1
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
2
|
Abdel-Hafez SM, Gallei M, Wagner S, Schneider M. Inhalable nano-structured microparticles for extracellular matrix modulation as a potential delivery system for lung cancer. Eur J Pharm Biopharm 2024; 204:114512. [PMID: 39332746 DOI: 10.1016/j.ejpb.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
The use of inhalable nanoparticulate-based systems in the treatment of lung cancer allows for efficient localized delivery to the lungs with less undesirable systemic exposure. For this to be attained, the inhaled particles should have optimum properties for deposition and at the same time avoid pulmonary clearance mechanisms. Drug delivery to solid tumors is furthermore challenging, due to dense extracellular matrix (ECM) formation, which hinders the penetration and diffusion of therapeutic agents. To this end, the aim of the current work is to develop an ECM-modulating nano-structured microparticulate carrier, that not only enables the delivery of therapeutic nanoparticles (NPs) to the lungs, but also enhances their intratumoral penetration. The system is composed of acetalated maltodextrin (AcMD) NPs embedded into a water-soluble trehalose/leucine matrix, in which collagenase was loaded with different mass concentrations (10 %, 30 % and 50 %). The collagenase-containing AcMD nano-structured microparticles (MPs) exhibited suitable median volume diameters (2.58 ± 1.35 to 3.01 ± 0.68 µm), hollow corrugated morphology, sufficient redispersibility, low residual moisture content (2.71 ± 0.17 % to 3.10 ± 0.20 %), and favorable aerodynamic properties (Mass median aerodynamic diameter (MMAD): 1.93 ± 0.06 to 2.80 ± 0.10 µm and fine particle fraction (FPF): 68.02 ± 6.86 % to 69.62 ± 2.01 %). Importantly, collagenase retained as high as 89.5 ± 6.7 % of its enzymatic activity after spray drying. MPs containing 10 % mass content of collagenase did not show signs of cytotoxicity on either human lung adenocarcinoma A549 cells or lung MRC-5 fibroblasts. The nanoparticle penetration was tested using adenocarcinoma A549/MRC-5 co-culture spheroid model, where the inclusion of collagenase resulted in deeper penetration depth of AcMD-NPs.
Collapse
Affiliation(s)
- Salma M Abdel-Hafez
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123 Saarbrücken, Germany; Saarene, Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Sylvia Wagner
- Department Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
3
|
Lim SH, Wong TW, Tay WX. Overcoming colloidal nanoparticle aggregation in biological milieu for cancer therapeutic delivery: Perspectives of materials and particle design. Adv Colloid Interface Sci 2024; 325:103094. [PMID: 38359673 DOI: 10.1016/j.cis.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
Nanoparticles as cancer therapeutic carrier fail in clinical translation due to complex biological environments in vivo consisting of electrolytes and proteins which render nanoparticle aggregation and unable to reach action site. This review identifies the desirable characteristics of nanoparticles and their constituent materials that prevent aggregation from site of administration (oral, lung, injection) to target site. Oral nanoparticles should ideally be 75-100 nm whereas the size of pulmonary nanoparticles minimally affects their aggregation. Nanoparticles generally should carry excess negative surface charges particularly in fasting state and exert steric hindrance through surface decoration with citrate, anionic surfactants and large polymeric chains (polyethylene glycol and polyvinylpyrrolidone) to prevent aggregation. Anionic as well as cationic nanoparticles are both predisposed to protein corona formation as a function of biological protein isoelectric points. Their nanoparticulate surface composition as such should confer hydrophilicity or steric hindrance to evade protein corona formation or its formation should translate into steric hindrance or surface negative charges to prevent further aggregation. Unexpectedly, smaller and cationic nanoparticles are less prone to aggregation at cancer cell interface favoring endocytosis whereas aggregation is essential to enable nanoparticles retention and subsequent cancer cell uptake in tumor microenvironment. Present studies are largely conducted in vitro with simplified simulated biological media. Future aggregation assessment of nanoparticles in biological fluids that mimic that of patients is imperative to address conflicting materials and designs required as a function of body sites in order to realize the future clinical benefits.
Collapse
Affiliation(s)
- Shi Huan Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543
| | - Tin Wui Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543; Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; UM-UiTM Excipient Development Research Unit (EXDEU), Faculty of Pharmacy, Universiti Malaya, Lembah Pantai 50603, Kuala Lumpur, Malaysia.
| | - Wei Xian Tay
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Republic of Singapore 117543
| |
Collapse
|
4
|
Wang J, Zhang Y, Chen X, Tao F, Sun B, Xie J, Chen J. Targeted delivery of inhalable drug particles in the tracheobronchial tree model of a pediatric patient with bronchopneumonia: A numerical study. Respir Physiol Neurobiol 2023; 311:104024. [PMID: 36731709 DOI: 10.1016/j.resp.2023.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Pneumonia is a common cause of hospitalization and death in children worldwide. Inhalation therapy is one of the methods treating pneumonia However, there are limited studies that distinguish between the physiology of children and adults, especially with respect to targeted drug delivery. A tracheobronchial (TB) tree model of an 11-year-old child with bronchopneumonia is selected as a testbed for in silico trials of targeted drug delivery. The airflow and particle transport are solved by the computational fluid dynamics method at an airflow rate of 15 LPM. The results indicate that the distribution of deposited particles shows aggregation on the particle release map. Point-source aerosol release (PSAR) method can significantly reduce the deposition efficiency (DE) of particles in the TB tree model. Specifically, the PSAR method can reduce the DE of large particles (i.e., 7.5 µm and 10 µm) by 7.57% and 9.61%, respectively. This enables rapid design of patient-specific treatment for different population age groups and different airway diseases.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaole Chen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China.
| | - Feng Tao
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Baobin Sun
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jun Xie
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Jingguo Chen
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
5
|
Nano-enabled agglomerates and compact: Design aspects of challenges. Asian J Pharm Sci 2023; 18:100794. [PMID: 37035131 PMCID: PMC10074506 DOI: 10.1016/j.ajps.2023.100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Nanoscale medicine confers passive and active targeting potential. The development of nanomedicine is however met with processing, handling and administration hurdles. Excessive solid nanoparticle aggregation and caking result in low product yield, poor particle flowability and inefficient drug administration. These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques. Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry, surface composition or chemistry being altered and negating biological performance. This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles. The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development, and their interplay effects with process temperature, physical forces and environmental stresses. To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction, modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.
Collapse
|
6
|
Nanomedicine for targeting the lung cancer cells by interpreting the signaling pathways. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Wang J, Zhang Y, Chen X, Feng Y, Ren X, Yang M, Ding T. Targeted delivery of inhalable drug particles in a patient-specific tracheobronchial tree with moderate COVID-19: A numerical study. POWDER TECHNOL 2022; 405:117520. [PMID: 35602760 PMCID: PMC9110329 DOI: 10.1016/j.powtec.2022.117520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has led to severe social and economic disruption worldwide. Although currently no consent has been reached on a specific therapy that can treat COVID-19 effectively, several inhalation therapy strategies have been proposed to inhibit SARS-CoV-2 infection. These strategies include inhalations of antiviral drugs, anti-inflammatory drugs, and vaccines. To investigate how to enhance the therapeutic effect by increasing the delivery efficiency (DE) of the inhaled aerosolized drug particles, a patient-specific tracheobronchial (TB) tree from the trachea up to generation 6 (G6) with moderate COVID-19 symptoms was selected as a testbed for the in silico trials of targeted drug delivery to the lung regions with pneumonia alba, i.e., the severely affected lung segments (SALS). The 3D TB tree geometry was reconstructed from spiral computed tomography (CT) scanned images. The airflow field and particle trajectories were solved using a computational fluid dynamics (CFD) based Euler-Lagrange model at an inhalation flow rate of 15 L/min. Particle release maps, which record the deposition locations of the released particles, were obtained at the inlet according to the particle trajectories. Simulation results show that particles with different diameters have similar release maps for targeted delivery to SALS. Point-source aerosol release (PSAR) method can significantly enhance the DE into the SALS. A C++ program has been developed to optimize the location of the PSAR tube. The optimized simulations indicate that the PSAR approach can at least increase the DE of the SALS by a factor of 3.2× higher than conventional random-release drug-aerosol inhalation. The presence of the PSAR tube only leads to a 7.12% change in DE of the SALS. This enables the fast design of a patient-specific treatment for reginal lung diseases.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Ya Zhang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaole Chen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China,Corresponding author
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaoyong Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Minjuan Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ting Ding
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
8
|
Inhalable Mannosylated Rifampicin–Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy. Pharmaceutics 2022; 14:pharmaceutics14050959. [PMID: 35631546 PMCID: PMC9145552 DOI: 10.3390/pharmaceutics14050959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)–curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.
Collapse
|
9
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|
10
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
11
|
Onco-Receptors Targeting in Lung Cancer via Application of Surface-Modified and Hybrid Nanoparticles: A Cross-Disciplinary Review. Processes (Basel) 2021. [DOI: 10.3390/pr9040621] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is among the most prevalent and leading causes of death worldwide. The major reason for high mortality is the late diagnosis of the disease, and in most cases, lung cancer is diagnosed at fourth stage in which the cancer has metastasized to almost all vital organs. The other reason for higher mortality is the uptake of the chemotherapeutic agents by the healthy cells, which in turn increases the chances of cytotoxicity to the healthy body cells. The complex pathophysiology of lung cancer provides various pathways to target the cancerous cells. In this regard, upregulated onco-receptors on the cell surface of tumor including epidermal growth factor receptor (EGFR), integrins, transferrin receptor (TFR), folate receptor (FR), cluster of differentiation 44 (CD44) receptor, etc. could be exploited for the inhibition of pathways and tumor-specific drug targeting. Further, cancer borne immunological targets like T-lymphocytes, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and dendritic cells could serve as a target site to modulate tumor activity through targeting various surface-expressed receptors or interfering with immune cell-specific pathways. Hence, novel approaches are required for both the diagnosis and treatment of lung cancers. In this context, several researchers have employed various targeted delivery approaches to overcome the problems allied with the conventional diagnosis of and therapy methods used against lung cancer. Nanoparticles are cell nonspecific in biological systems, and may cause unwanted deleterious effects in the body. Therefore, nanodrug delivery systems (NDDSs) need further advancement to overcome the problem of toxicity in the treatment of lung cancer. Moreover, the route of nanomedicines’ delivery to lungs plays a vital role in localizing the drug concentration to target the lung cancer. Surface-modified nanoparticles and hybrid nanoparticles have a wide range of applications in the field of theranostics. This cross-disciplinary review summarizes the current knowledge of the pathways implicated in the different classes of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. Furthermore, it focuses specifically on the significance and emerging role of surface functionalized and hybrid nanomaterials as drug delivery systems through citing recent examples targeted at lung cancer treatment.
Collapse
|
12
|
Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, Rahman NA, Wong TW. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym 2020; 250:116800. [PMID: 33049807 PMCID: PMC7434482 DOI: 10.1016/j.carbpol.2020.116800] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
Collapse
Affiliation(s)
- Ruhisy Mohd Rasul
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - M Tamilarasi Muniandy
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zabliza Zakaria
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
| | - Kifayatullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Dabbagh
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University. China.
| |
Collapse
|
13
|
Wang X, Parvathaneni V, Shukla SK, Kanabar DD, Muth A, Gupta V. Cyclodextrin Complexation for Enhanced Stability and Non-invasive Pulmonary Delivery of Resveratrol-Applications in Non-small Cell Lung Cancer Treatment. AAPS PharmSciTech 2020; 21:183. [PMID: 32632576 DOI: 10.1208/s12249-020-01724-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary drug delivery is a noninvasive therapeutic approach that offers many advantages including localized drug delivery and higher patient compliance. As with all formulations, the low aqueous solubility of a drug often poses a challenge in the formulation development. Thus, strategies such as cyclodextrin (CD) complexation have been utilized to overcome this challenge. Resveratrol (RES), a natural stilbene, has shown abundant anti-cancer properties. Due to many drawbacks of conventional chemotherapeutics, RES has been proposed as an emerging alternative with promising pharmacological effects. However, RES has limited therapeutic applications due to low water solubility, chemical stability, and bioavailability. This study was aimed at developing an inhalable therapy that would increase the aqueous solubility and stability of RES by complexation with sulfobutylether-β-cyclodextrin (SBECD). Phase solubility profiles indicated an optimal stoichiometric inclusion complex at 1:1 (SBECD:RES) ratio for formulation considerations. Physiochemical characterizations were performed to analyze CD-RES. Stability studies at pH 7.4 and in plasma indicated significant improvement in RES stability after complexation, with a much longer half-life. The mass median aerodynamic diameter (MMAD) of CD-RES was 2.6 ± 0.7 μm and fine particle fraction (FPF) of 83.4 ± 3.0% are suitable for pulmonary delivery and efficient deposition. Lung cancer was selected as the respiratory model disease, owing to its high relevance as the major cause of cancer deaths worldwide. Cell viability studies in 5 non-small-cell-lung-cancer (NSCLC) cell lines suggest CD-RES retained significant cytotoxic potential of RES. Taken together, CD-RES proves to be a promising inhalation treatment for NSCLC.
Collapse
|
14
|
Affiliation(s)
- Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
- Molecular Cancer Therapy and Drug Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
15
|
LncRNA MALAT1 Promotes Lung Cancer Proliferation and Gefitinib Resistance by Acting as a miR-200a Sponge. Arch Bronconeumol 2019; 55:627-633. [DOI: 10.1016/j.arbres.2019.03.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
|
16
|
He Y, Liang Y, Han R, Lu WL, Mak JCW, Zheng Y. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Control Release 2019; 314:48-61. [PMID: 31644935 DOI: 10.1016/j.jconrel.2019.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pulmonary delivery of active drugs has been applied for the treatment of obstructive lung diseases, including asthma, chronic obstructive pulmonary disease and cystic fibrosis, for several decades and has achieved progress in symptom management by bronchodilator inhalation. However, substantial progress in anti-inflammation, prevention of airway remodeling and disease progression is limited, since the majority of the formulation strategies focus only on particle deposition, which is insufficient for pulmonary delivery of the drugs. The lack of knowledge on lung absorption barriers in obstructive lung diseases and on pathogenesis impedes the development of functional formulations by rational design. In this review, we describe the physiological structure and biological functions of the barriers in various regions of the lung, review the pathogenesis and functional changes of barriers in obstructive lung diseases, and examine the interaction of these barriers with particles to influence drug delivery efficiency. Subsequently, we review rational particle design for overcoming lung barriers based on excipients selection, particle size and surface properties, release properties and targeting ability. Additionally, useful particle fabrication strategies and commonly used drug carriers for pulmonary delivery in obstructive lung diseases are proposed in this article.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yingmin Liang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Judith Choi Wo Mak
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
17
|
Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 2019; 144:57-77. [PMID: 31400350 PMCID: PMC6748653 DOI: 10.1016/j.addr.2019.07.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/04/2023]
Abstract
Systemic drug delivery methods such as oral or parenteral administration of free drugs possess relatively low treatment efficiency and marked adverse side effects. The use of nanoparticles for drug delivery in most cases substantially enhances drug efficacy, improves pharmacokinetics and drug release and limits their side effects. However, further enhancement in drug efficacy and significant limitation of adverse side effects can be achieved by specific targeting of nanocarrier-based delivery systems especially in combination with local administration. The present review describes major advantages and limitations of organic and inorganic nanocarriers or living cell-based drug and nucleic acid delivery systems. Among these, different nanoparticles, supramolecular gels, therapeutic cells as living drug carriers etc. have emerged as a new frontier in modern medicine.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|