1
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
2
|
Qi M, Wang X, Chen J, Liu Y, Liu Y, Jia J, Li L, Yue T, Gao L, Yan B, Zhao B, Xu M. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure. ACS NANO 2023; 17:8851-8865. [PMID: 37145866 DOI: 10.1021/acsnano.3c00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".
Collapse
Affiliation(s)
- Mengying Qi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang S, Kang X, Alenius H, Wong SH, Karisola P, El-Nezami H. Oral exposure to Ag or TiO 2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem Toxicol 2022; 169:113368. [PMID: 36087619 DOI: 10.1016/j.fct.2022.113368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| | - Xing Kang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Harri Alenius
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland; Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Piia Karisola
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China; Nutrition and Health, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
4
|
Pem B, Ćurlin M, Domazet Jurašin D, Vrček V, Barbir R, Micek V, Fratila RM, de la Fuente JM, Vinković Vrček I. Fate and transformation of silver nanoparticles in different biological conditions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:665-679. [PMID: 34327112 PMCID: PMC8275868 DOI: 10.3762/bjnano.12.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/23/2021] [Indexed: 05/05/2023]
Abstract
The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical transformation, dissolution, and degradation behaviour of different types of AgNPs were evaluated in systems modelled to represent biological environments relevant for oral administration, as well as in cell culture media and tissue compartments obtained from animal models. A multimethod approach was employed by implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV-vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions. They are able to degrade to an ionic form and again reconstruct to a nanoparticulate form, depending on the biological environment determined by specific body compartments. As suggested for other inorganic nanoparticles by other research groups, AgNPs fail to preserve their specific integrity in in vivo settings.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Marija Ćurlin
- University of Zagreb, School of Medicine, Šalata 12, 10 000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Valerije Vrček
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10 000 Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
Alafeef M, Moitra P, Dighe K, Pan D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat Protoc 2021; 16:3141-3162. [PMID: 33931780 DOI: 10.1038/s41596-021-00546-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) highlights the shortcomings of the current testing paradigm for viral disease diagnostics. Here, we report a stepwise protocol for an RNA-extraction-free nano-amplified colorimetric test for rapid and naked-eye molecular diagnosis of COVID-19. The test employs a unique dual-prong approach that integrates nucleic acid (NA) amplification and plasmonic sensing for point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a sample-to-assay response time of <1 h. The RNA-extraction-free nano-amplified colorimetric test utilizes plasmonic gold nanoparticles capped with antisense oligonucleotides (ASOs) as a colorimetric reporter to detect the amplified nucleic acid from the COVID-19 causative virus, SARS-CoV-2. The ASOs are specific for the SARS-CoV-2 N-gene, and binding of the ASOs to their target sequence results in the aggregation of the plasmonic gold nanoparticles. This highly specific agglomeration step leads to a change in the plasmonic response of the nanoparticles. Furthermore, when tested using clinical samples, the accuracy, sensitivity and specificity of the test were found to be >98.4%, >96.6% and 100%, respectively, with a detection limit of 10 copies/μL. The test can easily be adapted to diagnose other viral infections with a simple modification of the ASOs and primer sequences. It also provides a low-cost, rapid approach requiring minimal instrumentation that can be used as a screening tool for the diagnosis of COVID-19 at point-of-care settings in resource-poor situations. The colorimetric readout of the test can even be monitored using a handheld optical reader to obtain a quantitative response. Therefore, we anticipate that this protocol will be widely useful for the development of biosensors for the molecular diagnostics of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan.,Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Ketan Dighe
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA. .,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hedberg J, Eriksson M, Kesraoui A, Norén A, Odnevall Wallinder I. Transformation of silver nanoparticles released from skin cream and mouth spray in artificial sweat and saliva solutions: particle size, dissolution, and surface area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12968-12979. [PMID: 33097992 PMCID: PMC7921047 DOI: 10.1007/s11356-020-11241-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
The use of silver nanoparticles (Ag NPs) in consumer products can result in diffuse environmental dispersion of both NPs and ionic silver. This study investigated the transformation of Ag NPs present in two consumer products (skin cream, mouth spray) in terms of release of Ag NPs and ionic silver and changes in particle size in artificial sweat and saliva solutions. Large differences in silver release were observed with the smaller sized Ag NPs in mouth spray releasing more silver compared with the Ag NPs of the skin cream. Substantial particle agglomeration took place in both artificial sweat and saliva, forming large-sized agglomerates (> 100 nm). The amount of dissolved silver in solution after 24 h was less than 10% of the total amount of Ag NPs for both products. The results show that the Ag NPs of these consumer products will largely remain as NPs even after 24 h of skin or saliva contact. The use of normalization by geometric surface area of the particles was tested as a way to compare dissolution for Ag NPs of different characteristics, including pristine, bare, as well as PVP-capped Ag NPs. Normalization of silver dissolution with the geometric surface area was shown promising, but more extensive studies are required to unambiguously conclude whether it is a way forward to enable grouping of the dissolution behavior of Ag NPs released from consumer products.
Collapse
Affiliation(s)
- Jonas Hedberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden.
| | - Madeleine Eriksson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Amina Kesraoui
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Alexander Norén
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| |
Collapse
|
7
|
Ilić K, Hartl S, Galić E, Tetyczka C, Pem B, Barbir R, Milić M, Vinković Vrček I, Roblegg E, Pavičić I. Interaction of Differently Coated Silver Nanoparticles With Skin and Oral Mucosal Cells. J Pharm Sci 2021; 110:2250-2261. [PMID: 33539871 DOI: 10.1016/j.xphs.2021.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium. This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP. Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.
Collapse
Affiliation(s)
- Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Emerik Galić
- Faculty of Agrobiotechnical Sciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
8
|
Guo Y, Yang M, Xie RC, Compton RG. The oxygen reduction reaction at silver electrodes in high chloride media and the implications for silver nanoparticle toxicity. Chem Sci 2020; 12:397-406. [PMID: 34163604 PMCID: PMC8178706 DOI: 10.1039/d0sc04295a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022] Open
Abstract
The oxygen reduction reaction (ORR) at neutral pH in various aqueous chloride-containing solutions was investigated voltammetrically. In particular, the ORR was performed in high chloride containing aqueous media including authentic and synthetic seawater under oxygen saturated conditions and compared with that in aqueous nitrate and perchlorate media. The experimental voltammograms revealed a two-electron process forming hydrogen peroxide in low chloride media. In contrast, high concentration chloride solutions, including both synthetic and authentic seawater showed an increase of overpotential, accompanied by a splitting of the voltammetric peak into two one-electron features indicating the formation of superoxide in the first step and its release from the silver-solution interface. The implications for silver nanoparticle toxicology are discussed given the markedly greater toxicity of superoxide over peroxide and the high levels of chloride in biological media as well as in seawater.
Collapse
Affiliation(s)
- Yanjun Guo
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Minjun Yang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Ruo-Chen Xie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Richard G Compton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
9
|
Tang S, Huang Y, Zheng J. Salivary Excretion of Renal-Clearable Silver Nanoparticles. Angew Chem Int Ed Engl 2020; 59:19894-19898. [PMID: 32705738 PMCID: PMC8635779 DOI: 10.1002/anie.202008416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/18/2020] [Indexed: 11/05/2022]
Abstract
Salivary elimination is an important pathway for the body to excrete small molecules with digestive enzymes. However, very few engineered nanoparticles can be excreted through salivary glands, which often host bacteria or viruses during infection and involve in disease transmission. Herein, we report that renal clearable glutathione coated AgNPs (GS-AgNPs) can selectively accumulate in the submandibular salivary gland, followed by being excreted in its excretory duct. By conducting head-to-head comparison on in vivo transport and interactions of both GS-AgNPs and glutathione coated gold nanoparticles (GS-AuNPs) with the same sizes, we found that low-density GS-AgNPs showed much higher vascular permeability than GS-AuNPs and can rapidly penetrate into submandibular salivary glands, be efficiently taken up by striated and excretory duct cells, and eventually secreted into saliva.
Collapse
Affiliation(s)
- Shaoheng Tang
- Department of Chemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Yingyu Huang
- Department of Chemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Jie Zheng
- Department of Chemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| |
Collapse
|
10
|
Mohiti A, Eslami F, Dehestani MR. Does Hypertension affect Saliva Properties? JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2020; 21:190-194. [PMID: 33062812 PMCID: PMC7519935 DOI: 10.30476/dentjods.2019.80992.0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Statement of the Problem: Systemic conditions can affect the salivary glands and oral health. Hypertension induces xerostomia. Because the function of saliva is related to its quality
and quantity, therefore, any changes in saliva can lead to diminished quality of patient’s life. Purpose: The aim of this study was to determine the relationship between pH and viscosity of cumulative unstimulated saliva and hypertension in adults with sustained hypertension. Materials and Method: This cross sectional study took place on patients referred to oral medicine faculty of Shahid Sadoughi University of Medical Science. The patients’ blood pressure
was measured and the 135 patients fitting the inclusion criteria participated in the study. Their unstimulated cumulative saliva was collected by spitting method and
pH of the samples was measured by digital pH-meter set. The viscosity of the samples was measured by comparing the amount of saliva displacement in the thistle
tube with control fluids at mm/10 seconds. The data was analyzed by SPSS version 20 software and ANOVA tests and Tukey multiple comparison and their nonparametric equivalent (p≤ 0.005). Results: The results of this study showed that there was a significant relationship between pH and viscosity of unstimulated saliva of normotensive and borderline hypertensive patients
(p<.0001and p< .005, respectively) and between normotensive and stage I hypertensive patients (p<.0001, p<0.000). Therefore, hypertension had a
direct and significant relationship with saliva viscosity but a reverse relationship with saliva pH. Conclusion: Hypertension can reduce the pH and increase the salivary viscosity in hypertensive patients, which subsequently lead to changes in quality and quantity of secreted saliva
and influence the oral health and quality of the patient’s life.
Collapse
Affiliation(s)
- Azra Mohiti
- Dept. of Oral Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faeze Eslami
- Student of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
11
|
Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001246. [PMID: 32495486 DOI: 10.1002/smll.202001246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
12
|
|
13
|
Luo T, Shakya S, Mittal P, Ren X, Guo T, Bello MG, Wu L, Li H, Zhu W, Regmi B, Zhang J. Co-delivery of superfine nano-silver and solubilized sulfadiazine for enhanced antibacterial functions. Int J Pharm 2020; 584:119407. [DOI: 10.1016/j.ijpharm.2020.119407] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
|
14
|
Wang Y, Sun Y, Li M, Xiong L, Xu X, Ji N, Dai L, Sun Q. The formation of a protein corona and the interaction with α-amylase by chitin nanowhiskers in simulated saliva fluid. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in the agri-food sector, which can lead to their ingestion. Their interaction with food and their passage through the gastrointestinal tract can alter their properties and influence their fate upon ingestion. Therefore, this study aims at developing an in vitro method to follow the fate of AgNPs in the gastrointestinal tract. After incorporation of AgNPs into a standardized food matrix, a precolonic digestion is simulated and AgNPs are characterized by different techniques. The presence of food influences the AgNPs properties by forming a corona around nanoparticles. Even if the salivary step does not impact significantly the AgNPs, the pH decrease and the digestive enzymes induce the agglomeration of AgNPs during the gastric phase, while the addition of intestinal fluids disintegrates these clusters. AgNPs can thus reach the intestinal cells under nanometric form, although the presence of food and gastrointestinal fluids modifies their properties compared to pristine AgNPs. They can form a corona around the nanoparticles and act as colloidal stabilizer, which can impact the interaction of AgNPs with intestinal epithelium. This study demonstrates the importance of taking the fate of AgNPs in the gastrointestinal tract into account to perform an accurate risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Donika Kastrati
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
16
|
Li Y, Cummins E. Hazard characterization of silver nanoparticles for human exposure routes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:704-725. [PMID: 32167009 DOI: 10.1080/10934529.2020.1735852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used for a multitude of applications without full comprehensive knowledge regarding their safety. In particular, lack of data on hazard characterization may lead to uncertainties regarding potential human health risk. To provide the foundation for human health risk assessment of AgNPs, this study evaluates existing hazard characterization data, including reported pharmacokinetics, symptoms, and their corresponding dose-response relationships. Human equivalent relationships are also provided by extrapolation from animal dose-response relationships. From the data analyzed, it appears that AgNPs may persist for long periods (from days to years) in the human body. It was found that AgNP toxicity on traditional major targets of exogenous substances were generally underestimated. Some omissions of toxicity on sensitive systems in the AgNP toxicity assessment require attention, such as reprotoxicity and neurotoxicity. The necessity of the establishment of toxicity tests specifically for nanomaterials is highlighted. The scientific basis of a toxicity testing strategy is advised by this study, which paves the way for the monitoring and regulation of the ENP utilization in various industries.
Collapse
Affiliation(s)
- Yingzhu Li
- School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture & Food Science Centre, University College Dublin (UCD), National University of Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
Collapse
Affiliation(s)
- Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Hervé Robert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
18
|
Guzmán-Soto I, Omole M, Alarcon EI, McTiernan CD. Lipoic acid capped silver nanoparticles: a facile route to covalent protein capping and oxidative stability within biological systems. RSC Adv 2020; 10:32953-32958. [PMID: 35516471 PMCID: PMC9056624 DOI: 10.1039/d0ra07080g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Covalent attachment of human serum albumin protein to the surface of spherical lipoic acid capped silver nanoparticles results in the generation of stable nanoparticle–protein hybrids with well defined surface composition. Enhanced stability towards oxidation and in the presence of complex media with high ionic strength, holds promise towards the use of these conjugates as therapeutics in biomedical applications and sensing. Covalent attachment of human serum albumin protein to the surface of spherical lipoic acid capped silver nanoparticles results in the generation of stable nanoparticle–protein hybrids with well defined surface composition.![]()
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery
- University of Ottawa Heart Institute
- Ottawa
- Canada
| | - Mary Omole
- Division of Cardiac Surgery
- University of Ottawa Heart Institute
- Ottawa
- Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery
- University of Ottawa Heart Institute
- Ottawa
- Canada
- Department of Biochemistry, Microbiology, and Immunology
| | | |
Collapse
|
19
|
Cai J, Zang X, Wu Z, Liu J, Wang D. Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments. ENVIRONMENT INTERNATIONAL 2019; 133:105153. [PMID: 31520958 DOI: 10.1016/j.envint.2019.105153] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 05/28/2023]
Abstract
Although infant nanomaterial exposure is a worldwide concern, breastfeeding transfer of transition metal-oxide nanoparticles to as well as their toxicity to offspring are still unclear. Breastfeeding transmits nutrition and immunity from mothers to their offspring; it also provides a portal for maternal toxins to enter offspring. Thus, a toxicology assessment of both mothers and their offspring should be established to monitor nanomaterial exposure during lactation. Here, we determined the effects of the exposure route on the biodistribution, biopersistence, and toxicology of nanoparticles (titanium dioxide, zinc oxide, and zirconium dioxide) in both mouse dams and their offspring. Oral and airway exposure routes were tested using gavage and intranasal administration, respectively. Biodistribution in the main organs (breast, liver, spleen, lung, kidney, intestine, and brain) and biopersistence in the blood and milk were determined using inductively coupled plasma mass spectrometry. Hematology and histomorphology analyses were performed to determine the toxicology of the nanoparticles. A reduced offspring body weight was found with the reduced nanoparticle size. Furthermore, both oral and airway exposure increased the nanoparticle concentrations in the main tissues and milk. More nanoparticles were transferred into maternal tissues and milk via airway exposure than via oral exposure. During the transfer of the metal from the exposed nanoparticles to milk, the immune cell pathway played a more important role in the airway route than in the oral exposure route. Finally, maternal exposure via both the oral and airway routes reduced the body weight and survival rate of their breastfeeding offspring, which could possibly be attributed to the toxicity of nanoparticles to blood cells and organs. In conclusion, maternal exposure to nanoparticles led to a reduced body weight and survival rate in breastfed offspring, and nanoparticle exposure via the airway route led to a higher immune response and tissue injury than that via the oral exposure route. This study suggests that the use of products containing metal nanoparticles in breastfeeding mothers and their offspring should be reconsidered to maintain a safe breastfeeding system.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Zezhong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
20
|
Suherman AL, Rasche B, Godlewska B, Nicholas P, Herlihy S, Caiger N, Cowen PJ, Compton RG. Electrochemical Detection and Quantification of Lithium Ions in Authentic Human Saliva Using LiMn 2O 4-Modified Electrodes. ACS Sens 2019; 4:2497-2506. [PMID: 31429259 DOI: 10.1021/acssensors.9b01176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report an electrochemical sensor for the detection of lithium ions (Li+) in authentic human saliva at lithium manganese oxide (LiMn2O4)-modified glassy carbon electrodes (LMO-GCEs) and screen-printed electrodes (LMO-SPEs). The sensing strategy is based on an initial galvanostatic delithiation of LMO followed by linear stripping voltammetry (LSV) to detect the reinsertion of Li+ in the analyte. The process was investigated using powder X-ray diffraction and voltammetry. LSV measurements reveal a measurable lower limit of 50.0 μM in both LiClO4 aqueous solutions and synthetic saliva samples, demonstrating the applicability of the proposed analytical method down to low Li+ concentrations. Four different samples of authentic human saliva were then analyzed with the established sensing strategy using LMO-SPEs, showing good linearity over a concentration range up to 5.0 mM Li+ with high reproducibility (RSD < 7%) and applicability for routine monitoring purposes. The total time needed to analyze a sample is less than 3 min.
Collapse
Affiliation(s)
- Alex L. Suherman
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - Bertold Rasche
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - Beata Godlewska
- Department of Psychiatry, Oxford University, Oxford OX3 7JX, U.K
| | - Philip Nicholas
- SunSens Department, Sun Chemical Ltd., The Ridge Factory, Yate, Bristol BS37 7AA, U.K
| | - Shaun Herlihy
- SunSens Department, Sun Chemical Ltd., The Ridge Factory, Yate, Bristol BS37 7AA, U.K
| | - Nigel Caiger
- SunSens Department, Sun Chemical Ltd., The Ridge Factory, Yate, Bristol BS37 7AA, U.K
| | - Philip J. Cowen
- Department of Psychiatry, Oxford University, Oxford OX3 7JX, U.K
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
21
|
Shakya S, He Y, Ren X, Guo T, Maharjan A, Luo T, Wang T, Dhakhwa R, Regmi B, Li H, Gref R, Zhang J. Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metal-Organic Frameworks with GRGDS Functionalization to Promote Antibacterial and Wound Healing Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901065. [PMID: 31069948 DOI: 10.1002/smll.201901065] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/24/2019] [Indexed: 05/21/2023]
Abstract
The challenge of bacterial infection increases the risk of mortality and morbidity in acute and chronic wound healing. Silver nanoparticles (Ag NPs) are a promising new version of conventional antibacterial nanosystem to fight against the bacterial resistance in concern of the drug discovery void. However, there are several challenges in controlling the size and colloidal stability of Ag NPs, which readily aggregate or coalesce in both solid and aqueous state. In this study, a template-guided synthesis of ultrafine Ag NPs of around 2 nm using water-soluble and biocompatible γ-cyclodextrin metal-organic frameworks (CD-MOFs) is reported. The CD-MOF based synthetic strategy integrates AgNO3 reduction and Ag NPs immobilization in one pot achieving dual functions of reduced particle size and enhanced stability. Meanwhile, the synthesized Ag NPs are easily dispersible in aqueous media and exhibit effective bacterial inhibition. The surface modification of cross-linked CD-MOF particles with GRGDS peptide boosts the hemostatic effect that further enhances wound healing in synergy with the antibacterial effect. Hence, the strategy of ultrafine Ag NPs synthesis and immobilization in CD-MOFs together with GRGDS modification holds promising potential for the rational design of effective wound healing devices.
Collapse
Affiliation(s)
- Shailendra Shakya
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaping He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Abi Maharjan
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Luo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Tingting Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Research Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, 130061, China
| | - Ramesh Dhakhwa
- Kathmandu Medical College, Kathmandu University, Kathmandu, 44600, Nepal
| | - Balmukunda Regmi
- Maharajgung Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, 44606, Nepal
| | - Haiyan Li
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay, Université Paris-Sud, Université Paris-Saclay, UMR CNRS 8214, 91400, Orsay, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
David CA, Galceran J, Quattrini F, Puy J, Rey-Castro C. Dissolution and Phosphate-Induced Transformation of ZnO Nanoparticles in Synthetic Saliva Probed by AGNES without Previous Solid-Liquid Separation. Comparison with UF-ICP-MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3823-3831. [PMID: 30807690 DOI: 10.1021/acs.est.8b06531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The variation over time of free Zn2+ ion concentration in stirred dispersions of ZnO nanoparticles (ZnO NPs) prepared in synthetic saliva at pH 6.80 and 37 °C was followed in situ (without solid-liquid separation step) with the electroanalytical technique AGNES (Absence of Gradients and Nernstian Equilibrium Stripping). Under these conditions, ZnO NPs are chemically unstable due to their reaction with phosphates. The initial stage of transformation (around 5-10 h) involves the formation of a metastable solid (presumably ZnHPO4), which later evolves into the more stable hopeite phase. The overall decay rate of ZnO NPs is significantly reduced in comparison with phosphate-free background solutions of the same ionic strength and pH. The effective equilibrium solubilities of ZnO (0.29-0.47 mg·L-1), as well as conditional excess-ligand stability constants and fractional distributions of soluble Zn species, were determined in the absence and presence of organic components. The results were compared with the conventional ultrafiltration and inductively coupled plasma-mass spectrometry (UF-ICP-MS) methodology. AGNES proves to be advantageous in terms of speed, reproducibility, and access to speciation information.
Collapse
Affiliation(s)
- Calin A David
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Josep Galceran
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Federico Quattrini
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Jaume Puy
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| | - Carlos Rey-Castro
- Departament de Química , Universitat de Lleida, and AGROTECNIO , Rovira Roure 191 , 25198 Lleida , Spain
| |
Collapse
|
23
|
Sohal IS, Cho YK, O'Fallon KS, Gaines P, Demokritou P, Bello D. Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS NANO 2018; 12:8115-8128. [PMID: 30021067 DOI: 10.1021/acsnano.8b02978] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENM) are extensively used as food additives in numerous food products, and at present, little is known about the fate of ingested ENM (iENM) in the gastrointestinal (GI) environment. Here, we investigated the dissolution behavior, biodurability, and persistence of four major iENM (TiO2, SiO2, ZnO, and two Fe2O3) in individual simulated GI fluids (saliva, gastric, and intestinal) and a physiologically relevant digestion cascade (saliva → gastric → intestinal) in the fasted state over physiologically relevant time frames. TiO2 was found to be the most biodurable and persistent iENM in simulated GI fluids with a maximum of only 0.42% (4 μM Ti4+ ion release) dissolution in cascade digestion, followed by iron oxides, of which the rod-like morphology was more biodurable and persistent (0.7% maximum dissolution, 8.7 μM Fe3+) than the acicular one (2.27% maximum dissolution, 16.7 μM Fe3+) in the cascade digestion, respectively. SiO2 and ZnO were less biodurable than Fe2O3, with 65.5% (416 μM Si4+) and 100% (1718.1 μM Zn2+) dissolution in the gastric phase, respectively. In the intestinal phase, however, Si4+ ions reprecipitated, possibly due to sudden pH changes, while ZnO remained completely dissolved. These observations were also confirmed using high-resolution particle size and concentration, and electron microscopy, time-dependent analysis. In terms of decreasing biodurability and persistence in the simulated GI environment, the tested nanomaterials can be ranked as follows: TiO2 ≫ rod-like Fe2O3 > acicular Fe2O3 ≫ SiO2 > ZnO, which is in agreement with limited animal biokinetics data. Chronic uptake of these iENM as particles or ions by the GI tract, especially in the presence of a food matrix and authentic digestive media, and associated implications for human health warrants further investigation.
Collapse
Affiliation(s)
| | | | - Kevin S O'Fallon
- Development and Engineering Center , Natick Soldier Research , Natick , Massachusetts 01760 , United States
| | | | - Philip Demokritou
- Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| | - Dhimiter Bello
- Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| |
Collapse
|