1
|
Zhao L, Liu H, Wang W, Wang Y, Xiu M, Li S. Carnitine metabolites and cognitive improvement in patients with schizophrenia treated with olanzapine: a prospective longitudinal study. Front Pharmacol 2023; 14:1255501. [PMID: 37663259 PMCID: PMC10470116 DOI: 10.3389/fphar.2023.1255501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: Cognitive impairment is one of the core symptoms of schizophrenia, which is stable and lifelong. L-carnitine has been shown to improve cognitive function and decrease the rate of cognitive deterioration in patients with Alzheimer's disease. However, it remains unclear regarding the role of L-carnitine and its metabolites in cognitive functions in schizophrenia after treatment with olanzapine. The purpose of this study was to evaluate the relationship between changes in plasma levels of L-carnitine metabolites and cognitive improvement after olanzapine treatment. Methods: This was a prospective longitudinal study. In this study, we recruited 25 female patients with first episode schizophrenia (FES) who were drug naïve at baseline and received 4 weeks of olanzapine monotherapy. Cognitive function was assessed at baseline and 4-week follow-up using the RBANS. Plasma L-carnitine metabolite levels were determined by a metabolomics technology based on untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Results: We found that the immediate memory index, delayed memory index and RBANS composite score were significantly increased at the 4-week follow-up after treatment. A total of 7 differential L-carnitine metabolites were identified in FES patients after olanzapine monotherapy. In addition, we found that changes in butyrylcarnitine were positively correlated with improvements in language index and RBANS composite score. Further regression analyses confirmed the association between reduced butyrylcarnitine levels and cognitive improvement after olanzapine monotherapy in FES patients. Conclusion: Our study shows that cognitive improvement after olanzapine treatment was associated with changes in L-carnitine metabolite levels in patients with FES, suggesting a key role of L-carnitine in cognition in schizophrenia.
Collapse
Affiliation(s)
- Lei Zhao
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Hua Liu
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Wenjuan Wang
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Youping Wang
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuyun Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Tkachev A, Stekolshchikova E, Vanyushkina A, Zhang H, Morozova A, Zozulya S, Kurochkin I, Anikanov N, Egorova A, Yushina E, Vogl T, Senner F, Schaupp SK, Reich-Erkelenz D, Papiol S, Kohshour MO, Klöhn-Saghatolislam F, Kalman JL, Heilbronner U, Heilbronner M, Gade K, Comes AL, Budde M, Anderson-Schmidt H, Adorjan K, Wiltfang J, Reininghaus EZ, Juckel G, Dannlowski U, Fallgatter A, Spitzer C, Schmauß M, von Hagen M, Zorkina Y, Reznik A, Barkhatova A, Lisov R, Mokrov N, Panov M, Zubkov D, Petrova D, Zhou C, Liu Y, Pu J, Falkai P, Kostyuk G, Klyushnik T, Schulze TG, Xie P, Schulte EC, Khaitovich P. Lipid Alteration Signature in the Blood Plasma of Individuals With Schizophrenia, Depression, and Bipolar Disorder. JAMA Psychiatry 2023; 80:250-259. [PMID: 36696101 PMCID: PMC9878436 DOI: 10.1001/jamapsychiatry.2022.4350] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/31/2022] [Indexed: 01/26/2023]
Abstract
Importance No clinically applicable diagnostic test exists for severe mental disorders. Lipids harbor potential as disease markers. Objective To define a reproducible profile of lipid alterations in the blood plasma of patients with schizophrenia (SCZ) independent of demographic and environmental variables and to investigate its specificity in association with other psychiatric disorders, ie, major depressive disorder (MDD) and bipolar disorder (BPD). Design, Setting, and Participants This was a multicohort case-control diagnostic analysis involving plasma samples from psychiatric patients and control individuals collected between July 17, 2009, and May 18, 2018. Study participants were recruited as consecutive and volunteer samples at multiple inpatient and outpatient mental health hospitals in Western Europe (Germany and Austria [DE-AT]), China (CN), and Russia (RU). Individuals with DSM-IV or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnoses of SCZ, MDD, BPD, or a first psychotic episode, as well as age- and sex-matched healthy controls without a mental health-related diagnosis were included in the study. Samples and data were analyzed from January 2018 to September 2020. Main Outcomes and Measures Plasma lipidome composition was assessed using liquid chromatography coupled with untargeted mass spectrometry. Results Blood lipid levels were assessed in 980 individuals (mean [SD] age, 36 [13] years; 510 male individuals [52%]) diagnosed with SCZ, BPD, MDD, or those with a first psychotic episode and in 572 controls (mean [SD] age, 34 [13] years; 323 male individuals [56%]). A total of 77 lipids were found to be significantly altered between those with SCZ (n = 436) and controls (n = 478) in all 3 sample cohorts. Alterations were consistent between cohorts (CN and RU: [Pearson correlation] r = 0.75; DE-AT and CN: r = 0.78; DE-AT and RU: r = 0.82; P < 10-38). A lipid-based predictive model separated patients with SCZ from controls with high diagnostic ability (area under the receiver operating characteristic curve = 0.86-0.95). Lipidome alterations in BPD and MDD, assessed in 184 and 256 individuals, respectively, were found to be similar to those of SCZ (BPD: r = 0.89; MDD: r = 0.92; P < 10-79). Assessment of detected alterations in individuals with a first psychotic episode, as well as patients with SCZ not receiving medication, demonstrated only limited association with medication restricted to particular lipids. Conclusions and Relevance In this study, SCZ was accompanied by a reproducible profile of plasma lipidome alterations, not associated with symptom severity, medication, and demographic and environmental variables, and largely shared with BPD and MDD. This lipid alteration signature may represent a trait marker of severe psychiatric disorders, indicating its potential to be transformed into a clinically applicable testing procedure.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Vanyushkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | | | - Ilia Kurochkin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nickolay Anikanov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alina Egorova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Yushina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- FSBSI N.P. Bochkov Research Center of Medical Genetics, Moscow, Russia
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina K. Schaupp
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farahnaz Klöhn-Saghatolislam
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Janos L. Kalman
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Ashley L. Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Heike Anderson-Schmidt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Medicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eva Z. Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Neurobiology and Anthropometrics in Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Tübingen, Tübingen, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | - Alexander Reznik
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
- Moscow State University of Food Production, Moscow, Russia
| | | | - Roman Lisov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikita Mokrov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Center for Artificial Intelligence Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maxim Panov
- Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Dmitri Zubkov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Chanjuan Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Georgiy Kostyuk
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | | | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Eva C. Schulte
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, medical Faculty University of Bonn, Bonn, Germany
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
3
|
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M. Carnitine and Depression. Front Nutr 2022; 9:853058. [PMID: 35369081 PMCID: PMC8964433 DOI: 10.3389/fnut.2022.853058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has become one of the most common mental diseases in the world, but the understanding of its pathogenesis, diagnosis and treatments remains insufficient. Carnitine is a natural substance that exists in organisms, which can be synthesized in vivo or supplemented by intake. Relationships of carnitine with depression, bipolar disorder and other mental diseases have been reported in different studies. Several studies show that the level of acylcarnitines (ACs) changes significantly in patients with depression compared with healthy controls while the supplementation of acetyl-L-carnitine is beneficial to the treatment of depression. In this review, we aimed to clarify the effects of ACs in depressive patients and to explore whether ACs might be the biomarkers for the diagnosis of depression and provide new ideas to treat depression.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Kunhong Deng
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Institute for Rational and Safe Medication Practices, Central South University, Changsha, China
| |
Collapse
|
4
|
Lenski M, Sidibé J, Gholam M, Hennart B, Dubath C, Augsburger M, von Gunten A, Conus P, Allorge D, Thomas A, Eap CB. Metabolomic alteration induced by psychotropic drugs: Short-term metabolite profile as a predictor of weight gain evolution. Clin Transl Sci 2021; 14:2544-2555. [PMID: 34387942 PMCID: PMC8604229 DOI: 10.1111/cts.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022] Open
Abstract
Psychotropic drugs can induce strong metabolic adverse effects, potentially increasing morbidity and/or mortality of patients. Metabolomic profiling, by studying the levels of numerous metabolic intermediates and products in the blood, allows a more detailed examination of metabolism dysfunctions. We aimed to identify blood metabolomic markers associated with weight gain in psychiatric patients. Sixty-two patients starting a treatment known to induce weight gain were recruited. Two hundred and six selected metabolites implicated in various pathways were analyzed in plasma, at baseline and after 1 month of treatment. Additionally, 15 metabolites of the kynurenine pathway were quantified. This latter analysis was repeated in a confirmatory cohort of 24 patients. Among the 206 metabolites, a plasma metabolomic fingerprint after 1 month of treatment embedded 19 compounds from different chemical classes (amino acids, acylcarnitines, carboxylic acids, catecholamines, nucleosides, pyridine, and tetrapyrrole) potentially involved in metabolic disruption and inflammation processes. The predictive potential of such early metabolite changes on 3 months of weight evolution was then explored using a linear mixed-effects model. Of these 19 metabolites, short-term modifications of kynurenine, hexanoylcarnitine, and biliverdin, as well as kynurenine/tryptophan ratio at 1 month, were associated with 3 months weight evolution. Alterations of the kynurenine pathway were confirmed by quantification, in both exploratory and confirmatory cohorts. Our metabolomic study suggests a specific metabolic dysregulation after 1 month of treatment with psychotropic drugs known to induce weight gain. The identified metabolomic signature could contribute in the future to the prediction of weight gain in patients treated with psychotropic drugs.
Collapse
Affiliation(s)
- Marie Lenski
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Jonathan Sidibé
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
| | - Mehdi Gholam
- Department of PsychiatryCenter for Psychiatric Epidemiology and PsychopathologyLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Benjamin Hennart
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Céline Dubath
- Unit of Pharmacogenetics and Clinical PsychopharmacologyDepartment of PsychiatryCenter for Psychiatric NeuroscienceLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
| | - Armin von Gunten
- Service of Old Age PsychiatryDepartment of PsychiatryLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Philippe Conus
- Service of General PsychiatryDepartment of PsychiatryLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Delphine Allorge
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Aurelien Thomas
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
- Faculty Unit of ToxicologyFaculty of Biology and MedicineCURML, Lausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical PsychopharmacologyDepartment of PsychiatryCenter for Psychiatric NeuroscienceLausanne University HospitalUniversity of LausannePrillySwitzerland
- Center for Research and Innovation in Clinical Pharmaceutical SciencesUniversity of LausanneSwitzerland
- School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
5
|
Nikam V, Mohammad NS. Tissue-specific DNase I footprint analysis confirms the association of GATAD2B Q470* variant with intellectual disability. J Genet 2021. [DOI: 10.1007/s12041-021-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Tkachev A, Stekolshchikova E, Anikanov N, Zozulya S, Barkhatova A, Klyushnik T, Petrova D. Shorter Chain Triglycerides Are Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules 2021; 11:biom11050720. [PMID: 34064997 PMCID: PMC8151512 DOI: 10.3390/biom11050720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a serious mental disorder requiring lifelong treatment. While medications are available that are effective in treating some patients, individual treatment responses can vary, with some patients exhibiting resistance to one or multiple drugs. Currently, little is known about the causes of the difference in treatment response observed among individuals with schizophrenia, and satisfactory markers of poor response are not available for clinical practice. Here, we studied the changes in the levels of 322 blood plasma lipids between two time points assessed in 92 individuals diagnosed with schizophrenia during their inpatient treatment and their association with the extent of symptom improvement. We found 20 triglyceride species increased in individuals with the least improvement in Positive and Negative Syndrome Scale (PANSS) scores, but not in those with the largest reduction in PANSS scores. These triglyceride species were distinct from the rest of the triglyceride species present in blood plasma. They contained a relatively low number of carbons in their fatty acid residues and were relatively low in abundance compared to the principal triglyceride species of blood plasma.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
- Correspondence:
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Svetlana Zozulya
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | | | - Tatiana Klyushnik
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| |
Collapse
|
7
|
Cao B, Wang D, Pan Z, McIntyre RS, Brietzke E, Subramanieapillai M, Nozari Y, Wang J. Metabolic profiling for water-soluble metabolites in patients with schizophrenia and healthy controls in a Chinese population: A case-control study. World J Biol Psychiatry 2020; 21:357-367. [PMID: 31161852 DOI: 10.1080/15622975.2019.1615639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: Objective measures integrated with clinical symptoms may improve early prevention and detection of schizophrenia. Herein we aim to evaluate potential water-soluble metabolic biomarkers in schizophrenia.Methods: We recruited adults with schizophrenia (n = 113) who had not received pharmacological treatment for at least 1 month prior to enrollment and 111 age- and sex-matched healthy subjects from Weifang, Shandong province, China. All serum samples were analysed using liquid chromatography-tandem mass spectrometry coupled with a hydrophilic interaction liquid chromatography column.Results: Eleven metabolites, namely carnitines (oleoylcarnitine, l-palmitoylcarnitine, 9-decenoylcarnitine and 2-trans,4-cis-decadienoylcarnitine), polar lipids (lysophosphatidylcholine (LPC)(P-16:0), LPC (16:0), LPC (15:0) and LPC(14:0)), amino acids (taurine and l-arginine), and organic acid (2,5-dichloro-4-oxohex-2-enedioate), separated the patients and healthy controls. Compared with healthy controls, taurine, l-palmitoylcarnitine and oleoylcarnitine levels were higher, whereas the remaining eight metabolites were lower in patients with schizophrenia. A combination of four metabolites, i.e., oleoylcarnitine, 9-decenoylcarnitine, LPC (15:0) and LPC (14:0), provided the most robust between-group separation.Conclusions: This study appears to distinguish between groups of patients and controls, which should be considered as a contribution to putative potential biomarkers. The water-soluble metabolites were determined to be significantly different between the groups in the current study, and were primarily related to cellular bioenergetics, notably oxidative stress.
Collapse
Affiliation(s)
- Bing Cao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
| | | | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Mehala Subramanieapillai
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Yasaman Nozari
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jingyu Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China.,Beijing Key Laboratory of Toxicological Research, Risk Assessment for Food Safety, Beijing, P. R. China.,Peking University Medical and Health Analysis Center, Peking University, Beijing, P. R. China
| |
Collapse
|
8
|
Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Transl Psychiatry 2019; 9:19. [PMID: 30655505 PMCID: PMC6336814 DOI: 10.1038/s41398-018-0353-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/18/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Subjects with schizophrenia have high risks of metabolic abnormalities and bioenergetic dysfunction. Acyl-carnitines involved in bioenergetic pathways provide potential biomarker targets for identifying early changes and onset characteristics in subjects with schizophrenia. We measured 29 acyl-carnitine levels within well-characterized plasma samples of adults with schizophrenia and healthy controls using liquid chromatography-mass spectrometry (LC-MS). Subjects with schizophrenia were measured at baseline and after 8 weeks of treatment. A total of 225 subjects with schizophrenia and 175 age- and gender-matched healthy controls were enrolled and 156 subjects completed the 8-week follow-up. With respect to plasma acyl-carnitines, the individuals with schizophrenia at baseline showed significantly higher levels of C4-OH (C3-DC) and C16:1, but lower concentrations of C3, C8, C10, C10:1, C10:2, C12, C14:1-OH, C14:2, and C14:2-OH when compared with healthy controls after controlling for age, sex, body mass index (BMI), smoking, and drinking. For the comparison between pretreatment and posttreatment subjects, all detected acyl-carnitines were significantly different between the two groups. Only the concentration of C3 and C4 were increased after selection by variable importance in projection (VIP) value >1.0 and false discovery rate (FDR) q value <0.05. A panel of acyl-carnitines were selected for the ability to differentiate subjects of schizophrenia at baseline from controls, pre- from post-treatment, and posttreatment from controls. Our data implicated acyl-carnitines with abnormalities in cellular bioenergetics of schizophrenia. Therefore, acyl-carnitines can be potential targets for future investigations into their roles in the pathoetiology of schizophrenia.
Collapse
|
9
|
Lent-Schochet D, McLaughlin M, Ramakrishnan N, Jialal I. Exploratory metabolomics of metabolic syndrome: A status report. World J Diabetes 2019; 10:23-36. [PMID: 30697368 PMCID: PMC6347655 DOI: 10.4239/wjd.v10.i1.23] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
Metabolic syndrome (MetS) is as a cluster of cardio-metabolic factors that greatly increase the risk of chronic diseases such as type II diabetes mellitus and atherosclerotic cardiovascular disease. In the United States, obesity, physical inactivity, aging, and genetics (to a minor extent) have arisen as risk factors for developing MetS. Although 35% of American adults suffer from MetS, its pathogenesis largely remains unknown. Worse, there is a lack of screening and optimum therapy for this disease. Researchers have consequently turned towards metabolomics to identify biomarkers to better understand MetS. The purpose of this review is to characterize various metabolites and their potential connections to MetS. Numerous studies have also characterized MetS as a disease of increased inflammation, and therefore this review also explores how metabolites play a role in various inflammatory pathways. Our review explores a broad range of metabolites including biogenic amines, branched chain amino acids, aromatic amines, phosphatidylcholines, as well as a variety of other molecules. We will explore their biochemical pathways and their potential role in serving as biomarkers.
Collapse
Affiliation(s)
- Daniella Lent-Schochet
- Metabolism and Clinical Pathology, College of Medicine, California Northstate University, Elk Grove, CA 95757, United States
| | - Matthew McLaughlin
- Metabolism and Clinical Pathology, College of Medicine, California Northstate University, Elk Grove, CA 95757, United States
| | - Neeraj Ramakrishnan
- Metabolism and Clinical Pathology, College of Medicine, California Northstate University, Elk Grove, CA 95757, United States
| | - Ishwarlal Jialal
- Metabolism and Clinical Pathology, College of Medicine, California Northstate University, Elk Grove, CA 95757, United States
- VA Medical Center, Mather CA 95655, United States
| |
Collapse
|
10
|
Jamilian H, Jamilian M, Samimi M, Afshar Ebrahimi F, Rahimi M, Bahmani F, Aghababayan S, Kouhi M, Shahabbaspour S, Asemi Z. Oral carnitine supplementation influences mental health parameters and biomarkers of oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Gynecol Endocrinol 2017; 33:442-447. [PMID: 28277138 DOI: 10.1080/09513590.2017.1290071] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Limited data are available assessing the effects of oral carnitine supplementation on mental health parameters and biomarkers of oxidative stress of women with polycystic ovary syndrome (PCOS).This study was designed to determine the effects of oral carnitine supplementation on mental health parameters and biomarkers of oxidative stress in women with PCOS. METHODS In the current randomized, double-blind, placebo-controlled trial, 60 patients diagnosed with PCOS were randomized to take either 250 mg carnitine supplements (n = 30) or placebo (n = 30) for 12 weeks. RESULTS After 12 weeks' intervention, compared with the placebo, carnitine supplementation resulted in a significant improvement in Beck Depression Inventory total score (-2.7 ± 2.3 versus -0.2 ± 0.7, p < 0.001), General Health Questionnaire scores (-6.9 ± 4.9 versus -0.9 ± 1.5, p < 0.001) and Depression Anxiety and Stress Scale scores (-8.7 ± 5.9 versus -1.2 ± 2.9, p = 0.001). In addition, changes in plasma total antioxidant capacity (TAC) (+84.1 ± 151.8 versus +4.6 ± 64.5 mmol/L, p = 0.01), malondialdehyde (MDA) (-0.4 ± 1.0 versus +0.5 ± 1.5 μmol/L, p = 0.01) and MDA/TAC ratio (-0.0005 ± 0.0010 versus +0.0006 ± 0.0019, p = 0.003) in the supplemented group were significantly different from the changes in these indicators in the placebo group. CONCLUSIONS Overall, our study demonstrated that carnitine supplementation for 12 weeks among patients with PCOS had favorable effects on parameters of mental health and biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Hamidreza Jamilian
- a Department of Psychiatry , Arak University of Medical Sciences , Arak , Iran
| | - Mehri Jamilian
- b Endocrinology and Metabolism Research Center, Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Mansooreh Samimi
- c Department of Gynecology and Obstetrics , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| | - Faraneh Afshar Ebrahimi
- c Department of Gynecology and Obstetrics , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| | - Maryam Rahimi
- d Department of Gynecology and Obstetrics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran , and
| | - Fereshteh Bahmani
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Sama Aghababayan
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Mobina Kouhi
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Sedighe Shahabbaspour
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| | - Zatollah Asemi
- e Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|