1
|
Motafeghi F, Mortazavi P, Shokrzadeh M. Anticancer activity of zinc oxide nanoparticles on prostate and colon cancer cell line. Toxicol Res (Camb) 2024; 13:tfad127. [PMID: 38239270 PMCID: PMC10793725 DOI: 10.1093/toxres/tfad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Considering the numerous drug resistance in cancer and the advancement of science in nanomedicines, it was decided to compare the effectiveness of zinc oxide nanoparticles in colon and prostate cell lines. Considering the importance of factors and Oxidative stress pathways in cancer prevention, the aim of the study is based on oxidative stress mechanisms. Methodes In order to evaluate the effects of zinc oxide nanoparticles on colon and prostate cell lines, oxidative stress factors ROS, MDA, and GSH and mitochondrial function were evaluated. The data was analyzed with Prism v8 software, and the significance level was considered to be P < 0.05. Results The results showed that nanoparticles induce ROS and reduce intracellular glutathione by destroying and disrupting mitochondrial function, and by increasing ROS production, damage to the lipid membrane and an increase in MDA were also evident. This effect was dose-dependent and the greatest at a concentration of 25 μg/mL. Also, ZnO nanoparticles performed better in the HT29 cell line than in the PC3 cell line. Conclusion This study showed that exposure of HT29 and PC3 cancer cells to zinc oxide nanoparticles at different concentrations inhibited growth by cytotoxic effects.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences and Metabolism, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 1583-88994, Iran
| | - Mohammad Shokrzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Ali N, Katsouli J, Marczylo EL, Gant TW, Wright S, Bernardino de la Serna J. The potential impacts of micro-and-nano plastics on various organ systems in humans. EBioMedicine 2024; 99:104901. [PMID: 38061242 PMCID: PMC10749881 DOI: 10.1016/j.ebiom.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023] Open
Abstract
Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| | - Jenny Katsouli
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Emma L Marczylo
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Timothy W Gant
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Toxicology Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Campus, Chilton, Oxfordshire, OX11 0RQ, UK
| | - Stephanie Wright
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Jorge Bernardino de la Serna
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Cary C, Stapleton P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch Toxicol 2023; 97:2111-2131. [PMID: 37303009 PMCID: PMC10540313 DOI: 10.1007/s00204-023-03528-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
Biological barriers protect delicate internal tissues from exposures to and interactions with hazardous materials. Primary anatomical barriers prevent external agents from reaching systemic circulation and include the pulmonary, gastrointestinal, and dermal barriers. Secondary barriers include the blood-brain, blood-testis, and placental barriers. The tissues protected by secondary barriers are particularly sensitive to agents in systemic circulation. Neurons of the brain cannot regenerate and therefore must have limited interaction with cytotoxic agents. In the testis, the delicate process of spermatogenesis requires a specific milieu distinct from the blood. The placenta protects the developing fetus from compounds in the maternal circulation that would impair limb or organ development. Many biological barriers are semi-permeable, allowing only materials or chemicals, with a specific set of properties, that easily pass through or between cells. Nanoparticles (particles less than 100 nm) have recently drawn specific concern due to the possibility of biological barrier translocation and contact with distal tissues. Current evidence suggests that nanoparticles translocate across both primary and secondary barriers. It is known that the physicochemical properties of nanoparticles can affect biological interactions, and it has been shown that nanoparticles can breach primary and some secondary barriers. However, the mechanism by which nanoparticles cross biological barriers has yet to be determined. Therefore, the purpose of this review is to summarize how different nanoparticle physicochemical properties interact with biological barriers and barrier products to govern translocation.
Collapse
Affiliation(s)
- Chelsea Cary
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Phoebe Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Yuan S, Zhang H, Yuan S. Understanding the transformations of nanoplastic onto phospholipid bilayers: Mechanism, microscopic interaction and cytotoxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160388. [PMID: 36414060 DOI: 10.1016/j.scitotenv.2022.160388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous nanoplastics are now considered emergent pollutants in environments. Bioaccumulation of nanoplastics is an important indicator of their hazard. In this work, molecular dynamics were used to study the uptake of five nanoplastics (polyvinyl chloride (PVC), polystyrene (PS), polylactic acid (PLA), polypropylene (PP), and polyethylene terephthalate (PET)) onto DPPC (dipalmitoylphosphatidylcholine) bilayers. Results suggest that nanoplastics became compact after they were deposited in the human body. For PET, PLA, and PS nanoplastics, a free energy barrier of 4-22 kcal mol-1 needed to be overcome to transfer these polymers from the interface region to the center of the DPPC bilayer. Besides, the free energy difference of PVC and PP from the bulk H2O to the surface of DPPC was -18.67 kcal mol-1 and -25.94 kcal mol-1, respectively. After uptake, the interaction between nanoplastics and lipid bilayer was dominated by the van der Waals rather than electrostatic interaction. Furthermore, the cytotoxicity of nanoplastics was also evaluated and it is reflected in their ability to decrease the thickness of the lipid bilayer. Overall, this work provides implications for understanding the bioaccumulation and toxicity of nanoplastic at the molecular level.
Collapse
Affiliation(s)
- Shideng Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China.
| |
Collapse
|
5
|
Kumar P, Zavala-Reyes JC, Kalaiarasan G, Abubakar-Waziri H, Young G, Mudway I, Dilliway C, Lakhdar R, Mumby S, Kłosowski MM, Pain CC, Adcock IM, Watson JS, Sephton MA, Chung KF, Porter AE. Characteristics of fine and ultrafine aerosols in the London underground. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159315. [PMID: 36283528 DOI: 10.1016/j.scitotenv.2022.159315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM0.1), fine (PM0.1-2.5) and coarse (PM2.5-10) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time). There was a maximum decrease in mass for the PM2.5, PM2.5-10 and black carbon of 3.9, 4.5 and ~ 21-times, respectively, between operable (OpHrs) and non-operable (N-OpHrs) hours. Average PM10 (52 μg m-3) and PM2.5 (34 μg m-3) concentrations over the full data showed levels above the World Health Organization Air Quality Guidelines. Respiratory deposition doses of particle number and mass concentrations were calculated and found to be two- and four-times higher during OpHrs compared with N-OpHrs, reflecting events such as train arrival/departure during OpHrs. Organic compounds were composed of aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) which are known to be harmful to health. Specific ratios of PAHs were identified for underground transport that may reflect an interaction between PAHs and fine particles. Scanning transmission electron microscopy (STEM) chemical maps of fine and ultrafine fractions show they are composed of Fe and O in the form of magnetite and nanosized mixtures of metals including Cr, Al, Ni and Mn. These findings, and the low air change rate (0.17 to 0.46 h-1), highlight the need to improve the ventilation conditions.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland; School of Architecture, Southeast University, Nanjing, China.
| | - Juan C Zavala-Reyes
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK; Escuela Nacional de Estudios Superiores, Unidad Mérida, UNAM, Carretera Mérida-Tetiz, Km 4.5, Ucú, Yucatán, 97357, Mexico
| | - Gopinath Kalaiarasan
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | | | - Gloria Young
- Department of Materials, Imperial College London, London, UK
| | - Ian Mudway
- National Institute of Health Research, Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, UK
| | - Claire Dilliway
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Ramzi Lakhdar
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Sharon Mumby
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Christopher C Pain
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, UK
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
6
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
7
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
8
|
Aerosol-Cell Exposure System Applied to Semi-Adherent Cells for Aerosolization of Lung Surfactant and Nanoparticles Followed by High Quality RNA Extraction. NANOMATERIALS 2022; 12:nano12081362. [PMID: 35458071 PMCID: PMC9028274 DOI: 10.3390/nano12081362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Nanoparticle toxicity assessments have moved closer to physiological conditions while trying to avoid the use of animal models. An example of new in vitro exposure techniques developed is the exposure of cultured cells at the air-liquid interface (ALI), particularly in the case of respiratory airways. While the commercially available VITROCELL® Cloud System has been applied for the delivery of aerosolized substances to adherent cells under ALI conditions, it has not yet been tested on lung surfactant and semi-adherent cells such as alveolar macrophages, which are playing a pivotal role in the nanoparticle-induced immune response. OBJECTIVES In this work, we developed a comprehensive methodology for coating semi-adherent lung cells cultured at the ALI with aerosolized surfactant and subsequent dose-controlled exposure to nanoparticles (NPs). This protocol is optimized for subsequent transcriptomic studies. METHODS Semi-adherent rat alveolar macrophages NR8383 were grown at the ALI and coated with lung surfactant through nebulization using the VITROCELL® Cloud 6 System before being exposed to TiO2 NM105 NPs. After NP exposures, RNA was extracted and its quantity and quality were measured. RESULTS The VITROCELL® Cloud system allowed for uniform and ultrathin coating of cells with aerosolized surfactant mimicking physiological conditions in the lung. While nebulization of 57 μL of 30 mg/mL TiO2 and 114 μL of 15 mg/mL TiO2 nanoparticles yielded identical cell delivered dose, the reproducibility of dose as well as the quality of RNA extracted were better for 114 μL.
Collapse
|
9
|
Li L, Xu Y, Li S, Zhang X, Feng H, Dai Y, Zhao J, Yue T. Molecular modeling of nanoplastic transformations in alveolar fluid and impacts on the lung surfactant film. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127872. [PMID: 34862107 DOI: 10.1016/j.jhazmat.2021.127872] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Airborne nanoplastics can be inhaled to threaten human health, but research on the inhaled nanoplastic toxicity is in its infancy, and interaction mechanisms are largely unknown. By means of molecular dynamics simulation, we employed spherical nanoplastics of different materials and aging properties to predict and elucidate nanoplastic transformations in alveolar fluid and impacts on the lung surfactant (LS) film at the alveolar air-water interface. Results showed spontaneous adsorption of LS molecules on nanoplastics of 10 nm in diameter, and the adsorption layer can be defined as coronas, which increased the particle size, reduced and equalized the surface hydrophobicity, and endowed nanoplastics with negative surface charges. Nanoplastics of polypropylene and polyvinylchloride materials were dissolved by LS, which could increase bioavailability of polymers and toxic additives. Aging properties represented by the nanoplastic size, polymer's molecular weight and surface chemistry altered nanoplastic transformations through modulating competition between polymer-LS and polymer-polymer interactions. Upon transferred to the alveolar air-water interface through vesicle fusion, nanoplastics could interfere with the normal biophysical function of LS through disrupting the LS ultrastructure and fluidity, and prompting collapse of the LS film. These results provide new molecular level insights into fate and toxicity of airborne nanoplastics in human respiratory system.
Collapse
Affiliation(s)
- Lingzhi Li
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Xu
- College of Electronic Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Feng
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Rabel M, Warncke P, Thürmer M, Grüttner C, Bergemann C, Kurland HD, Müller FA, Koeberle A, Fischer D. The differences of the impact of a lipid and protein corona on the colloidal stability, toxicity, and degradation behavior of iron oxide nanoparticles. NANOSCALE 2021; 13:9415-9435. [PMID: 34002735 DOI: 10.1039/d0nr09053k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
AIM In this study, the influence of a serum albumin (SA) and human plasma (HP) derived protein- and lipid molecule corona on the toxicity and biodegradability of different iron oxide nanoparticles (IONP) was investigated. METHODS IONP were synthesized and physicochemically characterized regarding size, charge, and colloidal stability. The adsorbed proteins were quantified and separated by gel electrophoresis. Adsorbed lipids were profiled by ultraperformance liquid chromatography-ESI-tandem mass spectrometry. The biocompatibility was investigated using isolated erythrocytes and a shell-less hen's egg model. The biodegradability was assessed by iron release studies in artificial body fluids. RESULTS The adsorption patterns of proteins and lipids varied depending on the surface characteristics of the IONP like charge and hydrophobicity. The biomolecule corona modified IONP displayed favorable colloidal stability and toxicological profile compared to IONP without biomolecule coronas, reducing erythrocyte aggregation and hemolysis in vitro as well as the corresponding effects ex ovo/in vivo. The coronas decreased the degradation speed of all tested IONP compared to bare particles, but, whereas all IONP degraded at the same rate for the SA corona, substantial differences were evident for IONP with HP-derived corona depending on the lipid adsorption profile. CONCLUSION In this study the impact of the proteins and lipids in the biomolecule corona on the entire IONP application cycle from the injection process to the degradation was demonstrated.
Collapse
Affiliation(s)
- Martin Rabel
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Paul Warncke
- Pharmaceutical Technology and Biopharmacy, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medical Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Cordula Grüttner
- micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | | | - Heinz-Dieter Kurland
- Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Frank A Müller
- Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical and Medical Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany and Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| |
Collapse
|
12
|
Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods 2020; 31:1-17. [PMID: 32972312 DOI: 10.1080/15376516.2020.1828521] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Jiamao Chen
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
13
|
Hussain Z, Thu HE, Haider M, Khan S, Sohail M, Hussain F, Khan FM, Farooq MA, Shuid AN. A review of imperative concerns against clinical translation of nanomaterials: Unwanted biological interactions of nanomaterials cause serious nanotoxicity. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Lin J, Jiang Y, Luo Y, Guo H, Huang C, Peng J, Cao Y. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122286. [PMID: 32086094 DOI: 10.1016/j.jhazmat.2020.122286] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Pulmonary surfactant or its components can function as barriers toward nanomaterials (NMs) entering pulmonary systems. However, since pulmonary surfactant mainly consists of lipids, it may be necessary to investigate the effects of co-exposure to NMs and pulmonary surfactant or its components on lipid metabolism and related signaling pathways. Recently we found that multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into lipid-laden foam cells via ER stress pathway. Here this study further investigated the impact of pulmonary surfactant component dipalmitoylphosphatidylcholine (DPPC) on this process. Up to 64 μg/mL hydroxylated or carboxylated MWCNTs induced lipid accumulation and IL-6 release in THP-1 macrophages, accompanying with increased oxidative stress and p-chop proteins (biomarker for ER stress). Incubation with 100 μg/mL DPPC led to MWCNT surface coating but did not significantly alter MWCNT internalization, lipid burden or IL-6 release. However, lipidomics indicated that DPPC altered lipid profliles in MWCNT-exposed cells. DPPC also led to a higher level of de novo lipogenesis regulator FASN in cells exposed to hydroxylated MWCNTs, as well as a higher level of p-chop and scavenger receptor MSR1 in cells exposed to carboxylated MWCNTs. Combined, DPPC did not significantly affect MWCNT-induced lipid accumulation but altered lipid components and ER stress in macrophages.
Collapse
Affiliation(s)
- Jinru Lin
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ying Jiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yingmei Luo
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing 400021, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
15
|
Mousseau F, Oikonomou EK, Vacher A, Airiau M, Mornet S, Berret JF. Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy. NANOSCALE ADVANCES 2020; 2:642-647. [PMID: 36133230 PMCID: PMC9416877 DOI: 10.1039/c9na00779b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 06/11/2023]
Abstract
When inhaled, nanoparticles (NPs) deposit in alveoli and transit through the pulmonary surfactant (PS), a biofluid made of proteins and phospholipid vesicles. They form a corona reflecting the PS-nanomaterial interaction. Since the corona determines directly the NPs' biological fate, the question of its nature and structure is central. Here, we report on the corona architecture formed after incubation of positive or negative silica particles with Curosurf®, a biomimetic pulmonary surfactant of porcine origin. Using optical, electron and cryo-electron microscopy (cryo-TEM), we determine the pulmonary surfactant corona structure at different scales of observation. Contrary to common belief, the PS corona is not only constituted by phospholipid bilayers surrounding NPs but also by multiple hybrid structures derived from NP-vesicle interaction. Statistical analysis of cryo-TEM images provides interesting highlights about the nature of the corona depending on the particle charge. The influence of Curosurf® pre- or post-treatment is also investigated and demonstrates the need for protocol standardization.
Collapse
Affiliation(s)
- Fanny Mousseau
- Laboratoire Matière et Systèmes Complexes 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex France
| | - Evdokia K Oikonomou
- Laboratoire Matière et Systèmes Complexes 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex France
| | - Annie Vacher
- Solvay Research & Innovation Center Paris 52 Rue de La Haie Coq 93306 Aubervilliers Cedex France
| | - Marc Airiau
- Solvay Research & Innovation Center Paris 52 Rue de La Haie Coq 93306 Aubervilliers Cedex France
| | - Stéphane Mornet
- Institut de Chimie de La Matière Condensée de Bordeaux, UPR CNRS 9048, Université Bordeaux 1 87 Avenue Du Docteur A. Schweitzer Pessac Cedex F-33608 France
| | - Jean-François Berret
- Laboratoire Matière et Systèmes Complexes 10 Rue Alice Domon et Léonie Duquet 75205 Paris Cedex France
| |
Collapse
|
16
|
Li J, Yang H, Sha S, Li J, Zhou Z, Cao Y. Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: Influence of cell types and pulmonary surfactant component DPPC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109770. [PMID: 31606643 DOI: 10.1016/j.ecoenv.2019.109770] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Cultured human lung epithelial cells, particularly A549 cells, are commonly used as the in vitro model to evaluate the inhalational toxicity of nanoparticles (NPs). However, A549 cells are cancer cells that might not reflect the response of normal tissues to NP exposure. In addition, the possible influence of pulmonary surfactant also should be considered. This study used silica NPs as model NPs, and evaluated the toxicity of silica NPs to both 16HBE human bronchial epithelial cells and A549 adenocarcinomic cells, with or without the presence of pulmonary surfactant component dipalmitoyl phosphatidylcholine (DPPC). We found that silica NPs induced cytotoxicity at the concentration of 128 μg/mL in 16HBE cells but not A5490 cells, and the cytotoxicity of silica NPs to 16HBE cells was inhibited by DPPC. Intracellular reactive oxygen species (ROS) was only induced in 16HBE cells, accompanying with decreased thiol levels. Moreover, 16HBE cells internalized more silica NPs compared with A549 cells, and the internalization was reduced with the presence of DPPC in both types of cells. The retention of ABC transporter substrate Calcein was only significantly induced by silica NPs at high concentrations in 16HBE cells, and was partially reduced due to the presence of DPPC. In addition, ABC transporter inhibitor MK571 increased the toxicity of silica NPs to both types of cells, with 16HBE cells being more sensitive. Our data revealed that the cell types and pulmonary surfactant components could influence the toxicological consequences of silica NPs to human lung cells. Therefore, it is recommended that in vitro studies should carefully select suitable models to evaluate the inhalational toxicity of NPs.
Collapse
Affiliation(s)
- Jing Li
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Haiyin Yang
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Suinan Sha
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiaquan Li
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
17
|
The Impact of Lipid Corona on Rifampicin Intramacrophagic Transport Using Inhaled Solid Lipid Nanoparticles Surface-Decorated with a Mannosylated Surfactant. Pharmaceutics 2019; 11:pharmaceutics11100508. [PMID: 31581554 PMCID: PMC6835947 DOI: 10.3390/pharmaceutics11100508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The mimicking of physiological conditions is crucial for the success of accurate in vitro studies. For inhaled nanoparticles, which are designed for being deposited on alveolar epithelium and taken up by macrophages, it is relevant to investigate the interactions with pulmonary surfactant lining alveoli. As a matter of fact, the formation of a lipid corona layer around the nanoparticles could modulate the cell internalization and the fate of the transported drugs. Based on this concept, the present research focused on the interactions between pulmonary surfactant and Solid Lipid Nanoparticle assemblies (SLNas), loaded with rifampicin, an anti-tuberculosis drug. SLNas were functionalized with a synthesized mannosylated surfactant, both alone and in a blend with sodium taurocholate, to achieve an active targeting to mannose receptors present on alveolar macrophages (AM). Physico-chemical properties of the mannosylated SLNas satisfied the requirements relative to suitable respirability, drug payload, and AM active targeting. Our studies have shown that a lipid corona is formed around SLNas in the presence of Curosurf, a commercial substitute of the natural pulmonary surfactant. The lipid corona promoted an additional resistance to the drug diffusion for SLNas functionalized with the mannosylated surfactant and this improved drug retention within SLNas before AM phagocytosis takes place. Moreover, lipid corona formation did not modify the role of nanoparticle mannosylation towards the specific receptors on MH-S cell membrane.
Collapse
|
18
|
Garcia-Mouton C, Hidalgo A, Cruz A, Pérez-Gil J. The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles. Eur J Pharm Biopharm 2019; 144:230-243. [PMID: 31560956 DOI: 10.1016/j.ejpb.2019.09.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
Abstract
The rapid development of nanotechnology is opening a huge world of promising possibilities in healthcare, but this is also increasing the necessity to study the potential risk of nanoparticles on public health and the environment. Since the main route for airborne particles to enter into our organism is through the lungs, it has become essential to prove that the nanoparticles generated by human activities do not compromise the respiratory function. This review explains the key role of pulmonary surfactant to sustain the normal function of breathing, as well as the stability and immunity of lungs. Particular emphasis is made on the importance of analysing the features of nanoparticles, defining their interactions with surfactant and unravelling the mutual effects. The implication of the nanoparticle-surfactant interaction on the function and fate of both structures is described, as well as the main in vitro methodologies used to evaluate this interaction. Finally, the incorporation of pulmonary surfactant in appropriate in vitro models is used in order to obtain an extensive understanding of how nanoparticles may act in the context of the lung. The main goal of this review is to offer a general view on inhaled nanoparticles and their effects on the structure and function of lungs derived from their interaction with the pulmonary surfactant system.
Collapse
Affiliation(s)
- Cristina Garcia-Mouton
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Alberto Hidalgo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Zellnitz S, Roblegg E, Pinto J, Fröhlich E. Delivery of Dry Powders to the Lungs: Influence of Particle Attributes from a Biological and Technological Point of View. Curr Drug Deliv 2019; 16:180-194. [PMID: 30360739 DOI: 10.2174/1567201815666181024143249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Dry powder inhalers are medical devices used to deliver powder formulations of active pharmaceutical ingredients via oral inhalation to the lungs. Drug particles, from a biological perspective, should reach the targeted site, dissolve and permeate through the epithelial cell layer in order to deliver a therapeutic effect. However, drug particle attributes that lead to a biological activity are not always consistent with the technical requirements necessary for formulation design. For example, small cohesive drug particles may interact with neighbouring particles, resulting in large aggregates or even agglomerates that show poor flowability, solubility and permeability. To circumvent these hurdles, most dry powder inhalers currently on the market are carrier-based formulations. These formulations comprise drug particles, which are blended with larger carrier particles that need to detach again from the carrier during inhalation. Apart from blending process parameters, inhaler type used and patient's inspiratory force, drug detachment strongly depends on the drug and carrier particle characteristics such as size, shape, solid-state and morphology as well as their interdependency. This review discusses critical particle characteristics. We consider size of the drug (1-5 µm in order to reach the lung), solid-state (crystalline to guarantee stability versus amorphous to improve dissolution), shape (spherical drug particles to avoid macrophage clearance) and surface morphology of the carrier (regular shaped smooth or nano-rough carrier surfaces for improved drug detachment.) that need to be considered in dry powder inhaler development taking into account the lung as biological barrier.
Collapse
Affiliation(s)
- Sarah Zellnitz
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Joana Pinto
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria.,Center for Medical Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Kong T, Zhang SH, Zhang C, Zhang JL, Yang F, Wang GY, Yang ZJ, Bai DY, Zhang MY, Wang J, Zhang BH. Long-Term Effects of Unmodified 50 nm ZnO in Mice. Biol Trace Elem Res 2019; 189:478-489. [PMID: 30109551 DOI: 10.1007/s12011-018-1477-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Nanometer zinc oxide (nano-ZnO) is widely used in many kinds of fields. However, information about the toxicity and toxic mechanism of nano-ZnO is limited. The aims of this study were to investigate the long-term toxic effects of unmodified 50 nm ZnO administered by gavage in mice. After 90 days, hematological parameters, hepatic and renal functions, and oxidative and anti-oxidative status were measured. Pathological damages in livers, kidneys, and other tissues were also examined by hematoxylin and eosin (H&E) staining. The results showed that oral nano-ZnO exposure induced anemia and damages to liver and kidney, influenced the antioxidant system, and impacted functions of liver and kidney in mice after a 90-day exposure. The main cause for oxidative stress in vivo induced by nano-ZnO might be hydroxyl free radical. The lowest observed adverse effect level (LOAEL) was 40 mg/kg·bw, and the livers, kidneys, lungs, pancreas, and gastrointestinal tracts are the target organs.
Collapse
Affiliation(s)
- Tao Kong
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China.
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China.
| | - Shu-Hui Zhang
- Library of Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Cai Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Ji-Liang Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Fan Yang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Guo-Yong Wang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Zi-Jun Yang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Dong-Ying Bai
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Meng-Yu Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Bai-Hao Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| |
Collapse
|
21
|
Jia J, Yuan X, Peng X, Yan B. Cr(VI)/Pb 2+ are responsible for PM2.5-induced cytotoxicity in A549 cells while pulmonary surfactant alleviates such toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:152-158. [PMID: 30708226 DOI: 10.1016/j.ecoenv.2019.01.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 05/05/2023]
Abstract
The composition of PM2.5 is extremely complicated, making the causes of PM2.5-induced toxicity hard to understand. To identify the major toxic components of PM2.5 particles, we used reductionism approach, synthesized and investigated a model PM2.5 library containing 24 carbon nanoparticles with adsorbed pollutants including Cr(VI), Pb2+, As(III) and BaP either individually or in combinations. Our data showed that major physicochemical characteristics of model PM2.5 library members were similar to PM2.5 particles from Guangzhou city (PM2.5-GZ). Cytotoxicity of lung cells (A549) was increasing as the member of adsorbed pollutants at environment relevant concentrations. Using these model particles, we identified that co-existence of Cr(VI) and Pb2+ components contributed to the PM2.5-induced cytotoxicity in A549 cells. Besides, pulmonary surfactant reduced the PM2.5-induced cytotoxicity in A549 cells probably via enhancing cell autophagy. The findings from this study suggest that systematic investigation using model PM2.5 particle library helps identify key toxic pollutants in otherwise very complex PM2.5 particles and facilitate our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Xiaoru Yuan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaowu Peng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
22
|
Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther 2019; 198:189-205. [PMID: 30796927 DOI: 10.1016/j.pharmthera.2019.02.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Lung cancer is an umbrella term for a subset of heterogeneous diseases that are collectively responsible for the most cancer-related deaths worldwide. Despite the tremendous progress made in understanding lung tumour biology, advances in early diagnosis, multimodal therapy and deciphering molecular mechanisms of drug resistance, overall curative outcomes remain low, especially in metastatic disease. Nanotechnology, in particular nanoparticles (NPs), continue to progressively impact the way by which tumours are diagnosed and treated. The unique physicochemical properties of materials at the nanoscale grant access to a diverse molecular toolkit that can be manipulated for use in respiratory oncology. This realisation has resulted in several clinically approved NP formulations and many more in clinical trials. However, NPs are not a panacea and have yet to be utilised to maximal effect in lung cancer, and medicine in a wider context. This review serves to: describe the complexity of lung cancer, the current diagnostic and therapeutic environment, and highlight the recent advancements of nanotechnology based approaches in diagnosis and treatment of respiratory malignancies. Finally, a brief outlook on the future directions of nanomedicine is provided; presently the full potential of the field is yet to be realised. By gleaning lessons and integrating advancements from neighbouring disciplines, nanomedicine can be elevated to a position where the current barriers that stymie full clinical impact are lifted.
Collapse
|
23
|
Gupta R, Sharma D. Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperthermia 2019; 36:302-312. [DOI: 10.1080/02656736.2019.1565787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Mohali, Punjab, India
| |
Collapse
|
24
|
Guagliardo R, Pérez-Gil J, De Smedt S, Raemdonck K. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. J Control Release 2018; 291:116-126. [PMID: 30321577 DOI: 10.1016/j.jconrel.2018.10.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Pulmonary surfactant (PS) has been extensively studied because of its primary role in mammalian breathing. The deposition of this surface-active material at the alveolar air-water interface is essential to lower surface tension, thus avoiding alveolar collapse during expiration. In addition, PS is involved in host defense, facilitating the clearance of potentially harmful particulates. PS has a unique composition, including 92% of lipids and 8% of surfactant proteins (SPs) by mass. Although they constitute the minor fraction, SPs to a large extent orchestrate PS-related functions. PS contains four surfactant proteins (SPs) that can be structurally and functionally divided in two groups, i.e. the large hydrophilic SP-A and SP-D and the smaller hydrophobic SP-B and SP-C. The former belong to the family of collectins and are involved in opsonization processes, thus promoting uptake of pathogens and (nano)particles by phagocytic cell types. The latter SPs regulate interfacial surfactant adsorption dynamics, facilitating (phospho)lipid transfer and membrane fusion processes. In the context of pulmonary drug delivery, the exploitation of PS as a carrier to promote drug spreading along the alveolar interface is gaining interest. In addition, recent studies investigated the interaction of PS with drug-loaded nanoparticles (nanomedicines) following pulmonary administration, which strongly influences their biological fate, drug delivery efficiency and toxicological profile. Interestingly, the specific biophysical mode-of-action of the four SPs affect the drug delivery process of nanomedicines both on the extra-and intracellular level, modulating pulmonary distribution, cell targeting and intracellular delivery. This knowledge can be harnessed to exploit SPs for the design of unique and bio-inspired drug delivery strategies.
Collapse
Affiliation(s)
- Roberta Guagliardo
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
25
|
Kong T, Zhang SH, Zhang JL, Hao XQ, Yang F, Zhang C, Yang ZJ, Zhang MY, Wang J. Acute and Cumulative Effects of Unmodified 50-nm Nano-ZnO on Mice. Biol Trace Elem Res 2018; 185:124-134. [PMID: 29294227 DOI: 10.1007/s12011-017-1233-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
Abstract
Nanometer zinc oxide (nano-ZnO) is widely used in diverse industrial and agricultural fields. Due to the extensive contact humans have with these particles, it is crucial to understand the potential effects that nano-ZnO have on human health. Currently, information related to the toxicity and mechanisms of nano-ZnO is limited. The aim of the present study was to investigate acute and cumulative toxic effects of 50-nm unmodified ZnO in mice. This investigation will seek to establish median lethal dose (LD50), a cumulative coefficient, and target organs. The acute and cumulative toxicity was investigated by Karber's method and via a dose-increasing method, respectively. During the experiment, clinical signs, mortality, body weights, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. The LD50 was 5177-mg/kg·bw; the 95% confidence limits for the LD50 were 5116-5238-mg/kg·bw. It could be concluded that the liver, kidney, lung, and gastrointestinal tract were target organs for the 50-nm nano-ZnO acute oral treatment. The cumulative coefficient (K) was 1.9 which indicated that the cumulative toxicity was apparent. The results also indicated that the liver, kidney, lung, and pancrea were target organs for 50-nm nano-ZnO cumulative oral exposure and might be target organs for subchronic and chronic toxicity of oral administered 50-nm ZnO.
Collapse
Affiliation(s)
- Tao Kong
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China.
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China.
| | - Shu-Hui Zhang
- Library of Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Ji-Liang Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Xue-Qin Hao
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Fan Yang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Cai Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Zi-Jun Yang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
- Environmental and Animal Products Safety Laboratory of Key Discipline in University of Henan Province, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Meng-Yu Zhang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, Henan, 471023, People's Republic of China
| |
Collapse
|
26
|
Yang Y, Xu L, Dekkers S, Zhang LG, Cassee FR, Zuo YY. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8920-8929. [PMID: 30011188 DOI: 10.1021/acs.est.8b02976] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metal-based nanomaterials (MNMs) represent a large category of the engineered nanomaterials, and have been extensively used to enhance the electrical, optical, and magnetic properties of nanoenabled consumer products. Inhaled MNMs can penetrate deeply into the peripheral lung at which they first interact with the pulmonary surfactant (PS) lining of alveoli. Here we studied the biophysical inhibitory potential of representative MNMs on a modified natural PS, Infasurf, using a novel in vitro experimental methodology called the constrained drop surfactometry (CDS). It was found that the biophysical inhibitory potential of six MNMs on Infasurf ranks in the order CeO2 > ZnO > TiO2 > Ag > Fe3O4 > ZrO2-CeO2. This rank of in vitro biophysical inhibition is in general agreement with the in vitro and in vivo toxicity of these MNMs. Directly imaging the lateral structure and molecular conformation of the PS film using atomic force microscopy revealed that there exists a correlation between biophysical inhibition of the PS film by the MNMs and their aggregation state at the PS film. Taken together, our study suggests that the nano-bio interactions at the PS film are determined by multiple physicochemical properties of the MNMs, including not only well-studied properties such as their chemical composition and particle size, but also properties such as hydrophobicity, dissolution rate, and aggregation state at the PS film found here. Our study provides novel insight into the understanding of nanotoxicology and metallomics of MNMs.
Collapse
Affiliation(s)
- Yi Yang
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Lu Xu
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Susan Dekkers
- National Institute for Public Health and the Environment , 3720 BA , Bilthoven , The Netherlands
| | - Lijie Grace Zhang
- Departments of Mechanical and Aerospace Engineering, Biomedical Engineering, and Medicine , The George Washington University , Washington , D.C. 20052 , United States
| | - Flemming R Cassee
- National Institute for Public Health and the Environment , 3720 BA , Bilthoven , The Netherlands
- Institute of Risk Assessment Sciences , Utrecht University , 3508 TD , Utrecht , The Netherlands
| | - Yi Y Zuo
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- Department of Pediatrics, John A. Burns School of Medicine , University of Hawaii , Honolulu , Hawaii 96826 , United States
| |
Collapse
|
27
|
Bai X, Xu M, Liu S, Hu G. Computational Investigations of the Interaction between the Cell Membrane and Nanoparticles Coated with a Pulmonary Surfactant. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20368-20376. [PMID: 29808987 DOI: 10.1021/acsami.8b06764] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When inhaled nanoparticles (NPs) come into the deep lung, they develop a biomolecular corona by interacting with the pulmonary surfactant. The adsorption of the phospholipids and proteins gives a new biological identity to the NPs, which may alter their subsequent interactions with cells and other biological entities. Investigations of the interaction between the cell membrane and NPs coated with such a biomolecular corona are important in understanding the role of the biofluids on cellular uptake and estimating the dosing capacity and the nanotoxicology of NPs. In this paper, using dissipative particle dynamics, we investigate how the physicochemical properties of the coating pulmonary surfactant lipids and proteins affect the membrane response for inhaled NPs. We pinpoint several key factors in the endocytosis of lipid NPs, including the deformation of the coating lipids, coating lipid density, and ligand-receptor binding strength. Further studies reveal that the deformation of the coating lipids consumes energy but on the other hand promotes the coating ligands to bind with receptors more tightly. The coating lipid density controls the amount of the ligands as well as the hydrophobicity of the lipid NPs, thus affecting the endocytosis kinetics through the specific and nonspecific interactions. It is also found that the hydrophobic surfactant proteins associated with lipids can accelerate the endocytosis process of the NPs, but the endocytosis efficiency mainly depends on the density of the coating surfactant lipids. These findings can help understand how the pulmonary surfactant alters the biocompatibility of the inhaled NPs and provide some guidelines in designing an NP complex for efficient pulmonary drug delivery.
Collapse
Affiliation(s)
- Xuan Bai
- State Key Laboratory of Nonlinear Mechanics (LNM) , Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guoqing Hu
- State Key Laboratory of Nonlinear Mechanics (LNM) , Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
28
|
Bierkandt FS, Leibrock L, Wagener S, Laux P, Luch A. The impact of nanomaterial characteristics on inhalation toxicity. Toxicol Res (Camb) 2018; 7:321-346. [PMID: 30090585 PMCID: PMC6060709 DOI: 10.1039/c7tx00242d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/31/2018] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, nanotechnology has evolved into a success story, apparent from a steadily increasing number of scientific publications as well as a large number of applications based on engineered nanomaterials (ENMs). Its widespread uses suggest a high relevance for consumers, workers and the environment, hence justifying intensive investigations into ENM-related adverse effects as a prerequisite for nano-specific regulations. In particular, the inhalation of airborne ENMs, being assumed to represent the most hazardous type of human exposure to these kinds of particles, needs to be scrutinized. Due to an increased awareness of possible health effects, which have already been seen in the case of ultrafine particles (UFPs), research and regulatory measures have set in to identify and address toxic implications following their almost ubiquitous occurrence. Although ENM properties differ from those of the respective bulk materials, the available assessment protocols are often designed for the latter. Despite the large benefit ensuing from the application of nanotechnology, many issues related to ENM behavior and adverse effects are not fully understood or should be examined anew. The traditional hypothesis that ENMs exhibit different or additional hazards due to their "nano" size has been challenged in recent years and ENM categorization according to their properties and toxicity mechanisms has been proposed instead. This review summarizes the toxicological effects of inhaled ENMs identified to date, elucidating the modes of action which provoke different mechanisms in the respiratory tract and their resulting effects. By linking particular mechanisms and adverse effects to ENM properties, grouping of ENMs based on toxicity-related properties is supposed to facilitate toxicological risk assessment. As intensive studies are still required to identify these "ENM classes", the need for alternatives to animal studies is evident and advances in cell-based test systems for pulmonary research are presented here. We hope to encourage the ongoing discussion about ENM risks and to advocate the further development and practice of suitable testing and grouping methods.
Collapse
Affiliation(s)
- Frank S Bierkandt
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Lars Leibrock
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Sandra Wagener
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Peter Laux
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| | - Andreas Luch
- German Federal Institute of Risk Assessment (BfR) , Department of Chemical and Product Safety , Max-Dohrn-Strasse 8-10 , 10589 Berlin , Germany . ; Tel: (+49) 30 18412-4538
| |
Collapse
|
29
|
Human exposure to nanoparticles through trophic transfer and the biosafety concerns that nanoparticle-contaminated foods pose to consumers. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Lasat MM, Chung KF, Lead J, McGrath S, Owen RJ, Rocks S, Unrine J, Zhang J. Advancing the Understanding of Environmental Transformations, Bioavailability and Effects of Nanomaterials, an International US Environmental Protection Agency-UK Environmental Nanoscience Initiative Joint Program. ACTA ACUST UNITED AC 2018; 9:385-404. [PMID: 29910967 PMCID: PMC5998674 DOI: 10.4236/jep.2018.94025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nanotechnology has significant economic, health, and environmental benefits, including renewable energy and innovative environmental solutions. Manufactured nanoparticles have been incorporated into new materials and products because of their novel or enhanced properties. These very same properties also have prompted concerns about the potential environmental and human health hazard and risk posed by the manufactured nanomaterials. Appropriate risk management responses require the development of models capable of predicting the environmental and human health effects of the nanomaterials. Development of predictive models has been hampered by a lack of information concerning the environmental fate, behavior and effects of manufactured nanoparticles. The United Kingdom (UK) Environmental Nanoscience Initiative and the United States (US) Environmental Protection Agency have developed an international research program to enhance the knowledgebase and develop risk-predicting models for manufactured nanoparticles. Here we report selected highlights of the program as it sought to maximize the complementary strengths of the transatlantic scientific communities by funding three integrated US-UK consortia to investigate the transformation of these nanoparticles in terrestrial, aquatic, and atmospheric environment. Research results demonstrate there is a functional relationship between the physicochemical properties of environmentally transformed nanomaterials and their effects and that this relationship is amenable to modeling. In addition, the joint transatlantic program has allowed the leveraging of additional funding, promoting transboundary scientific collaboration.
Collapse
Affiliation(s)
- Mitch M Lasat
- Office of Research and Development, United States Environmental Protection Agency, Washington DC, USA
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jamie Lead
- Centre for Environmental Nanoscience and Risk, University of South Carolina, Columbia, USA.,University of Birmingham, Edgbaston, UK
| | | | | | - Sophie Rocks
- Institute for Resilient Futures, Cranfield University, Cranfield, UK
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, USA
| | - Junfeng Zhang
- Nicholas School of the Environment, Duke University, Durham, USA
| |
Collapse
|
31
|
Chen Y, Yang Y, Xu B, Wang S, Li B, Ma J, Gao J, Zuo YY, Liu S. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis. J Environ Sci (China) 2017; 62:100-114. [PMID: 29289281 DOI: 10.1016/j.jes.2017.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 05/05/2023]
Abstract
Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial.
Collapse
Affiliation(s)
- Yunan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Bolong Xu
- Beijing Key Laboratory of Bioprocess Beijing Advanced Innovation Center for Soft Matter Science, Engineering Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
He T, Long J, Li J, Liu L, Cao Y. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:233-240. [PMID: 29028602 DOI: 10.1016/j.etap.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/03/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Once inhaled, nanoparticles (NPs) will first interact with lung surfactant system, which may influence the colloidal aspects of NPs and consequently the toxic potential of NPs to pulmonary cells. In this study, we investigated the effects of dipalmitoyl phosphatidylcholine (DPPC), the major component in lung surfactant, on stability and toxicity of ZnO NPs. The presence of DPPC increased the UV-vis spectra, hydrodynamic size, Zeta potential and dissolution rate of ZnO NPs, which indicates that DPPC might interact with NPs and affect the colloidal stability of NPs. Exposure to ZnO NPs induced cytotoxicity associated with increased intracellular Zn ions but not superoxide in A549 cells. In A549 epithelium model, exposure to ZnO NPs induced cytotoxicity and decreased the release of interleukin 6 (IL-6) without a significant effect on epithelial permeability rate. Co-exposure of A549 cells or A549 epithelium model to DPPC and ZnO NPs induced a higher release of lactate dehydrogenase (LDH) and interleukin-6 (IL-6) compared with the exposure of ZnO NPs alone. We concluded that the presence of DPPC could influence the colloidal stability of ZnO NPs and increase the damage of NPs to membrane probably due to the increased positive surface charge.
Collapse
Affiliation(s)
- Tong He
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
33
|
Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact 2017; 278:40-47. [PMID: 28987328 DOI: 10.1016/j.cbi.2017.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/30/2023]
Abstract
The presence of food components may alter the colloidal aspects and toxicity of nanoparticles (NPs). In this study, the toxicity of ZnO NPs to Caco-2 and HepG2 cells was assessed, with the emphasis on the interactions between ZnO NPs and oleate (OA). The presence of OA increased UV-Vis spectra and hydrodynamic sizes, decreased Zeta potential, and markedly reduced the release of Zn ions from the dissolution of ZnO NPs, which combined indicated that OA could coat ZnO NPs and stabilize ZnO NPs. Exposure to ZnO NPs significantly induced cytotoxicity to Caco-2 and HepG2 cells, associated with increased intracellular Zn ions but not superoxide. When OA was added to the freshly prepared ZnO NP suspensions, the cytotoxicity, intracellular Zn ions and superoxide induced by ZnO NPs were not significantly affected. However, when ZnO NPs were aged for 24 h with the presence of OA, the cytotoxicity of ZnO NPs to Caco-2 and HepG2 cells was significantly reduced, associated with a reduction of intracellular Zn ions. The results from this study suggested that the presence of OA could increase colloidal stability of ZnO NPs and consequently reduce the toxicity of ZnO NPs after aging associated with reduced accumulation of intracellular Zn ions.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Leying Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
34
|
Hu Q, Bai X, Hu G, Zuo YY. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles. ACS NANO 2017; 11:6832-6842. [PMID: 28541666 DOI: 10.1021/acsnano.7b01873] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The growing risk of human exposure to airborne nanoparticles (NPs) causes a general concern on the biosafety of nanotechnology. Inhaled NPs can deposit in the deep lung at which they interact with the pulmonary surfactant (PS). Despite the increasing study of nano-bio interactions, detailed molecular mechanisms by which inhaled NPs interact with the natural PS system remain unclear. Using coarse-grained molecular dynamics simulation, we studied the interaction between NPs and the PS system in the alveolar fluid. It was found that regardless of different physicochemical properties, upon contacting the PS, both silver and polystyrene NPs are immediately coated with a biomolecular corona that consists of both lipids and proteins. Structure and molecular conformation of the PS corona depend on the hydrophobicity of the pristine NPs. Quantitative analysis revealed that lipid composition of the corona formed on different NPs is relatively conserved and is similar to that of the bulk phase PS. However, relative abundance of the surfactant-associated proteins, SP-A, SP-B, and SP-C, is notably affected by the hydrophobicity of the NP. The PS corona provides the NPs with a physicochemical barrier against the environment, equalizes the hydrophobicity of the pristine NPs, and may enhance biorecognition of the NPs. These modifications in physicochemical properties may play a crucial role in affecting the biological identity of the NPs and hence alter their subsequent interactions with cells and other biological entities. Our results suggest that all studies of inhalation nanotoxicology or NP-based pulmonary drug delivery should consider the influence of the PS corona.
Collapse
Affiliation(s)
- Qinglin Hu
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xuan Bai
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guoqing Hu
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii , Honolulu, Hawaii 96826, United States
| |
Collapse
|
35
|
Manshian BB, Jimenez J, Himmelreich U, Soenen SJ. Presence of an Immune System Increases Anti-Tumor Effect of Ag Nanoparticle Treated Mice. Adv Healthc Mater 2017; 6. [PMID: 27885834 DOI: 10.1002/adhm.201601099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Indexed: 12/22/2022]
Abstract
To date, most nanomedical studies rely on the use of immune-deficient mice in which the contribution of the immune system on the applied therapy is ignored. Here, the degradation of silver nanoparticles (Ag NPs) is exploited as a means to treat subcutaneous tumor models in mice. To investigate the impact of the immune system, the same tumor cell type (KLN 205 murine squamous cell carcinoma) is used in a xenograft model in NOD SCIDγ immune-deficient mice and as a syngeneic model in immune-competent DBA/2 mice. The Ag NPs are screened for their cytotoxicity on various cancer cell lines, indicating a concentration-dependent induction of oxidative stress, mitochondrial damage, and autophagy on all cell types tested. At subcytotoxic concentrations, prolonged cellular exposure to the Ag NPs results in toxicity due to NP degradation and the generation of toxic Ag+ ions. At subcytotoxic conditions, the NPs are found to cause inflammation in vitro. Similar results are obtained in the immune-competent mouse model, where clear inflammation is observed after treatment of the implanted tumors with Ag NPs. This inflammation leads to an ongoing antitumoral effect, which results in a significantly reduced tumor growth compared to Ag NP-treated tumors in an immune-deficient model.
Collapse
Affiliation(s)
- Bella B. Manshian
- Biomedical MRI Unit; KU Leuven; Department of Imaging and Pathology; Herestraat 49 B3000 Leuven Belgium
| | - Julio Jimenez
- Organ Systems; Department of Development and Regeneration; KU Leuven; Herestraat 49 B3000 Leuven Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit; KU Leuven; Department of Imaging and Pathology; Herestraat 49 B3000 Leuven Belgium
| | - Stefaan J. Soenen
- Biomedical MRI Unit; KU Leuven; Department of Imaging and Pathology; Herestraat 49 B3000 Leuven Belgium
| |
Collapse
|