1
|
Adegoke A, Oduola AB, Idowu K, Abiona J. Fatty acid composition, lipid profile and oxidative stability of meat of broiler chickens fed diet containing bird eye pepper of varying inclusion level and sieve size. Trop Anim Health Prod 2024; 56:342. [PMID: 39400759 DOI: 10.1007/s11250-024-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Nutritional modifications to improve meat quality is targeted by farmers. Bird eye pepper (BEP) contains bio-compounds of physiological significance. The potency of BEP of varying inclusion level and sieve size on meat quality [fatty acid (FA), lipid profile and oxidative stability] of broiler chickens was investigated. A total of 246 birds fed diet-containing BEP [inclusion level (0, 0.15 and 0.3%), sieve size (0.05 and 0.1 mm)] were randomized to six treatments replicated 4 times in a 2 by 3 factorial layout. After feeding (31 days), forty-eight birds (two per replicate) were slaughtered and breast muscles harvested. Meat lipid profile and 2-thiobarbituric acid reactive substance (TBARs) were determined on day (d) 0, while TBARs was further assessed on d 3 and 5, but FA on d 10 of refrigeration storage. BEP diet (0.15%) increased (p < 0.05) total monounsaturated FA (MUFA), unsaturated FA (UFA) and n-3 FA, while 0.05 mm BEP lowered (p < 0.05) meat index of thrombogenicity (TI) but increased meat hypocholesteromic: hypercholesteromic (HH) value. Dietary 0.15% (0.05 mm) BEP yielded low (p < 0.05) SFA but high MUFA: SFA, UFA: SFA and NVI, while 0.15% (0.1 mm) BEP diet resulted in high total MUFA and higher (p < 0.05) UFA, n-3 and n-3: n-6 FA. Control, 0.15% and 0.05 mm BEP diets reduced (p < 0.05) meat cholesterol value. This study has shown that 0.15% (0.05 mm) BEP diet had no deleterious effect on the growth of broiler chickens but improved the NVI, IA, TI, HH, TBARs and cholesterol of the meat - a significance to health-conscious consumers.
Collapse
Affiliation(s)
- Adeola Adegoke
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria.
| | - Abdul-Basit Oduola
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria
| | - Kemi Idowu
- Department of Animal Production and Health, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria
| | - John Abiona
- Department of Animal Physiology, Federal University of Agriculture, P.M.B. 2240, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
2
|
Zhang C, Gu F, Hu W, Wu G, Chen W, Dong C, Niu Z. Effect of extraction technique on chemical compositions and antioxidant activities of freeze-dried green pepper. Front Nutr 2022; 9:998840. [PMID: 36118756 PMCID: PMC9479182 DOI: 10.3389/fnut.2022.998840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the yield, content of piperine, and antioxidant activity of pepper oleoresin obtained with the methods of maceration, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and ultrasound-MAE (UMAE) were analyzed, and the microstructure of pepper residue was observed. For the yield and piperine content, the UMAE method had the best extraction capacity among the four methods. While, the oleoresin obtained with maceration had the highest total phenolic content, and the antioxidant activity of the oleoresin obtained by maceration was higher than that of the extracts acquired by UAE, MAE, and UMAE, and a high positive correlation was observed between the antioxidant activity and total phenolic content of the oleoresin obtained by these extraction methods. The ideal parameters for UMAE were an 80-mesh particle size and a 1 g/10 mL solid–liquid ratio. The kinetic parameters and models of the UMAE extraction process were also compared using first- and second-order models. The second-order kinetic equation with the lowest root mean square deviation and highest adjusted correlation coefficient proved to be more suitable for describing the extraction kinetics of pepper oleoresin. This study showed that UMAE is a fast, efficient, and cost-effective technique for the extraction of green pepper oleoresin.
Collapse
Affiliation(s)
- Chaohua Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, San Ya, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Fenglin Gu
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, San Ya, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, San Ya, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
- *Correspondence: Fenglin Gu
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
- Weicheng Hu
| | - Guiping Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, China
| | - Weijun Chen
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Conghui Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Zhiqiang Niu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China
| |
Collapse
|
3
|
Upscalability and Techno-Economic Perspectives of Nonconventional Extraction Techniques of Essential Oils. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Nonconventional extraction methods, such as microwave, supercritical fluid, and ultrasonic, are known to be veritable means of producing solvent-free high-quality essential oils. Nonetheless, technical requirements for the utilization of these extraction technologies are often exorbitantly expensive, thereby limiting their utilization. Evidence Acquisition: Although these emerging extraction technologies have been reported to be efficient at a laboratory scale, their techno-economic analyses are necessary for proper upscaling. Scaling up nonconventional extraction has long been regarded as a critical constraint in larger industrial applications with a relatively limited body of published literature on more specific techno-economic analyses. Results: Therefore, an essential oil extraction unit’s techno-economic feasibility should be carefully assessed before an acquisition decision can be made for industrial upscaling. This review critically examined the implications of upscaling nonconventional extraction techniques while taking into consideration their techno-economic benefits. Conclusions: This study will undoubtedly assist researchers and industrial experts make an informed decision on the suitable extraction methods while taking into account the essential oil yield, quality characteristics, energy consumption, and operating costs.
Collapse
|
4
|
Optimization of Callus and Cell Suspension Cultures of Lycium schweinfurthii for Improved Production of Phenolics, Flavonoids, and Antioxidant Activity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lycium schweinfurthii is a traditional medicinal plant grown in the Mediterranean region. As it is used in folk medicine to treat stomach ulcers, it took more attention as a source of valuable secondary metabolites. The in vitro cultures of L. schweinfurthii could be a great tool to produce secondary metabolites at low costs. The presented study aimed to introduce and optimize a protocol for inducing callus and cell suspension cultures as well as estimating phenolic, flavonoid compounds, and antioxidant activity in the cultures of the studied species. Three plant growth regulators (PGRs) were supplemented to MS medium solely or in combination to induce callus from leaf explants. The combination between 2,4-dichlorophenoxy acetic acid (2,4-D) and 1-naphthyl acetic acid (NAA) induced callus in all explants regardless of the concentration. The highest fresh weight of callus (3.92 g) was obtained on MS medium fortified with 1 mg L−1 of both 2,4-D and NAA (DN1) after 7 weeks of culture. DN1 was the best medium for callus multiplication regarding the increase in fresh weight and size of callus. Otherwise, the highest phenolics, flavonoids, and antioxidant activity against DPPH free radicals were of callus on MS fortified with 2 mg L−1 NAA (N2). The cell suspension cultures were cultivated on a liquid N2 medium with different sucrose concentrations of 5–30 g L−1 to observe the possible effects on cells’ multiplication and secondary metabolite production. The highest fresh and viable biomass of 12.01 g was obtained on N2 containing 30 g L−1 sucrose. On the other hand, the cell cultures on N2 medium of 5 and 30 g L−1 sucrose produced phenolics and flavonoids, and revealed antioxidant activity against DPPH and ABTS+ free radicals more than other sucrose concentrations. The presented protocol should be useful in the large-scale production of phenolic and flavonoid compounds from callus and cell cultures of L. schweinfurthii.
Collapse
|
5
|
Mamdouh D, Mahgoub HAM, Gabr AMM, Ewais EA, Smetanska I. Genetic Stability, Phenolic, Flavonoid, Ferulic Acid Contents, and Antioxidant Activity of Micropropagated Lycium schweinfurthii Plants. PLANTS 2021; 10:plants10102089. [PMID: 34685900 PMCID: PMC8540154 DOI: 10.3390/plants10102089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Lycium schweinfurthii is a Mediterranean wild shrub rich in plant secondary metabolites. In vitro propagation of this plant may support the production of valuable dietary supplements for humanity, introduction of it to the world market, and opportunities for further studies. The presented study aimed to introduce an efficient and reproducible protocol for in vitro micropropagation of L. schweinfurthii and assess the genetic stability of micropropagated plants (MiPs) as well as to estimate phenolic, flavonoid, ferulic acid contents, and the antioxidant activity in leaves of micropropagated plants. Two DNA-based techniques, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR), and one biochemical technique, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), were used to assess the genetic stability in MiPs. Spectrophotometric analysis was performed to estimate total phenolic and flavonoid contents and antioxidant activity of MiPs leaves, while ferulic acid content was estimated using high-performance thin-layer chromatography (HPTLC). Sufficient shoot proliferation was achieved at MS (Murashige and Skoog) medium supplemented with 0.4 mg L-1 kinetin and rooted successfully on half-strength MS medium fortified with 0.4 mg L-1 Indole-3-butyric acid (IBA). The Jaccard's similarity coefficients detected in MiPs reached 52%, 55%, and 82% in the RAPD, ISSR, and SDS-PAGE analyses, respectively. In the dried leaves of MiPs, the phenolic, flavonoid, and ferulic acid contents of 11.53 mg gallic acid equivalent, 12.99 mg catechin equivalent, and 45.52 mg were estimated per gram, respectively. However, an IC50 of 0.43, and 1.99 mg mL-1 of MiP dried leaves' methanolic extract was required to scavenge half of the DPPH, and ABTS free radicals, respectively. The study presented a successful protocol for in vitro propagation of a valued promising plant source of phenolic compounds.
Collapse
Affiliation(s)
- Diaa Mamdouh
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihensteph-an-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (H.A.M.M.); (E.A.E.)
- Correspondence: (D.M.); (I.S.)
| | - Hany A. M. Mahgoub
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (H.A.M.M.); (E.A.E.)
| | - Ahmed M. M. Gabr
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Division, National Research Centre (NRC), Cairo 12622, Egypt;
| | - Emad A. Ewais
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (H.A.M.M.); (E.A.E.)
| | - Iryna Smetanska
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihensteph-an-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
- Correspondence: (D.M.); (I.S.)
| |
Collapse
|
6
|
Olalere OA, Gan CY, Akintomiwa OE, Adeyi O, Adeyi A. Optimisation of microwave-assisted extraction and functional elucidation of bioactive compounds from Cola nitida pod. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:850-858. [PMID: 33583076 DOI: 10.1002/pca.3030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The quality characteristics and stability of phenolic by-products from Cola nitida wastes are critical factors for drug formulation and food nutraceutical applications. OBJECTIVES In this study, the effect of electromagnetic-based microwave-reflux extraction on the total phenolic content, antioxidant capacity, morphological characteristics, physisorption and chromatographic phenolic profiles were successfully investigated. These physicochemical analyses are often employed in the standardisation of dried herbal and food nutraceutical products. MATERIAL AND METHODS In this study, the electromagnetic-based extraction process was optimised using the Box-Behnken design. The oleoresin bio-products were subsequently characterised to determine the total phenolic content, morphological and microstructural degradation. These analyses were conducted to elucidate the effect of the microwave heating on the C. nitida pod powder. RESULTS From the predicted response, the optimal percentage yield was achieved at 26.20% under 5.39 min of irradiation time, 440 W microwave power and oven temperature of 55°C. Moreover, the rapid estimation of the phenolic content and antioxidant capacity were recorded at 124.84 ± 0.064 mg gallic acid equivalent (GAE)/g dry weight (d.w.) and 6.93 ± 0.34 μg/mL, respectively. The physicochemical characterisation results from the Fourier-transform infrared spectroscopy, field emission scanning electron microscopy and physisorption analyses showed remarkable changes in the micro-surface area (13.66%) characteristics. CONCLUSION The recorded optimal conditions established a basis for future scale-up of microwave extraction parameters with a potential for maximum yield. The physiochemical characterisation revealed the functional characteristics of C. nitida and their tolerance to microwave heating.
Collapse
Affiliation(s)
- Olusegun Abayomi Olalere
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia (USM), University Innovation Incubator Building, sains@usm Campus, Lebuh Bukit Jambul, Bayan Lepas, Penang, 11900, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia (USM), University Innovation Incubator Building, sains@usm Campus, Lebuh Bukit Jambul, Bayan Lepas, Penang, 11900, Malaysia
| | - Olumide Esan Akintomiwa
- School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor, Penang, 11800, Malaysia
| | - Oladayo Adeyi
- Department of Chemical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Abiola Adeyi
- Forestry Research Institute of Nigeria, (FRIN), Idi Ishin Jericho Road, Ibadan, Nigeria
| |
Collapse
|
7
|
Wang Y, Wang L, Tan J, Li R, Jiang ZT, Tang SH. Comparative Analysis of Intracellular and in vitro Antioxidant Activities of Essential Oil From White and Black Pepper ( Piper nigrum L.). Front Pharmacol 2021; 12:680754. [PMID: 34248631 PMCID: PMC8267920 DOI: 10.3389/fphar.2021.680754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Ethnopharmacological Relevance: Pepper essential oils have potential immunomodulatory, anti-tumor, and anti-cancer activities. Pepper exhibits the potential to prevent or attenuate carcinogenesis as therapeutic tools. However, the related mechanism remains unelucidated. Aim of the Study: The present study aims to provide reasonable information for the explanation of the dissimilarity of the essential oils from white (WPEO) and black pepper (BPEO). Materials and Methods: WPEO, BPEO, and their single active component, as well as synthetic antioxidants, were compared by the cell model methods and chemical methods, including intracellular antioxidant activity (CAA), total antioxidant activities (TAA), superoxide radical (SR), hydroxyl radical (HR), DPPH radical (DR) scavenging activities and inhibition ability of lipoprotein lipid peroxidation (ILLP). Results: The median effective concentration (EC50) values (mg/mL) of the WPEO and BPEO of SR, HR, DR, and ILLP were 0.437 and 0.327, 0.486 and 0.204, 7.332 and 6.348, 0.688, and 0.624 mg/mL, respectively. The CAA units of WPEO and BPEO were 50.644 and 54.806, respectively. CAA, DR, and TAA of BPEO were significantly higher than those of WPEO (p < 0.05). The BPEO and WPEO can be differentiated as the former have higher correlations with 3-carene, α-pinene, β-pinene, and limonene while the latter has a higher caryophyllene correlation. The WPEO and BPEO show a good intracellular scavenging ability of reactive oxygen species in HeLa cells. Conclusion: Generally, pepper oil has stronger activities than single components, indicating that pepper is a broad-spectrum natural antioxidant.
Collapse
Affiliation(s)
| | | | - Jin Tan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | | | | | | |
Collapse
|