1
|
Danek PJ, Daniel WA. The effect of new atypical antipsychotic drugs on the expression of transcription factors regulating cytochrome P450 enzymes in rat liver. Pharmacol Rep 2024; 76:895-901. [PMID: 38878234 PMCID: PMC11294401 DOI: 10.1007/s43440-024-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Our recent studies showed that prolonged administration of novel atypical antipsychotics affected the expression and activity of cytochrome P450 (CYP), as demonstrated in vitro on human hepatocytes and in vivo on the rat liver. The aim of the present work was to study the effect of repeated treatment with asenapine, iloperidone, and lurasidone on the expression of transcription factors regulating CYP drug-metabolizing enzymes in rat liver. METHODS The hepatic mRNA (qRT-PCR) and protein levels (Western blotting) of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPARγ) were measured in male Wistar rats after 2 week-treatment with asenapine, iloperidone or lurasidone. RESULTS The 2-week treatment with asenapine significantly diminished the AhR and PXR expression (mRNA, protein level), and CAR mRNA level in rat liver. Iloperidone lowered the AhR and CAR expression and PXR protein level. Lurasidone did not affect the expression of AhR and CAR, but increased PXR expression. The antipsychotics did not affect PPARγ. CONCLUSIONS Prolonged treatment with asenapine, iloperidone, or lurasidone affects the expression of transcription factors regulating the CYP drug-metabolizing enzymes. The changes in the expression of AhR, CAR, and PXR mostly correlate with alterations in the expression and activity of respective CYP enzymes found in our previous studies. Since these transcription factors are also engaged in the expression of phase II drug metabolism and drug transporters, changes in their expression may affect the metabolism of endogenous substrates and pharmacokinetics of concomitantly used drugs.
Collapse
Affiliation(s)
- Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
2
|
Ulloa del Carpio N, Alvarado-Corella D, Quiñones-Laveriano DM, Araya-Sibaja A, Vega-Baudrit J, Monagas-Juan M, Navarro-Hoyos M, Villar-López M. Exploring the chemical and pharmacological variability of Lepidium meyenii: a comprehensive review of the effects of maca. Front Pharmacol 2024; 15:1360422. [PMID: 38440178 PMCID: PMC10910417 DOI: 10.3389/fphar.2024.1360422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Maca (Lepidium meyenii), a biennial herbaceous plant indigenous to the Andes Mountains, has a rich history of traditional use for its purported health benefits. Maca's chemical composition varies due to ecotypes, growth conditions, and post-harvest processing, contributing to its intricate phytochemical profile, including, macamides, macaenes, and glucosinolates, among other components. This review provides an in-depth revision and analysis of Maca's diverse bioactive metabolites, focusing on the pharmacological properties registered in pre-clinical and clinical studies. Maca is generally safe, with rare adverse effects, supported by preclinical studies revealing low toxicity and good human tolerance. Preclinical investigations highlight the benefits attributed to Maca compounds, including neuroprotection, anti-inflammatory properties, immunoregulation, and antioxidant effects. Maca has also shown potential for enhancing fertility, combating fatigue, and exhibiting potential antitumor properties. Maca's versatility extends to metabolic regulation, gastrointestinal health, cardio protection, antihypertensive activity, photoprotection, muscle growth, hepatoprotection, proangiogenic effects, antithrombotic properties, and antiallergic activity. Clinical studies, primarily focused on sexual health, indicate improved sexual desire, erectile function, and subjective wellbeing in men. Maca also shows promise in alleviating menopausal symptoms in women and enhancing physical performance. Further research is essential to uncover the mechanisms and clinical applications of Maca's unique bioactive metabolites, solidifying its place as a subject of growing scientific interest.
Collapse
Affiliation(s)
- Norka Ulloa del Carpio
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
| | - Diego Alvarado-Corella
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | | | - Andrea Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - Maria Monagas-Juan
- United States Pharmacopeia (USP) Dietary Supplements and Herbal Medicines, Rockville, MD, United States
| | - Mirtha Navarro-Hoyos
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Martha Villar-López
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
3
|
Shilbayeh SAR, Adeen IS, Ghanem EH, Aljurayb H, Aldilaijan KE, AlDosari F, Fadda A. Exploratory focused pharmacogenetic testing reveals novel markers associated with risperidone pharmacokinetics in Saudi children with autism. Front Pharmacol 2024; 15:1356763. [PMID: 38375040 PMCID: PMC10875102 DOI: 10.3389/fphar.2024.1356763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Autism spectrum disorders (ASDs) encompass a broad range of phenotypes characterized by diverse neurological alterations. Genomic studies have revealed considerable overlap between the molecular mechanisms implicated in the etiology of ASD and genes involved in the pharmacokinetic (PK) and pharmacodynamic (PD) pathways of antipsychotic drugs employed in ASD management. Given the conflicting data originating from candidate PK or PD gene association studies in diverse ethnogeographic ASD populations, dosage individualization based on "actionable" pharmacogenetic (PGx) markers has limited application in clinical practice. Additionally, off-label use of different antipsychotics is an ongoing practice, which is justified given the shortage of approved cures, despite the lack of satisfactory evidence for its safety according to precision medicine. This exploratory study aimed to identify PGx markers predictive of risperidone (RIS) exposure in autistic Saudi children. Methods: This prospective cohort study enrolled 89 Saudi children with ASD treated with RIS-based antipsychotic therapy. Plasma levels of RIS and 9-OH-RIS were measured using a liquid chromatography-tandem mass spectrometry system. To enable focused exploratory testing, genotyping was performed with the Axiom PharmacoFocus Array, which included a collection of probe sets targeting PK/PD genes. A total of 720 PGx markers were included in the association analysis. Results: A total of 27 PGx variants were found to have a prominent impact on various RIS PK parameters; most were not located within the genes involved in the classical RIS PK pathway. Specifically, 8 markers in 7 genes were identified as the PGx markers with the strongest impact on RIS levels (p < 0.01). Four PGx variants in 3 genes were strongly associated with 9-OH-RIS levels, while 5 markers in 5 different genes explained the interindividual variability in the total active moiety. Notably, 6 CYP2D6 variants exhibited strong linkage disequilibrium; however, they significantly influenced only the metabolic ratio and had no considerable effects on the individual estimates of RIS, 9-OH-RIS, or the total active moiety. After correction for multiple testing, rs78998153 in UGT2B17 (which is highly expressed in the brain) remained the most significant PGx marker positively adjusting the metabolic ratio. For the first time, certain human leukocyte antigen (HLA) markers were found to enhance various RIS exposure parameters, which reinforces the gut-brain axis theory of ASD etiology and its suggested inflammatory impacts on drug bioavailability through modulation of the brain, gastrointestinal tract and/or hepatic expression of metabolizing enzymes and transporters. Conclusion: Our hypothesis-generating approach identified a broad spectrum of PGx markers that interactively influence RIS exposure in ASD children, which indicated the need for further validation in population PK modeling studies to define polygenic scores for antipsychotic efficacy and safety, which could facilitate personalized therapeutic decision-making in this complex neurodevelopmental condition.
Collapse
Affiliation(s)
- Sireen Abdul Rahim Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Iman Sharaf Adeen
- Department of Pediatric Behavior and Development and Adolescent Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ezzeldeen Hasan Ghanem
- Pharmaceutical Analysis Section, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Haya Aljurayb
- Molecular Pathology Laboratory, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khawlah Essa Aldilaijan
- Health Sciences Research Center, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatimah AlDosari
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia
| | | |
Collapse
|
4
|
Haduch A, Bromek E, Kuban W, Basińska-Ziobroń A, Danek PJ, Alenina N, Bader M, Daniel WA. The effect of brain serotonin deficit (TPH2-KO) on the expression and activity of liver cytochrome P450 enzymes in aging male Dark Agouti rats. Pharmacol Rep 2023; 75:1522-1532. [PMID: 37848703 PMCID: PMC10661807 DOI: 10.1007/s43440-023-00540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system. The present study aimed to investigate changes in the function of the main liver drug-metabolizing CYP enzymes as a result of serotonin depletion in the brain of aging rats, caused by knockout of brain tryptophan hydroxylase gene (TPH2-KO). METHODS The hepatic CYP mRNA (qRT-PCR), protein level (Western blotting) and activity (HPLC), and serum hormone levels (ELISA) were measured in Dark Agouti wild-type (WT) male rats (mature 3.5-month-old and senescent 21-month-old) and in TPH2-KO senescent animals. RESULTS The expression/activity of the studied CYPs decreased with age in the liver of wild-type rats. The deprivation of serotonin in the brain of aging males decreased the mRNA level of most of the studied CYPs (CYP1A/2A/2B/3A), and lowered the protein level of CYP2C11 and CYP3A. In contrast, the activities of CYP2C11, CYP3A and CYP2C6 were increased. The expression of cytochrome b5 decreased in aging rats, but increased in TPH2-deficient senescent animals. The serum concentration of growth hormone declined in the aged and further dropped down in TPH2-deficient senescent rats. CONCLUSIONS Rat liver cytochrome P450 functions deteriorate with age, which may impair drug metabolism. The TPH2 knockout, which deprives brain serotonin, affects cytochrome P450 expression and activity differently in mature and senescent male rats.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité University Medicine, Berlin, Germany
| | - Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
5
|
Pukło R, Bromek E, Haduch A, Basińska-Ziobroń A, Kuban W, Daniel WA. Molecular Mechanisms of the Regulation of Liver Cytochrome P450 by Brain NMDA Receptors and via the Neuroendocrine Pathway-A Significance for New Psychotropic Therapies. Int J Mol Sci 2023; 24:16840. [PMID: 38069162 PMCID: PMC10706700 DOI: 10.3390/ijms242316840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Recent investigations have highlighted the potential utility of the selective antagonist of the NMDA receptor GluN2B subunit for addressing major depressive disorders. Our previous study showed that the systemic administration of the antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, affected liver cytochrome P450 expression and activity. To discern between the central and peripheral mechanisms of enzyme regulation, our current study aimed to explore whether the intracerebral administration of CP-101,606 could impact cytochrome P450. The injection of CP-101,606 to brain lateral ventricles (6, 15, or 30 µg/brain) exerted dose-dependent effects on liver cytochrome P450 enzymes and hypothalamic or pituitary hormones. The lowest dose led to an increase in the activity, protein, and mRNA level of CYP2C11 compared to the control. The activities of CYP2A, CYP2B, CYP2C11, CYP2C6, CYP2D, and protein levels of CYP2B, CYP2C11 were enhanced compared to the highest dose. Moreover, CP-101,606 increased the CYP1A protein level coupled with elevated CYP1A1 and CYP1A2 mRNA levels, but not activity. The antagonist decreased the pituitary somatostatin level and increased the serum growth hormone concentration after the lowest dose, while independently decreasing the serum corticosterone concentration of the dose. The findings presented here unveil a novel physiological regulatory mechanism whereby the brain glutamatergic system, via the NMDA receptor, influences liver cytochrome P450. This regulatory process appears to involve the endocrine system. These results may have practical applications in predicting alterations in cytochrome P450 activity and endogenous metabolism, and potential metabolic drug-drug interactions elicited by drugs that cross the blood-brain barrier and affect NMDA receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Władysława A. Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (R.P.); (E.B.); (A.H.); (A.B.-Z.); (W.K.)
| |
Collapse
|
6
|
Bravo-Martínez J, Ortega-Tinoco S, Garduño J, Hernández-López S. Arduino based intra-cerebral microinjector device for neuroscience research. HARDWAREX 2023; 15:e00446. [PMID: 37457306 PMCID: PMC10344678 DOI: 10.1016/j.ohx.2023.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Stereotaxic surgery is a less invasive form of surgery that uses a three-dimensional coordinate system to place instruments at a specific location in the brain. Through this type of surgery, one can place needles among other tools within the structures of the brain. Therefore, injections can be given in order to deliver substances that cannot cross the blood-brain barrier. The two most important parameters of the microinjection to control are volume and speed. The volume should not be so large that it displaces the brain tissue and tears it. The injection speed must also be slow so that the liquid that comes out of the syringe can diffuse into the tissue without displacing it and damaging it. Thus, the objectives of the present work are: 1) To develop not a 3D printed prototype but an end-user device. 2) The device must be for animal research only. 3) It must have the same precision in volume and speed as commercial devices. 4) It must be adjustable for microsyringes from 0.5 µl to 1 ml. 5) It must be possible to place it directly on the stereotaxic surgery apparatus and to use it separately. 6) The price must be substantially lower than that of the commercial devices.
Collapse
|
7
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
8
|
Crosstalk between Depression and Breast Cancer via Hepatic Epoxide Metabolism: A Central Comorbidity Mechanism. Molecules 2022; 27:molecules27217269. [PMID: 36364213 PMCID: PMC9655600 DOI: 10.3390/molecules27217269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) is a serious global challenge, and depression is one of the risk factors and comorbidities of BC. Recently, the research on the comorbidity of BC and depression has focused on the dysfunction of the hypothalamic–pituitary–adrenal axis and the persistent stimulation of the inflammatory response. However, the further mechanisms for comorbidity remain unclear. Epoxide metabolism has been shown to have a regulatory function in the comorbid mechanism with scattered reports. Hence, this article reviews the role of epoxide metabolism in depression and BC. The comprehensive review discloses the imbalance in epoxide metabolism and its downstream effect shared by BC and depression, including overexpression of inflammation, upregulation of toxic diols, and disturbed lipid metabolism. These downstream effects are mainly involved in the construction of the breast malignancy microenvironment through liver regulation. This finding provides new clues on the mechanism of BC and depression comorbidity, suggesting in particular a potential relationship between the liver and BC, and provides potential evidence of comorbidity for subsequent studies on the pathological mechanism.
Collapse
|
9
|
Bromek E, Danek PJ, Wójcikowski J, Basińska-Ziobroń A, Pukło R, Solich J, Dziedzicka-Wasylewska M, Daniel WA. The impact of noradrenergic neurotoxin DSP-4 and noradrenaline transporter knockout (NET-KO) on the activity of liver cytochrome P450 3A (CYP3A) in male and female mice. Pharmacol Rep 2022; 74:1107-1114. [PMID: 36018449 PMCID: PMC9584982 DOI: 10.1007/s43440-022-00406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Background Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed.
Methods The experiments were conducted on C57BL/6J WT and NET–/– male/female mice. DSP-4 was injected intraperitoneally as a single dose (50 mg/kg ip.) to WT mice. The activity of CYP3A was measured as the rate of 6β-hydroxylation of testosterone in liver microsomes. The CYP3A protein level was estimated by Western blotting. Results DSP-4 evoked a selective decrease in the noradrenaline level in the brain of male and female mice. At the same time, DSP-4 reduced the CYP3A activity in males, but not in females. The level of CYP3A protein was not changed. The NET knockout did not affect the CYP3A activity/protein in both sexes. Conclusions The results with DSP-4 treated mice showed sex-dependent differences in the regulation of liver CYP3A by the brain noradrenergic system (with only males being responsive), and revealed that the NET knockout did not affect CYP3A in both sexes. Further studies into the hypothalamic–pituitary–gonadal hormones in DSP-4 treated mice may explain sex-specific differences in CYP3A regulation, whereas investigation of monoaminergic receptor sensitivity in the hypothalamic/pituitary areas of NET–/– mice will allow for understanding a lack of changes in the CYP3A activity in the NET-KO animals. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00406-8.
Collapse
Affiliation(s)
- Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Przemysław Jan Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Jacek Wójcikowski
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Renata Pukło
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
10
|
Daniel WA, Bromek E, Danek PJ, Haduch A. The mechanisms of interactions of psychotropic drugs with liver and brain cytochrome P450 and their significance for drug effect and drug-drug interactions. Biochem Pharmacol 2022; 199:115006. [PMID: 35314167 DOI: 10.1016/j.bcp.2022.115006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver. Therefore, the effect of neuroactive drugs on cytochrome P450 should be investigated not only in vitro, but also at in vivo conditions, since only in vivo all mechanisms of drug-enzyme interaction can be observed, including neuroendocrine and neuroimmune modulation. Psychotropic drugs can potentially affect cytochrome P450 via a number of mechanisms operating at the level of the nervous, hormonal and immune systems, and the liver. Their effect on cytochrome P450 in the brain is often different than in the liver and region-dependent. Since psychotropic drugs can affect cytochrome P450 both in the liver and brain, they can modify their own pharmacological effect at both pharmacokinetic and pharmacodynamic level. The article describes the mechanisms by which psychotropic drugs can change the expression/activity of cytochrome P450 in the liver and brain, and discusses the significance of those mechanisms for drug action and drug-drug interactions. Moreover, the brain CYP2D6 is considered as a potential target for psychotropics.
Collapse
Affiliation(s)
- Władysława A Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Przemysław J Danek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
11
|
The Selective NMDA Receptor GluN2B Subunit Antagonist CP-101,606 with Antidepressant Properties Modulates Cytochrome P450 Expression in the Liver. Pharmaceutics 2021; 13:pharmaceutics13101643. [PMID: 34683936 PMCID: PMC8539289 DOI: 10.3390/pharmaceutics13101643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Recent research indicates that selective NMDA receptor GluN2B subunit antagonists may become useful for the treatment of major depressive disorders. We aimed to examine in parallel the effect of the selective NMDA receptor GluN2B subunit antagonist CP-101,606 on the pituitary/serum hormone levels and on the regulation of cytochrome P450 in rat liver. CP-101,606 (20 mg/kg ip. for 5 days) decreased the activity of CYP1A, CYP2A, CYP2B, CYP2C11 and CYP3A, but not that of CYP2C6. The alterations in enzymatic activity were accompanied by changes in the CYP protein and mRNA levels. In parallel, a decrease in the pituitary growth hormone-releasing hormone, and in serum growth hormone and corticosterone (but not T3 and T4) concentration was observed. After a 3-week administration period of CP-101,606 less changes were found. A decrease in the CYP3A enzyme activity and protein level was still maintained, though no change in the mRNA level was found. A slight decrease in the serum concentration of corticosterone was also maintained, while GH level returned to the control value. The obtained results imply engagement of the glutamatergic system in the neuroendocrine regulation of cytochrome P450 and potential involvement of drugs acting on NMDA receptors in metabolic drug–drug interactions.
Collapse
|
12
|
Danek PJ, Kuban W, Daniel WA. The Effect of Chronic Iloperidone Treatment on Cytochrome P450 Expression and Activity in the Rat Liver: Involvement of Neuroendocrine Mechanisms. Int J Mol Sci 2021; 22:ijms22168447. [PMID: 34445153 PMCID: PMC8395164 DOI: 10.3390/ijms22168447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
In order to achieve a desired therapeutic effect in schizophrenia patients and to maintain their mental wellbeing, pharmacological therapy needs to be continued for a long time, usually from the onset of symptoms and for the rest of the patients' lives. The aim of our present research is to find out the in vivo effect of chronic treatment with atypical neuroleptic iloperidone on the expression and activity of cytochrome P450 (CYP) in rat liver. Male Wistar rats received a once-daily intraperitoneal injection of iloperidone (1 mg/kg) for a period of two weeks. Twenty-four hours after the last dose, livers were excised to study cytochrome P450 expression (mRNA and protein) and activity, pituitaries were isolated to determine growth hormone-releasing hormone (GHRH), and blood was collected for measuring serum concentrations of hormones and interleukin. The results showed a broad spectrum of changes in the expression and activity of liver CYP enzymes, which are important for drug metabolism (CYP1A, CYP2B, CYP2C, and CYP3A) and xenobiotic toxicity (CYP2E1). Iloperidone decreased the expression and activity of CYP1A2, CP2B1/2, CYP2C11, and CYP3A1/2 enzymes but increased that of CYP2E1. The CYP2C6 enzyme remained unchanged. At the same time, the level of GHRH, GH, and corticosterone decreased while that of T3 increased, with no changes in IL-2 and IL-6. The presented results indicate neuroendocrine regulation of the investigated CYP enzymes during chronic iloperidone treatment and suggest a possibility of pharmacokinetic/metabolic interactions produced by the neuroleptic during prolonged combined treatment with drugs that are substrates of iloperidone-affected CYP enzymes.
Collapse
|
13
|
The Influence of Long-Term Treatment with Asenapine on Liver Cytochrome P450 Expression and Activity in the Rat. The Involvement of Different Mechanisms. Pharmaceuticals (Basel) 2021; 14:ph14070629. [PMID: 34209648 PMCID: PMC8308745 DOI: 10.3390/ph14070629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Therapy of schizophrenia requires long-term treatment with a relevant antipsychotic drug to achieve a therapeutic effect. The aim of the present study was to investigate the influence of prolonged treatment with the atypical neuroleptic asenapine on the expression and activity of rat cytochrome P450 (CYP) in the liver. The experiment was carried out on male Wistar rats. Asenapine (0.3 mg/kg s.c.) was administered for two weeks. The levels of CYP mRNA protein and activity were determined in the liver and hormone concentrations were measured in the pituitary gland and blood serum. Asenapine significantly decreased the activity of CYP1A (caffeine 8-hydroxylation and 3-N-demethylation), CYP2B, CYP2C11 and CYP3A (testosterone hydroxylation at positions 16β; 2α and 16α; 2β and 6β, respectively). The neuroleptic did not affect the activity of CYP2A (testosterone 7α-hydroxylation), CYP2C6 (warfarin 7-hydroxylation) and CYP2E1 (chlorzoxazone 6-hydroxylation). The mRNA and protein levels of CYP1A2, CYP2B1, CYP2C11 and CYP3A1 were decreased, while those of CYP2B2 and CYP3A2 were not changed. Simultaneously, pituitary level of growth hormone-releasing hormone and serum concentrations of growth hormone and corticosterone were reduced, while that of triiodothyronine was enhanced. In conclusion, chronic treatment with asenapine down-regulates liver cytochrome P450 enzymes, which involves neuroendocrine mechanisms. Thus, chronic asenapine treatment may slow the metabolism of CYP1A, CYP2B, CYP2C11 and CYP3A substrates (steroids and drugs). Since asenapine is metabolized by CYP1A and CYP3A, the neuroleptic may inhibit its own metabolism, therefore, the plasma concentration of asenapine in patients after prolonged treatment may be higher than expected based on a single dose.
Collapse
|