1
|
Rossetti AC, Paladini MS, Brüning CA, Spero V, Cattaneo MG, Racagni G, Papp M, Riva MA, Molteni R. Involvement of the IL-6 Signaling Pathway in the Anti-Anhedonic Effect of the Antidepressant Agomelatine in the Chronic Mild Stress Model of Depression. Int J Mol Sci 2022; 23:ijms232012453. [PMID: 36293308 PMCID: PMC9604470 DOI: 10.3390/ijms232012453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation has emerged as an important factor in the molecular underpinnings of major depressive disorder (MDD) pathophysiology and in the mechanism of action of antidepressants. Among the inflammatory mediators dysregulated in depressed patients, interleukin (IL)-6 has recently been proposed to play a crucial role. IL-6 activates a signaling pathway comprising the JAK/STAT proteins and characterized by a specific negative feedback loop exerted by the cytoplasmic protein suppressor of cytokine signalling-3 (SOCS3). On these bases, here, we explored the potential involvement of IL-6 signaling in the ability of the antidepressant drug agomelatine to normalize the anhedonic-like phenotype induced in the rat by chronic stress exposure. To this aim, adult male Wistar rats were subjected to the chronic mild stress (CMS) paradigm and chronically treated with vehicle or agomelatine. The behavioral evaluation was assessed by the sucrose consumption test, whereas molecular analyses were performed in the prefrontal cortex. We found that CMS was able to stimulate IL-6 production and signaling, including SOCS3 gene and protein expression, but the SOCS3-mediated feedback-loop inhibition failed to suppress the IL-6 cascade in stressed animals. Conversely, agomelatine treatment normalized the stress-induced decrease in sucrose consumption and restored the negative modulation of the IL-6 signaling via SOCS3 expression and activity. Our results provide additional information about the pleiotropic mechanisms that contribute to agomelatine’s therapeutic effects.
Collapse
Affiliation(s)
- Andrea C. Rossetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Cesar Augusto Brüning
- Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas, Pelotas 96010-900, RS, Brazil
| | - Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marco A. Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
- Correspondence:
| |
Collapse
|
2
|
Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, Mao X, Li Y, Fan C, Wang W, Yu SY. Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation 2022; 19:117. [PMID: 35610704 PMCID: PMC9131561 DOI: 10.1186/s12974-022-02479-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Agomelatine has been shown to be effective in the treatment of depression, but the molecular mechanisms underlying its antidepressant effects have yet to be elucidated. Identification of these molecular mechanisms would not only offer new insights into the basis for depression but also provide the foundation for the development of novel treatments for this disorder. METHODS Intraperitoneal injection of LPS was used to induce depression-like behaviors in rats. The interactions of the 5-HT2C reporter and Gαi-2 were verified by immunoprecipitation or immunofluorescence assay. Inflammatory related proteins, autophagy related proteins and apoptosis markers were verified by immunoblotting or immunofluorescence assay. Finally, electron microscopy analysis was used to observe the synapse and ultrastructural pathology. RESULTS Here, we found that the capacity for agomelatine to ameliorate depression and anxiety in a lipopolysaccharide (LPS)-induced rat model of depression was associated with an alleviation of neuroinflammation, abnormal autophagy and neuronal apoptosis as well as the promotion of neurogenesis in the hippocampal dentate gyrus (DG) region of these rats. We also found that the 5-HT2C receptor is coupled with G alphai (2) (Gαi-2) protein within hippocampal neurons and, agomelatine, acting as a 5-HT2C receptor antagonist, can up-regulate activity of the Gαi-2-cAMP-PKA pathway. Such events then suppress activation of the apoptosis signal-regulating kinase 1 (ASK1) pathway, a member of the mitogen-activated protein kinase (MAPK) family involved in pathological processes of many diseases. CONCLUSION Taken together, these results suggest that agomelatine plays a neuroprotective role in regulating neuroinflammation, autophagy disorder and apoptosis in this LPS-induced rat model of depression, effects which are associated with the display of antidepressant behaviors. These findings provide evidence for some of the potential mechanisms for the antidepressant effects of agomelatine.
Collapse
Affiliation(s)
- Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yuhan Wu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Yulei Zhang
- Jinan International Travel Healthcare Center, Wenhuadonglu Road 62#, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shuhan Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Zhanpeng Zhu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Xueqin Mao
- Department of Psychology, Qilu Hospital of Shandong University, 107 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China. .,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
3
|
Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, Zhu MY, Zhang J, Zhou QG. Agomelatine: An astounding sui-generis antidepressant? Curr Mol Pharmacol 2021; 15:943-961. [PMID: 34886787 DOI: 10.2174/1874467214666211209142546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, have led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. It is a melatonin receptor agonist (MT1 and MT2) and a 5-HT2C receptor antagonist. The effects on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Gang Sheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Sun Nan
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| |
Collapse
|
4
|
Fathi D, Abulsoud AI, Saad MA, Nassar NN, Maksimos MM, Rizk SM, Senousy MA. Agomelatine attenuates alcohol craving and withdrawal symptoms by modulating the Notch1 signaling pathway in rats. Life Sci 2021; 284:119904. [PMID: 34453945 DOI: 10.1016/j.lfs.2021.119904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
AIM Alcohol abuse is a significant causative factor of death worldwide. The Notch1 signaling pathway is involved in alcohol tolerance, withdrawal and dependence. Agomelatine is a known antidepressant acting as a melatonin receptor (MT1/2) agonist and a 5-hydroxytryptamine receptor-2C antagonist. However, its effects on alcohol cravings and alcohol withdrawal symptoms have not been investigated. In this study, we assessed the possibility of using agomelatine for the treatment of these symptoms in a rat model of alcoholism and the possible role of Notch1 signaling. MAIN METHODS We induced alcoholism in rats using a free-choice drinking model for 60 days. From day 61, free-choice was continued until day 82 for the craving model, whereas only water was offered in the withdrawal model. Meanwhile, the treated groups for both models received agomelatine (50 mg/kg/day) orally from day 61 to 82, followed by behavioral, histopathological and biochemical assessment. KEY FINDINGS Agomelatine treatment caused significant decrease in alcohol consumption with a positive effect on anxiety-like behavior in the open field, memory in the Morris water maze and immobility in the forced swim test. Moreover, agomelatine induced the expression of Notch1 pathway markers, including Notch1, NICD, CREB, CCNE-2, Hes-1, both total and phosphorylated ERK1/2, MMP9, Per2and RGS-2 in the hippocampal formation. By contrast, NMDAR expression was reduced. Furthermore, agomelatine normalized the serum levels of BDNF, cortisol, dopamine and glutamate which were disrupted by alcohol consumption. SIGNIFICANCE Based on these findings, agomelatine reversed alcohol cravings and withdrawal symptoms associated with alcohol dependence by modulating the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mina M Maksimos
- Department of Microbiology and Immunology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt; Institute for Microbiology, Faculty of Life Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Hong N, Ye Z, Lin Y, Liu W, Xu N, Wang Y. Agomelatine prevents angiotensin II-induced endothelial and mononuclear cell adhesion. Aging (Albany NY) 2021; 13:18515-18526. [PMID: 34292876 PMCID: PMC8351686 DOI: 10.18632/aging.203299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Agomelatine is a non-selective melatonin receptor agonist and an atypical antidepressant with anti-inflammatory, neuroprotective, and cardioprotective effects. The renin-angiotensin system modulates blood pressure and vascular homeostasis. Angiotensin II (Ang II) and its receptor Ang II type I receptor (AT1R) are recognized as contributors to the pathogenesis of cardiovascular and cardiometabolic diseases, including diabetes, obesity, and atherosclerosis. The recruitment and attachment of monocytes to the vascular endothelium is a major event in the early stages of atherosclerosis and other cardiovascular diseases. In the present study, we demonstrate that agomelatine reduced Ang II-induced expression of AT1R while significantly inhibiting the attachment of monocytes to endothelial cells induced by Ang II and mediated by ICAM-1 and VCAM-1. Additionally, Ang II inhibited the expression of the chemokines CXCL1, MCP-1, and CCL5, which are critical in the process of immune cell recruitment and invasion. Agomelatine also suppressed the expression of TNF-α, IL-8, and IL-12, which are proinflammatory cytokines that promote endothelial dysfunction and atherogenesis. Importantly, we demonstrate that the inhibitory effect of agomelatine against the expression of adhesion molecules is mediated through the downregulation of Egr-1 signaling. Together, our findings provide evidence of a novel mechanism of agomelatine that may be practicable in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Najiao Hong
- Department of General Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhirong Ye
- Department of General Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Yongjun Lin
- Department of General Medicine, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, Jilin, China
| | - Na Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, Jilin, China
| | - Yan Wang
- Department of Stomatology, Tibet Corps Hospital, Chinese People's Armed Police Forces, Lhasa 850000, Tibet Autonomous Region, China
| |
Collapse
|
6
|
Rebai R, Jasmin L, Boudah A. Agomelatine effects on fat-enriched diet induced neuroinflammation and depression-like behavior in rats. Biomed Pharmacother 2021; 135:111246. [PMID: 33453676 DOI: 10.1016/j.biopha.2021.111246] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/24/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that a high fat diet (HFD) induces oxidative stress on the central nervous system (CNS), which predisposes to mood disorders and neuroinflammation. In this study we postulated that in addition to improving mood, antidepressant therapy would reverse inflammatory changes in the brain of rats exposed to a HFD. To test our hypothesis, we measured the effect of the antidepressant agomelatine (AGO) on anxiety- and depressive-like behaviors, as well as on CNS markers of inflammation in rats rendered obese. Agomelatine is an agonist of the melatonin receptors MT1 and MT2 and an antagonist of the serotonin receptors 5HT2B and 5HT2C. A subset of rats was also treated with lipopolysaccharides (LPS) to determine how additional neuroinflammation alters behavior and affects the response to the antidepressant. Specifically, rats were subjected to a 14-week HFD, during which time behavior was evaluated twice, first at the 10th week prior to LPS and/or agomelatine, and then at the 14th week after a bi-weekly exposure to LPS (250 μg/kg) and daily treatment with agomelatine (40 mg/kg). Immediately after the second behavioral testing we measured the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), markers of oxidative stress thiobarbituric acid reactive substances (TABRS), catalase (CAT) and glutathione peroxidase (GPx), the growth factor BDNF, as well as the apoptosis marker caspase-3. Our results show that a HFD induced an anxiety-like behavior in the open field test (OFT) at the 10th week, followed by a depressive-like behavior in the forced swim test (FST) at the 14th week. In the prefrontal and hippocampal cortices of rats exposed to a HFD we noted an overproduction of TNF-α, IL-6, IL-1β, and TABRS, together with an increase in caspase-3 activity. We also observed a decrease in BDNF, as well as reduced CAT and GPx activity in the same brain areas. Treatment with agomelatine reversed the signs of anxiety and depression, and decreased the cytokines (TNF-α, IL-6 and IL-1β), TABRS, as well as caspase-3 activity. Agomelatine also restored BDNF levels and the activity of antioxidant enzymes CAT and GPx. Our findings suggest that the anxiolytic/antidepressant effect of agomelatine in obese rats could result from a reversal of the inflammatory and oxidative stress brought about by their diet.
Collapse
Affiliation(s)
- Redouane Rebai
- Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University Mohamed Khider of Biskra, BP 145 RP, 07000, Biskra, Algeria; Laboratory of Biotechnology, National Higher School of Biotechnology, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Luc Jasmin
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, 707 Parnassus Ave Suite D-1201, San Francisco, CA, 94143, USA.
| | - Abdennacer Boudah
- Laboratory of Biotechnology, National Higher School of Biotechnology, Ville universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|
7
|
Sonmez AI, Almorsy A, Ramsey LB, Strawn JR, Croarkin PE. Novel pharmacological treatments for generalized anxiety disorder: Pediatric considerations. Depress Anxiety 2020; 37:747-759. [PMID: 32419335 PMCID: PMC7584375 DOI: 10.1002/da.23038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pediatric anxiety disorders such as generalized anxiety disorder (GAD) are common, impairing, and often undertreated. Moreover, many youth do not respond to standard, evidence-based psychosocial or psychopharmacologic treatment. An increased understanding of the gamma-aminobutyric acid (GABA) and glutamate neurotransmitter systems has created opportunities for novel intervention development for pediatric GAD. METHODS This narrative review examines potential candidates for pediatric GAD: eszopiclone, riluzole, eglumegad (LY354740), pimavanserin, agomelatine. RESULTS The pharmacology, preclinical data, clinical trial findings and known side effects of eszopiclone, riluzole, eglumegad (LY354740), pimavanserin, agomelatine, are reviewed, particularly with regard to their potential therapeutic relevance to pediatric GAD. CONCLUSION Notwithstanding numerous challenges, some of these agents represent potential candidate drugs for pediatric GAD. Further treatment development studies of agomelatine, eszopiclone, pimavanserin and riluzole for pediatric GAD also have the prospect of informing the understanding of GABAergic and glutamatergic function across development.
Collapse
Affiliation(s)
- A. Irem Sonmez
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Ammar Almorsy
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | - Laura B. Ramsey
- Division of Research in Patient Services and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Rupprecht R. Psychopharmacology- is there still room for progress in these days? World J Biol Psychiatry 2020; 21:239-240. [PMID: 32478622 DOI: 10.1080/15622975.2020.1757308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Germany
| |
Collapse
|
9
|
Savran M, Aslankoc R, Ozmen O, Erzurumlu Y, Savas HB, Temel EN, Kosar PA, Boztepe S. Agomelatine could prevent brain and cerebellum injury against LPS-induced neuroinflammation in rats. Cytokine 2019; 127:154957. [PMID: 31869757 DOI: 10.1016/j.cyto.2019.154957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023]
Abstract
Sepsis, systemic hyper-inflammatory immune response, causes the increase of morbidity and mortality rates due to multi-organ diseases such as neurotoxicity. Lipopolysaccharide (LPS) induces inflammation, oxidative stress and apoptosis to cause brain damage. We aimed to evaluate the antioxidant, anti-inflammatory and antiapoptotic effects of Agomelatine (AGM) on LPS induced brain damage via NF-kB signaling. Twenty-four animals were divided into three groups as control, LPS (5 mg/kg) and LPS + AGM (20 mg/kg). Six hours after the all administrations, rats were sacrificed, brain tissues were collected for biochemical, histopathological and immunohistochemical analysis. In LPS group; total oxidant status (TOS), OSI index, Caspase-8 (Cas-8), NF-kß levels increased and Total antioxidant status (TAS) levels decreased biochemically and Cas-8, haptoglobin and IL-10 expressions increased and sirtuin-1 (SIRT-1) levels decreased immunohistochemically. AGM treatment reversed these parameters except haptoglobin levels in hippocampus and SIRT-1 levels in cerebellum. Besides, AGM treatment blocked the phosphorylation of NF-kB biochemically and ameliorated increased the levels of hyperemia, edema and degenerative changes histopathologically. In conclusion, AGM enhanced SIRT-1 levels to negatively regulate the transcription and activation of p-NF-kB/p65 which caused to ameliorate inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- M Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - R Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - O Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Y Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - H B Savas
- Department of Medical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - E N Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - P A Kosar
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - S Boztepe
- Department of Anesthesia and Reanimation, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Turkey
| |
Collapse
|
10
|
Rossetti AC, Paladini MS, Trepci A, Mallien A, Riva MA, Gass P, Molteni R. Differential Neuroinflammatory Response in Male and Female Mice: A Role for BDNF. Front Mol Neurosci 2019; 12:166. [PMID: 31379496 PMCID: PMC6658805 DOI: 10.3389/fnmol.2019.00166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence supports the close relationship between major depressive disorder (MDD), a severe psychiatric disease more common among women than men, and alterations of the immune/inflammatory system. However, despite the large number of studies aimed at understanding the molecular bases of this association, a lack of information exists on the potential cross-talk between systems known to be involved in depression and components of the inflammatory response, especially with respect to sex differences. Brain-derived neurotrophic factor (BDNF) is a neurotrophin with a well-established role in MDD etiopathology: it is altered in depressed patients as well as in animal models of the disease and its changes are restored by antidepressant drugs. Interestingly, this neurotrophin is also involved in the inflammatory response. Indeed, it can be secreted by microglia, the primary innate immune cells in the central nervous system whose functions may be in turn regulated by BDNF. With these premises, in this study, we investigated the reciprocal impact of BDNF and the immune system by evaluating the neuroinflammatory response in male and female BDNF-heterozygous mutant mice acutely treated with the cytokine-inducer lipopolysaccharide (LPS). Specifically, we assessed the potential onset of an LPS-induced sickness behavior as well as changes of inflammatory mediators in the mouse hippocampus and frontal cortex, with respect to both genotype and sex. We found that the increased inflammatory response induced by LPS in the brain of male mice was independent of the genotype, whereas in the female, it was restricted to the heterozygous mice with no changes in the wild-type group, suggestive of a role for BDNF in the sex-dependent effect of the inflammatory challenge. Considering the involvement of both BDNF and neuroinflammation in several psychiatric diseases and the diverse incidence of such pathologies in males and females, a deeper investigation of the mechanisms underlying their interaction may have a critical translational relevance.
Collapse
Affiliation(s)
- Andrea Carlo Rossetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ada Trepci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Anne Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Yang Q, Zhou X, Li J, Ma Y, Lu L, Xiong J, Xu P, Li Y, Chen Y, Gu W, Xue M, Jin Z, Li X. Sub-Acute Oral Toxicity of a Novel Derivative of Agomelatine in Rats in a Sex-Dependent Manner. Front Pharmacol 2019; 10:242. [PMID: 30941037 PMCID: PMC6433965 DOI: 10.3389/fphar.2019.00242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
Agomelatine (AGO) is a new type of antidepressant with demonstrated antidepressant effects and a unique modulating circadian rhythm action. However, AGO has hepatotoxicity, which limits its clinical application. In order to develop new drugs that cause less liver injury than AGO, a series of derivatives were synthesized; compound GW117 was screened from derivatives due to its high receptor affinity. This study will investigate its sub-acute oral toxicity profile in rats in a sex-dependent manner. GW117 and AGO was administrated by gavage (200, 400, or 800 mg/kg/day) for 28 days. Hematological, biochemical tests, organ weights, histopathological examinations were carried out, the results showed that AGO and GW117 had adverse effects on platelet, liver and kidney, and had sex-differences in some indicators. Hematological tests showed that AGO and GW117 reduced the platelet count in male animals but had no effect in females. AGO increased plasma alanine aminotransferase (ALT) and total bilirubin in male animals, and GW117 had no effect on these two indicators. For females, AGO moderately elevated ALT, alkaline phosphatase (ALP), and total bilirubin, while GW117 only elevated ALP slightly. Two drugs could increase liver weight and coefficient, and cause liver pathological injury, including hepatic sinusoidal dilatation, hepatocyte fatty deposition and dotted cell necrosis in two genders. AGO caused mild to moderate hepatocyte and hepatobiliary injury in both genders, while only a mild hepatobiliary injury was caused by GW117 in females. Renal function tests showed that both drugs can increase blood urea nitrogen levels in males, while AGO, but not GW117, can slightly increase blood creatinine and urea nitrogen in females. The kidney weight and coefficient could be significantly increased by two drugs in males, and by AGO medium and GW117 high and low doses in females. The kidney pathological damage was mainly characterized by tubule dilatation, a thinning of the renal cortex. Kidney damage caused by GW117 was less than that of AGO, and there was no sex-difference. In summary, GW117 can cause mild liver and kidney damage in both genders, as well as mild platelets reduction in males, while degree of damage is less severe than AGO. Therefore, as an excellent derivative, GW117 deserves further development as an antidepressant.
Collapse
Affiliation(s)
- Qiushi Yang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingyi Li
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Ma
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Li Lu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jie Xiong
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuhang Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Gu
- Beijing Guangwei Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zengliang Jin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Yin S, Shao J, Wang X, Yin X, Li W, Gao Y, Velez de-la-Paz OI, Shi H, Li S. Methylene blue exerts rapid neuroprotective effects on lipopolysaccharide-induced behavioral deficits in mice. Behav Brain Res 2019; 356:288-294. [DOI: 10.1016/j.bbr.2018.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023]
|
13
|
Wang L, Wang H, Duan Z, Zhang J, Zhang W. Mechanism of gastrodin in cell apoptosis in rat hippocampus tissue induced by desflurane. Exp Ther Med 2018. [PMID: 29541166 PMCID: PMC5838295 DOI: 10.3892/etm.2018.5770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the protective effect ofgastrodin on cell apoptosis in rats hippocampus tissues induced by desflurane to explore its mechanism. A total of 36 rats were randomly divided into three groups: Blank control group (C group, n=12), desflurane anesthesia group (DF group, n=12) and gastrodin treatment group (GT group, n=12). Rats in DF group were treated with anesthesia using desflurane. Rats in GT group were treated with gavage using gastrodin and the same treatment as DF group. After the experiment, novel object recognition test and water maze test were performed. The hippocampus tissues were taken from the rat after the behavioral experiment; then the number of apoptotic cells was detected using the terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) kit, and the mRNA and protein expression levels of p38 and interleukin-1 (IL-1) were detected via semi-quantitative polymerase chain reaction (PCR) and western blot analysis. After the desflurane anesthesia, novel object recognition showed that compared with that in DF group, the exploration capacity of novel objects in GT group was increased (P<0.01). The water maze test showed that the escape latencies in DF group, T1 in GT group was significantly shortened, but T2 was significantly prolonged (P<0.01). TUNEL assay showed that the number of apoptotic cells in hippocampus tissues in GT group was significantly fewer than that in group DF (P<0.01). Semi-quantitative PCR and western blot analysis showed that the expression levels of p38 and IL-1β in GT group were lower than those in DF group (P<0.01). The results show that gastrodin has a protective effect on the apoptosis of hippocampus cells of rats induced by desflurane. Its protection mechanism may be realized through decreasing the increased p38 and IL-1β expression levels induced by desflurane, thus blocking the p38 mitogen-activated protein kinase (p38 MAPK) pathway.
Collapse
Affiliation(s)
- Luping Wang
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Hushan Wang
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zongsheng Duan
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jian Zhang
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wenwen Zhang
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|