Pb simultaneously. The results showed that co-contamination increased the concentrations of DOM by 24.8% and 30.9% in the rhizosphere soil of A. thaliana relative to individual Cd or Pb pollution, respectively. At the end of the experiment, co-contamination significantly decreased the initial soil pH from 6.6 ± 0.3 to 5.5 ± 0.4, whereas a decrease was not observed under Pb pollution alone. Variations in soil pH and DOM can change the fractions of the two metals in the rhizosphere soil of A. thaliana. DOM in co-contaminated soil showed a higher Cd (1.05 mg L-1) and Pb (0.75 mg L-1) extraction ability relative to that in the Cd-polluted (0.89 mg Cd L-1 and 0.59 mg Pb L-1) or Pb-polluted (0.68 mg Cd L-1 and 0.63 mg Pb L-1) soils. The soluble Cd content in the co-contaminated (0.44 mg L-1) soil was significantly lower than that in the Cd-polluted (0.71 mg L-1) soil because A. thaliana is a Cd accumulator, whereas the soluble Pb content showed the opposite trend (47.0 mg L-1 vs. 37.4 mg L-1) because the species is a Pb excluder. Therefore, A. thaliana in co-contaminated soil would pose a leaching risk for the non-hyperaccumulated metals, thereby increasing the potential ecological risk during the phytoremediation process.
Collapse
Affiliation(s)
- Yifan Jia
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Xiaoxuan Jiang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jing Xu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, LE1 7RH, Leicester, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
8
|
Sonsungsan P, Chantanakool P, Suratanee A, Buaboocha T, Comai L, Chadchawan S, Plaimas K. Identification of Key Genes in 'Luang Pratahn', Thai Salt-Tolerant Rice, Based on Time-Course Data and Weighted Co-expression Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:744654. [PMID: 34925399 PMCID: PMC8675607 DOI: 10.3389/fpls.2021.744654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/01/2021] [Indexed: 05/13/2023]
Abstract
Salinity is an important environmental factor causing a negative effect on rice production. To prevent salinity effects on rice yields, genetic diversity concerning salt tolerance must be evaluated. In this study, we investigated the salinity responses of rice (Oryza sativa) to determine the critical genes. The transcriptomes of 'Luang Pratahn' rice, a local Thai rice variety with high salt tolerance, were used as a model for analyzing and identifying the key genes responsible for salt-stress tolerance. Based on 3' Tag-Seq data from the time course of salt-stress treatment, weighted gene co-expression network analysis was used to identify key genes in gene modules. We obtained 1,386 significantly differentially expressed genes in eight modules. Among them, six modules indicated a significant correlation within 6, 12, or 48h after salt stress. Functional and pathway enrichment analysis was performed on the co-expressed genes of interesting modules to reveal which genes were mainly enriched within important functions for salt-stress responses. To identify the key genes in salt-stress responses, we considered the two-state co-expression networks, normal growth conditions, and salt stress to investigate which genes were less important in a normal situation but gained more impact under stress. We identified key genes for the response to biotic and abiotic stimuli and tolerance to salt stress. Thus, these novel genes may play important roles in salinity tolerance and serve as potential biomarkers to improve salt tolerance cultivars.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pheerawat Chantanakool
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology, College of Biological Sciences, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Kabir AH, Das U, Rahman MA, Lee KW. Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:352-368. [PMID: 33848008 DOI: 10.1111/ppl.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is toxic; however, whether silicon (Si) alleviates Cd toxicity was never studied in sugar beet. The study was conducted on 2-week-old sugar beet cultivated in the presence or absence of Cd (10 μM CdSO4 ) and Si (1 mM Na2 SiO3 ) in hydroponic conditions. The morphological impairment and cellular damages observed in sugar beet upon Cd toxicity were entirely reversed due to Si. Si substantially restored the energy-providing ability, absorbed energy flux, and electron transport toward PSII, which might be correlated with the upregulation of BvIRT1 and ferric chelate reductase activity leading to the restoration of Fe status in Cd-stressed sugar beet. Although Si caused a reduction of shoot Cd, the root Cd substantially increased under Cd stress, a significant part of which was retained in the cell wall rather than in the root vacuole. While the concentration of phytochelatin and the expression of BvPCS3 (PHYTOCHELATIN SYNTHASE 3) showed no changes upon Si exposure, Si induced the expression of BvHIPP32 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 32) in the Cd-exposed root. The BvHIPP32 and AtHIPP32 metallochaperone proteins are localized in the cell wall and they share similar sequence alignment, physiochemical properties, secondary structure, cellular localization, motif locations, domain association, and metal-binding site (cd00371) linked to the metallochaperone-like protein. It suggests that Si reduces the Cd level in shoot by retaining the excess Cd in the cell wall of roots due to the induction of BvHIPP32 gene. Also, Si stimulates glutathione-related antioxidants along with the BvGST23 expression, inferring an ascorbate-glutathione ROS detoxification pathway in Cd-exposed plants.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Urmi Das
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
10
|
Haque AM, Tasnim J, El-Shehawi AM, Rahman MA, Parvez MS, Ahmed MB, Kabir AH. The Cd-induced morphological and photosynthetic disruption is related to the reduced Fe status and increased oxidative injuries in sugar beet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:448-458. [PMID: 34161881 DOI: 10.1016/j.plaphy.2021.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) toxicity is a form of soil contamination that causes losses in plant growth and yield. Understanding the effects of Cd-induced changes in physiological and cellular processes will help scientists develop better scientific strategies for sugar beet plant improvement. Cd toxicity triggered a substantial decrease in morphological parameters and total soluble protein in sugar beets, as well as membrane damage and cell death. Furthermore, the SPAD score and photosynthetic OJIP parameters in leaves were severely affected due to Cd stress. This was correlated with the decreased FCR activity and BvIRT1 expression in roots, suggesting the adverse effect of Cd in Fe acquisition in sugar beet. Our findings also revealed that BvHMA3 and BvNRAMP3 were upregulated in Cd-exposed roots, indicating that these genes might be involved in Cd uptake in sugar beet. In silico analysis of BvHMA3 and BvNRAMP3 proteins showed close partnerships with several Arabidopsis genes mainly linked to metal tolerance protein, cation diffusion facilitator, vacuolar metal transporter, and vacuolar Fe transporter. Subsequently, Cd-exposed sugar beet showed severe sensitivity to oxidative damages resulted in elevated H2O2 and O2.- without possessed efficient antioxidant defense. Finally, growth retardation in Cd-exposed sugar beets is linked to photosynthetic inefficiency caused by low Fe levels and oxidative stress in cells. These results may be used to improve Cd-sensitive sugar beet plants by breeding or transgenic programs.
Collapse
Affiliation(s)
- Afm Mohabubul Haque
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jannatut Tasnim
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Cheonan31000, Republic of Korea
| | - Md Sarwar Parvez
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bulbul Ahmed
- Institut de Recherche en Biologie Végétale (IRBV), University of Montreal, Montréal, Québec, H1X 2B2, Canada
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
11
|
Kang R, Seo E, Park A, Kim WJ, Kang BH, Lee JH, Kim SH, Kang SY, Ha BK. A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations. PLANTS (BASEL, SWITZERLAND) 2021; 10:567. [PMID: 33802840 PMCID: PMC8002818 DOI: 10.3390/plants10030567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
In this study, gene expression changes in cowpea plants irradiated by two different types of radiation: proton-beams and gamma-rays were investigated. Seeds of the Okdang cultivar were exposed to 100, 200, and 300 Gy of gamma-rays and proton-beams. In transcriptome analysis, the 32, 75, and 69 differentially expressed genes (DEGs) at each dose of gamma-ray irradiation compared with that of the control were identified. A total of eight genes were commonly up-regulated for all gamma-ray doses. However, there were no down-regulated genes. In contrast, 168, 434, and 387 DEGs were identified for each dose of proton-beam irradiation compared with that of the control. A total of 61 DEGs were commonly up-regulated for all proton-beam doses. As a result of GO and KEGG analysis, the ranks of functional categories according to the number of DEGs were not the same in both treatments and were more diverse in terms of pathways in the proton-beam treatments than gamma-ray treatments. The number of genes related to defense, photosynthesis, reactive oxygen species (ROS), plant hormones, and transcription factors (TF) that were up-/down-regulated was higher in the proton beam treatment than that in gamma ray treatment. Proton-beam treatment had a distinct mutation spectrum and gene expression pattern compared to that of gamma-ray treatment. These results provide important information on the mechanism for gene regulation in response to two ionizing radiations in cowpeas.
Collapse
Affiliation(s)
- Ryulyi Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea; (R.K.); (E.S.); (A.P.); (W.J.K.); (B.H.K.)
| | - Eunju Seo
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea; (R.K.); (E.S.); (A.P.); (W.J.K.); (B.H.K.)
| | - Aron Park
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea; (R.K.); (E.S.); (A.P.); (W.J.K.); (B.H.K.)
| | - Woon Ji Kim
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea; (R.K.); (E.S.); (A.P.); (W.J.K.); (B.H.K.)
| | - Byeong Hee Kang
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea; (R.K.); (E.S.); (A.P.); (W.J.K.); (B.H.K.)
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Korea
| | | | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea;
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, Chonnam National University, Gwangju 61186, Korea; (R.K.); (E.S.); (A.P.); (W.J.K.); (B.H.K.)
- BK21 FOUR Center for IT-Bio Convergence System Agriculture, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
12
|
Luo JS, Yang Y, Gu T, Wu Z, Zhang Z. The Arabidopsis defensin gene AtPDF2.5 mediates cadmium tolerance and accumulation. PLANT, CELL & ENVIRONMENT 2019; 42:2681-2695. [PMID: 31115921 DOI: 10.1111/pce.13592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 05/11/2023]
Abstract
Although excess cadmium (Cd) accumulation is harmful to plants, the molecular mechanisms underlying Cd detoxification and accumulation in Arabidopsis thaliana remain largely undetermined. In this study, we demonstrated that the A. thaliana PLANT DEFENSIN 2 gene AtPDF2.5 is involved in Cd tolerance and accumulation. In vitro Cd-binding assays revealed that AtPDF2.5 has Cd-chelating activity. Site-directed mutagenesis of AtPDF2.5 identified eight cysteine residues that were essential for mediating Cd tolerance and chelation. Histochemical analysis demonstrated that AtPDF2.5 was mainly expressed in root xylem vascular bundles, and that AtPDF2.5 was significantly induced by Cd. Subcellular localization analysis revealed that AtPDF2.5 was localized to the cell wall. The overexpression of AtPDF2.5 significantly enhanced Cd tolerance and accumulation in A. thaliana and its heterologous overexpression in rice increased Cd accumulation; however, the functional disruption of AtPDF2.5 decreased Cd tolerance and accumulation. Physiological analysis suggested that AtPDF2.5 promoted Cd efflux from the protoplast and its subsequent accumulation in the cell wall. These data suggest that AtPDF2.5 promotes cytoplasmic Cd efflux via chelation, thereby enhancing Cd detoxification and apoplastic accumulation.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Yong Yang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Tianyu Gu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhimin Wu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| |
Collapse
|
13
|
Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S. Cadmium and Plant Development: An Agony from Seed to Seed. Int J Mol Sci 2019; 20:ijms20163971. [PMID: 31443183 PMCID: PMC6718997 DOI: 10.3390/ijms20163971] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic pollution of agricultural soils with cadmium (Cd) should receive adequate attention as Cd accumulation in crops endangers human health. When Cd is present in the soil, plants are exposed to it throughout their entire life cycle. As it is a non-essential element, no specific Cd uptake mechanisms are present. Therefore, Cd enters the plant through transporters for essential elements and consequently disturbs plant growth and development. In this review, we will focus on the effects of Cd on the most important events of a plant's life cycle covering seed germination, the vegetative phase and the reproduction phase. Within the vegetative phase, the disturbance of the cell cycle by Cd is highlighted with special emphasis on endoreduplication, DNA damage and its relation to cell death. Furthermore, we will discuss the cell wall as an important structure in retaining Cd and the ability of plants to actively modify the cell wall to increase Cd tolerance. As Cd is known to affect concentrations of reactive oxygen species (ROS) and phytohormones, special emphasis is put on the involvement of these compounds in plant developmental processes. Lastly, possible future research areas are put forward and a general conclusion is drawn, revealing that Cd is agonizing for all stages of plant development.
Collapse
Affiliation(s)
- Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jana Deckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Marijke Jozefczak
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
14
|
Belykh ES, Maystrenko TA, Velegzhaninov IO. Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming. Mol Biotechnol 2019; 61:725-741. [DOI: 10.1007/s12033-019-00202-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Corso M, Schvartzman MS, Guzzo F, Souard F, Malkowski E, Hanikenne M, Verbruggen N. Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. THE NEW PHYTOLOGIST 2018; 218:283-297. [PMID: 29292826 DOI: 10.1111/nph.14948] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/05/2017] [Indexed: 05/10/2023]
Abstract
While cadmium (Cd) tolerance is a constitutive trait in the Arabidopsis halleri species, Cd accumulation is highly variable. Recent adaptation to anthropogenic metal stress has occurred independently within the genetic units of A. halleri and the evolution of different mechanisms involved in Cd tolerance and accumulation has been suggested. To gain a better understanding of the mechanisms underlying Cd tolerance and accumulation in A. halleri, ionomic inductively coupled plasma mass spectrometry (ICP-MS), transcriptomic (RNA sequencing) and metabolomic (high-performance liquid chromatography-mass spectrometry) profiles were analysed in two A. halleri metallicolous populations from different genetic units (PL22 from Poland and I16 from Italy). The PL22 and I16 populations were both hypertolerant to Cd, but PL22 hyperaccumulated Cd while I16 behaved as an excluder both in situ and when grown hydroponically. The observed hyperaccumulator vs excluder behaviours were paralleled by large differences in the expression profiles of transporter genes. Flavonoid-related transcripts and metabolites were strikingly more abundant in PL22 than in I16 shoots. The role of novel A. halleri candidate genes possibly involved in Cd hyperaccumulation or exclusion was supported by the study of corresponding A. thaliana knockout mutants. Taken together, our results are suggestive of the evolution of divergent strategies for Cd uptake, transport and detoxification in different genetic units of A. halleri.
Collapse
Affiliation(s)
- Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - M Sol Schvartzman
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, B-4000, Liège, Belgium
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Florence Souard
- Département de Pharmacochimie Moléculaire, CNRS UMR5063, University Grenoble Alpes, 38400, St Martin d'Hères, France
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Eugeniusz Malkowski
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Marc Hanikenne
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, B-4000, Liège, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| |
Collapse
|
16
|
Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca 2+ dynamics in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:3966-3971. [PMID: 29581277 DOI: 10.1073/pnas.1720422115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ca2+ signals in plant cells are important for adaptive responses to environmental stresses. Here, we report that the Arabidopsis CATION/Ca2+ EXCHANGER2 (CCX2), encoding a putative cation/Ca2+ exchanger that localizes to the endoplasmic reticulum (ER), is strongly induced by salt and osmotic stresses. Compared with the WT, AtCCX2 loss-of-function mutant was less tolerant to osmotic stress and displayed the most noteworthy phenotypes (less root/shoot growth) during salt stress. Conversely, AtCCX2 gain-of-function mutants were more tolerant to osmotic stress. In addition, AtCCX2 partially suppresses the Ca2+ sensitivity of K667 yeast triple mutant, characterized by Ca2+ uptake deficiency. Remarkably, Cameleon Ca2+ sensors revealed that the absence of AtCCX2 activity results in decreased cytosolic and increased ER Ca2+ concentrations in comparison with both WT and the gain-of-function mutants. This was observed in both salt and nonsalt osmotic stress conditions. It appears that AtCCX2 is directly involved in the control of Ca2+ fluxes between the ER and the cytosol, which plays a key role in the ability of plants to cope with osmotic stresses. To our knowledge, Atccx2 is unique as a plant mutant to show a measured alteration in ER Ca2+ concentrations. In this study, we identified the ER-localized AtCCX2 as a pivotal player in the regulation of ER Ca2+ dynamics that heavily influence plant growth upon salt and osmotic stress.
Collapse
|
17
|
Merlot S, Sanchez Garcia de la Torre V, Hanikenne M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
He R, Yu G, Han X, Han J, Li W, Wang B, Huang S, Cheng X. ThPP1 gene, encodes an inorganic pyrophosphatase in Thellungiella halophila, enhanced the tolerance of the transgenic rice to alkali stress. PLANT CELL REPORTS 2017; 36:1929-1942. [PMID: 29030650 DOI: 10.1007/s00299-017-2208-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/12/2017] [Indexed: 05/14/2023]
Abstract
An inorganic pyrophosphorylase gene, ThPP1 , modulated the accumulations of phosphate and osmolytes by up-regulating the differentially expression genes, thus enhancing the tolerance of the transgenic rice to alkali stress (AS). Inorganic pyrophosphorylase is essential in catalyzing the hydrolysis of pyrophosphate to inorganic phosphate during plant growth. Here, we report the changes of physiological osmolytes and differentially expression genes in the transgenic rice overexpressing a soluble inorganic pyrophosphatase gene ThPP1 of Thellungiella halophila in response to AS. Analyses showed that the ThPP1 gene was a PPase family I member which is located to the cytoplasm. Data showed that the transgenic lines revealed an enhanced tolerance to AS compared to the wild type, and effectively increased the accumulations of inorganic phosphate and organic small molecules starch, sucrose, proline and chlorophyll, and maintained the balance of osmotic potential by modulating the ratio of Na+/K+ in plant cells. Under AS, total 379 of differentially expression genes were up-regulated in the leaves of the transgenic line compared with control, and the enhanced tolerance of the transgenic rice to the AS seemed to be associated with the up-regulations of the osmotic stress-related genes such as the L-type lectin-domain containing receptor kinase (L-type LecRK), the cation/H+ antiporter gene and the vacuolar cation/proton exchanger 1 gene (CAX1), which conferred the involvements in the biosynthesis and metabolic pathways. Protein interaction showed that the ThPP1 protein specifically interacted with a 16# target partner of the photosystem II light-harvesting-Chl-binding protein. This study suggested that the ThPP1 gene plays an important regulatory role in conferring the tolerance of the transgenic rice to AS, and is an effective candidate in molecular breeding for crop cultivation of the alkali tolerance.
Collapse
Affiliation(s)
- Rui He
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, People's Republic of China
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China
| | - Guohong Yu
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jiao Han
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China
- College of Life Science, Shanxi Normal University, No. 1 Gongyue Street, Yaodu Area, Linfen, 0410004, Shanxi, People's Republic of China
| | - Wei Li
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China
| | - Bing Wang
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China
| | - Shengcai Huang
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China
| | - Xianguo Cheng
- Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Street, Zhongguancun, Beijing, 100081, People's Republic of China.
| |
Collapse
|