1
|
Chitosan/Albumin Coating Factorial Optimization of Alginate/Dextran Sulfate Cores for Oral Delivery of Insulin. Mar Drugs 2023; 21:md21030179. [PMID: 36976228 PMCID: PMC10057083 DOI: 10.3390/md21030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The design of nanoparticle formulations composed of biopolymers, that govern the physicochemical properties of orally delivered insulin, relies on improving insulin stability and absorption through the intestinal mucosa while protecting it from harsh conditions in the gastrointestinal (GI) tract. Chitosan/polyethylene glycol (PEG) and albumin coating of alginate/dextran sulfate hydrogel cores are presented as a multilayer complex protecting insulin within the nanoparticle. This study aims to optimize a nanoparticle formulation by assessing the relationship between design parameters and experimental data using response surface methodology through a 3-factor 3-level optimization Box–Behnken design. While the selected independent variables were the concentrations of PEG, chitosan and albumin, the dependent variables were particle size, polydispersity index (PDI), zeta potential, and insulin release. Experimental results showed a nanoparticle size ranging from 313 to 585 nm, with PDI from 0.17 to 0.39 and zeta potential ranging from −29 to −44 mV. Insulin bioactivity was maintained in simulated GI media with over 45% cumulative release after 180 min in a simulated intestinal medium. Based on the experimental responses and according to the criteria of desirability on the experimental region’s constraints, solutions of 0.03% PEG, 0.047% chitosan and 1.20% albumin provide an optimum nanoparticle formulation for insulin oral delivery.
Collapse
|
2
|
Pinto S, Gaspar MM, Ascensão L, Faísca P, Reis CP, Pacheco R. Nanoformulation of Seaweed Eisenia bicyclis in Albumin Nanoparticles Targeting Cardiovascular Diseases: In Vitro and In Vivo Evaluation. Mar Drugs 2022; 20:608. [PMID: 36286431 PMCID: PMC9605150 DOI: 10.3390/md20100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation's impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs.
Collapse
Affiliation(s)
- Sofia Pinto
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Avenida Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologia, 1749-024 Lisboa, Portugal
- CBIOS-Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologia, 1749-024 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rita Pacheco
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Avenida Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9322282. [PMID: 34746313 PMCID: PMC8570876 DOI: 10.1155/2021/9322282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Abstract
Diabetes is still one of the main diseases worldwide due to its high incidence, prevalence and, unfortunately, very high mortality. Type 1 diabetes (and in some other types) is generally controlled by exogenous insulin. Several attempts of oral insulin administration to humans have been done so far. Some of them achieved interesting results, but it seems to exist a barrier to transpose these studies into clinical trials. A broad perspective about the oral insulin and approaches will be addressed. Representative (not all) examples of innovation are herein described, and they should represent a step forward to achieve the main goal: to orally deliver insulin and improve the life quality of millions of patients.
Collapse
|
5
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
6
|
Preliminary Assays towards Melanoma Cells Using Phototherapy with Gold-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10081536. [PMID: 32764377 PMCID: PMC7466595 DOI: 10.3390/nano10081536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Cancer like melanoma is a complex disease, for which standard therapies have significant adverse side effects that in most cases are ineffective and highly unspecific. Thus, a new paradigm has come with the need of achieving alternative (less invasive) and effective therapies. In this work, biocompatible gold nanoparticles (GNPs) coated with hyaluronic acid and oleic acid were prepared and characterized in terms of size, morphology and cytotoxicity in the presence of Saccharomyces cerevisiae, and two cell lines, the keratinocytes (healthy skin cells, HaCat) and the melanoma cells (B16F10). Results showed that these GNPs absorb within the near-infrared region (750–1400 nm), in the optical therapeutic window (from 650 to 1300 nm), in contrast to other commercial gold nanoparticles, which enables light to penetrate into deep skin layers. A laser emitting in this region was applied and its effect also analyzed. The coated GNPs showed a spherical morphology with a mean size of 297 nm without cytotoxic effects towards yeast and tested cell lines. Nevertheless, after laser irradiation, a reduction of 20% in B16F10 cell line viability was observed. In summary, this work appears to be a promising strategy for the treatment of non-metastatic melanoma or other superficial tumors.
Collapse
|
7
|
How Can Biomolecules Improve Mucoadhesion of Oral Insulin? A Comprehensive Insight using Ex-Vivo, In Silico, and In Vivo Models. Biomolecules 2020; 10:biom10050675. [PMID: 32349416 PMCID: PMC7277740 DOI: 10.3390/biom10050675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Currently, insulin can only be administered through the subcutaneous route. Due to the flaws associated with this route, it is of interest to orally deliver this drug. However, insulin delivered orally has several barriers to overcome as it is degraded by the stomach’s low pH, enzymatic content, and poor absorption in the gastrointestinal tract. Polymers with marine source like chitosan are commonly used in nanotechnology and drug delivery due to their biocompatibility and special features. This work focuses on the preparation and characterization of mucoadhesive insulin-loaded polymeric nanoparticles. Results showed a suitable mean size for oral administration (<600 nm by dynamic laser scattering), spherical shape, encapsulation efficiency (59.8%), and high recovery yield (80.6%). Circular dichroism spectroscopy demonstrated that protein retained its secondary structure after encapsulation. Moreover, the mucoadhesive potential of the nanoparticles was assessed in silico and the results, corroborated with ex-vivo experiments, showed that using chitosan strongly increases mucoadhesion. Besides, in vitro and in vivo safety assessment of the final formulation were performed, showing no toxicity. Lastly, the insulin-loaded nanoparticles were effective in reducing diabetic rats’ glycemia. Overall, the coating of insulin-loaded nanoparticles with chitosan represents a potentially safe and promising approach to protect insulin and enhance peroral delivery.
Collapse
|
8
|
Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320:125-141. [DOI: 10.1016/j.jconrel.2020.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/15/2022]
|
9
|
Santos-Rebelo A, Kumar P, Pillay V, Choonara YE, Eleutério C, Figueira M, Viana AS, Ascensão L, Molpeceres J, Rijo P, Correia I, Amaral J, Solá S, Rodrigues CMP, Gaspar MM, Reis CP. Development and Mechanistic Insight into the Enhanced Cytotoxic Potential of Parvifloron D Albumin Nanoparticles in EGFR-Overexpressing Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11111733. [PMID: 31694306 PMCID: PMC6895893 DOI: 10.3390/cancers11111733] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, with an extremely poor prognosis. The development of more effective therapies is thus imperative. Natural origin compounds isolated from Plectranthus genus, such as parvifloron D (PvD), have cytotoxic and antiproliferative activity against human tumour cells. However, PvD is a very low water-soluble compound, being nanotechnology a promising alternative strategy to solve this problem. Therefore, the aim of this study was to optimize a nanosystem for preferential delivery of PvD to pancreatic tumour cells. Albumin nanoparticles (BSA NPs) were produced through a desolvation method. Glucose cross-linking and bioactive functionalization profiles of BSA platform were elucidated and analysed using static lattice atomistic simulations in vacuum. Using the optimized methodology, PvD was encapsulated (yield higher than 80%) while NPs were characterized in terms of size (100–400 nm) and morphology. Importantly, to achieve a preferential targeting to pancreatic cancer cells, erlotinib and cetuximab were attached to the PvD-loaded nanoparticle surface, and their antiproliferative effects were evaluated in BxPC3 and Panc-1 cell lines. Erlotinib conjugated NPs presented the highest antiproliferative effect toward pancreatic tumour cells. Accordingly, cell cycle analysis of the BxPC3 cell line showed marked accumulation of tumour cells in G1-phase and cell cycle arrest promoted by NPs. As a result, erlotinib conjugated PvD-loaded BSA NPs must be considered a suitable and promising carrier to deliver PvD at the tumour site, improving the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ana Santos-Rebelo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.S.-R.); (P.R.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2 km 33,600 Campus Universitario, 28871 Alcalá de Henares, Spain;
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutics Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (P.K.); (V.P.); (Y.E.C.)
| | - Carla Eleutério
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
| | - Mariana Figueira
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
| | - Ana S. Viana
- CQB, CQE, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal;
| | - Lia Ascensão
- CESAM, Universidade de Lisboa, Faculdade de Ciências, Campo Grande 1749-016 Lisboa, Portugal;
| | - Jesús Molpeceres
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2 km 33,600 Campus Universitario, 28871 Alcalá de Henares, Spain;
| | - Patrícia Rijo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.S.-R.); (P.R.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Departamento de Engenharia Química, Universidade de Lisboa,1049-001 Lisboa, Portugal;
| | - Joana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
| | - Catarina Pinto Reis
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (C.E.); (M.F.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.A.); (S.S.); (C.M.P.R.); (M.M.G.)
- IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217-946-400; Fax: +351-217-946-470
| |
Collapse
|
10
|
Abstract
This industry update covers March of 2019 and describes the most representative examples of research mainly focused on cancer, diabetes, cholesterol-lowering drugs, Parkinson’s disease, ischemia and regeneration of heart muscle. A new method for designing encapsulation process and a new in vitro model of oral cavity were also described. In this update, there was a clear positive approval tendency for several companies. Those companies offered innovative therapeutic candidates or in some cases extension of indications. Some patents related to therapeutic fields like lung cancer, diabetes, scleroderma, multiple sclerosis and hypogonadism were also published during this month. Information was sourced from websites, pharma press releases, regulatory and patent agencies, and available scientific literature.
Collapse
|
11
|
Phytosomes with Persimmon ( Diospyros kaki L.) Extract: Preparation and Preliminary Demonstration of In Vivo Tolerability. Pharmaceutics 2019; 11:pharmaceutics11060296. [PMID: 31234548 PMCID: PMC6630258 DOI: 10.3390/pharmaceutics11060296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
Persimmon (Diospyros kaki L.), a fruit rich in phenolic compounds (PCs), has been considered effective in mitigating oxidative damage induced by an excess of reactive oxygen species. Due to large molecular weight and intrinsic instability in some physiological fluids, PCs’ passage through biological membranes is very limited. Carriers like phytosomes are promising systems to optimize oral absorption of encapsulated extracts. This work prepared and fully characterized phytosomes containing bioactive phenolic extracts from persimmon in terms of size, surface charge, encapsulation efficiency and stability over six months. These phytosomes were orally dosed to Wistar rats during a 15-day period. Afterwards, haematological and biochemical analyses were performed. Monodisperse phytosomes were successfully prepared, with size less than 300nm (PI < 0.3) and high encapsulation efficiency (97.4%) of PCs. In contrast to free extract, extract-loaded phytosomes had higher antioxidant activity after 6 months storage. Oral administration of extract-loaded phytosomes and free extract did not lead to lipidic profile changes and were within referenced normal ranges, as well as glycaemia levels and urine parameters. The results highlighted the potential of persimmon PCs as food supplements or pharmacological tools, suggesting a promising and safe phytosomal formulation containing bioactive agents of persimmon that could lead to health benefits.
Collapse
|
12
|
Qosimah D, Aryani DE, Beltran MAG, Aulanni’am A. Diabetes sepsis on Wistar rat strain ( Rattus norvegicus) induced by streptozotocin and bacteria Staphylococcus aureus. Vet World 2019; 12:849-854. [PMID: 31440004 PMCID: PMC6661491 DOI: 10.14202/vetworld.2019.849-854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND AIM Sepsis is characterized by loss of control of the inflammatory response, which can be triggered by various microorganisms and toxic secretions. The mortality rate increases due to impaired endothelial function caused dysfunctional organ systems. Diabetes is closely related to sepsis. The study aimed to determine the method of using animal models of sepsis diabetes through a combination of streptozotocin (STZ) and Staphylococcus aureus infection based on biological marker parameters. MATERIALS AND METHODS A total of 30 male Wistar rats of 2.5-3 months old weighing approximately 150-250 g body weight (BW) divided into six treatment groups with five replications per group were used in the study. Treatment A was negative control (healthy rats) and Treatment B was the positive control (with diabetes) where rats were given STZ dose at 45 mg/kg BW on day 8 intraperitoneally (IP). The blood glucose was measured on day 10, Treatment C was a positive control (bacteria), rats inoculated with S. aureus with a concentration of 108 CFU/mL on day 8 given IP and observed sepsis conditions on day 10th. Treatment group (D, E, and F): Rats given STZ dose at 45 mg/kg BW on day 8th by IP and measured blood glucose on day 10th, then inoculated with S. aureus with different concentrations of 105 CFU/mL, 106 CFU/mL, and 107 CFU/mL on the 10th day, respectively, and were later observed the condition of sepsis on day 12th. Data on diabetes bacteremia were quantitative used blood glucose levels, the bacterial count, and C-reactive protein (CRP) and were analyzed using the one-way analysis of variance test with a confidence level of 95%. Physical examination (temperature and respiration) is qualitative. RESULTS Physical examination showed that all treatments had a normal temperature, an increased pulse in Groups D, E, and F and a decrease in respiratory rate in the treatment of E and F, the bacteria found in the vital organs in all groups, and CRP levels were not significantly different at all. CONCLUSION Animal model of diabetes sepsis can be observed through a combination of pancreas damage, and respiration, the bacteria in the vital organs.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Laboratory of Microbiology and Immunology, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| | - Dhita Evi Aryani
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| | - Ma. Asuncion Guiang Beltran
- Department of Microbiology and Public Health, College of Veterinary Medicine, Tarlac Agricultural University, Camiling, Tarlac, Philippines
| | - Aulanni’am Aulanni’am
- Laboratory of Biochemical, Faculty of Veterinary Medicine, Brawijaya University, Indonesia
| |
Collapse
|
13
|
Combination of hyaluronic acid and PLGA particles as hybrid systems for viscosupplementation in osteoarthritis. Int J Pharm 2019; 559:13-22. [DOI: 10.1016/j.ijpharm.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
14
|
Roque L, Alopaeus J, Reis C, Rijo P, Molpeceres J, Hagesaether E, Tho I, Reis C. Mucoadhesive assessment of different antifungal nanoformulations. BIOINSPIRATION & BIOMIMETICS 2018; 13:055001. [PMID: 30024385 DOI: 10.1088/1748-3190/aad488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral candidiasis is an important opportunistic fungal infection and polyenes and azoles are still the most used antifungal agents. However, the oral absorption resulting from most available treatments is generally poor and, consequently, a very high frequency of administrations of antifungal agents is strongly required. Therefore, the major challenge is to improve the retention of the antifungal agents in buccal mucosa, and the encapsulation into mucoadhesive systems may be considered as a possible strategy to achieve this objective. Three types of mucoadhesive polymeric nanoparticles (polylactic acid (PLA), polylactic-co-glycolic acid (PLGA) and alginate) were prepared using nystatin as model drug. The drug-loaded nanoparticles were then included in toothpaste, oral gel and oral films, respectively. The results demonstrated that the loaded nanoparticles were successfully produced, presenting a mean size between 300-900 nm and with a negative surface charge. Also, the determination of the encapsulation efficiency of all nanoparticles showed values above 70%. In terms of the in vitro mucoadhesion, the best formulation was the oral film loaded with the PLGA nanoparticles followed by the oral gel with PLA nanoparticles and thirdly the toothpaste with alginate nanoparticles. This was confirmed in an in vitro rinsing model with mucus producing HT29-MTX cells, where the percentage of nystatin retained to the cells after 40 min of simulated saliva flow was between 10-27% when formulations were used and only 4% for free nystatin. Further studies will include in vivo testing using animal models.
Collapse
Affiliation(s)
- L Roque
- CBiOS-Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal. Faculty of Pharmacy, Department of Biomedical Sciences, University of Alcalá, Ctra. Universidad Complutense, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
An emerging integration between ionic liquids and nanotechnology: general uses and future prospects in drug delivery. Ther Deliv 2018; 8:461-473. [PMID: 28530146 DOI: 10.4155/tde-2017-0002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need to develop drug-delivery systems that overcome drawbacks such as poor drug solubility/loading/release, systemic side effects and limited stability. Ionic liquids (ILs) offer many advantages and their tailoring represents a valuable tuning tool. Nano-based systems are also prized materials that prevent drug degradation, enhance their transport/distribution and extend their release. Consequently, structures containing ILs and nanoparticles (NPs) have been developed to attain synergistic effects. This overview on the properties of ILs, NPs and of their combined structures, reveals the recent advances in these areas through a review of pertinent literature. The IL-NP structures present enhanced properties and the subsequent performance upgrade proves to be useful in drug delivery, although much is yet to be done.
Collapse
|
16
|
Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol Adv 2015; 33:1342-54. [PMID: 25728065 DOI: 10.1016/j.biotechadv.2015.02.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a high prevalence and one of the most severe and lethal diseases in the world. Insulin is commonly used to treat diabetes in order to give patients a better life condition. However, due to bioavailability problems, the most common route of insulin administration is the subcutaneous route, which may present patients compliance problems to treatment. The oral administration is thus considered the most convenient alternative to deliver insulin, but it faces important challenges. The low stability of insulin in the gastrointestinal tract and low intestinal permeation, are problems to overcome. Therefore, the encapsulation of insulin into polymer-based nanoparticles is presented as a good strategy to improve insulin oral bioavailability. In the last years, different strategies and polymers have been used to encapsulate insulin and deliver it orally. Polymers with distinct properties from natural or synthetic sources have been used to achieve this aim, and among them may be found chitosan, dextran, alginate, poly(γ-glutamic acid), hyaluronic acid, poly(lactic acid), poly(lactide-co-glycolic acid), polycaprolactone (PCL), acrylic polymers and polyallylamine. Promising studies have been developed and positive results were obtained, but there is not a polymeric-based nanoparticle system to deliver insulin orally available in the market yet. There is also a lack of long term toxicity studies about the safety of the developed carriers. Thus, the aims of this review are first to provide a deep understanding on the oral delivery of insulin and the possible routes for its uptake, and then to overview the evolution of this field in the last years of research of insulin-loaded polymer-based nanoparticles in the academic and industrial fields. Toxicity concerns of the discussed nanocarriers are also addressed.
Collapse
Affiliation(s)
- Pedro Fonte
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Francisca Araújo
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; ICBAS-Instituto Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Cátia Silva
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal
| | - Carla Pereira
- INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Salette Reis
- REQUINTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra PRD, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| |
Collapse
|
17
|
Araújo F, Shrestha N, Granja PL, Hirvonen J, Santos HA, Sarmento B. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opin Drug Metab Toxicol 2014; 11:381-93. [PMID: 25495133 DOI: 10.1517/17425255.2015.992781] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The popularity of nanotechnology is increasing and revolutionizing extensively the drug delivery field. Nanoparticles, as carriers for oral delivery of drugs, have been claimed as the perfect candidates to overcome the poor bioavailability of most of the drugs by improving their solubility and/or permeability across biological barriers. However, this is still a promise to be fulfilled. AREAS COVERED In this review, several nanosystems used as oral drug carriers are described along with their toxicological profiles. A number of nanoparticles based on different types of materials such as polymers, lipids, silica, silicon, carbon and metals are reviewed. Both in vitro and in vivo-based toxicological studies are discussed in this paper. EXPERT OPINION Toxicological concerns have been raised in the past few years regarding the safety of the developed nanosystems. Assuming that most of the materials used are biocompatible and biodegradable, the toxicity caused by them when formulated into nanoparticles is usually neglected by the scientific community, existing only a few number of studies that approach the toxicity of the nanosystems. This is particularly important, because the materials that composed of the nanoparticles as well as their features such as size, charge and surface properties, will influence their pharmacokinetics after oral administration.
Collapse
Affiliation(s)
- Francisca Araújo
- Universidade do Porto, INEB - Instituto de Engenharia Biomédica, Biocarrier Group , Rua do Campo Alegre, 823, 4150-180 Porto , Portugal
| | | | | | | | | | | |
Collapse
|
18
|
Ramesan RM, Sharma CP. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev Med Devices 2014; 6:665-76. [DOI: 10.1586/erd.09.43] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Abstract
Oral delivery of insulin may significantly improve the quality of life of diabetes patients who routinely receive insulin by the subcutaneous route. In fact, compared with this administration route, oral delivery of insulin in diabetes treatment offers many advantages: higher patient compliance, rapid hepatic insulinization, and avoidance of peripheral hyperinsulinemia and other adverse effects such as possible hypoglycemia and weight gain. However, the oral delivery of insulin remains a challenge because its oral absorption is limited. The mainbarriers faced by insulin in the gastrointestinal tract are degradation by proteolytic enzymes and lack of transport across the intestinal epithelium. Several strategies to deliver insulin orally have been proposed, but without much clinical or commercial success. Protein encapsulation into nanoparticles is regarded as a promising alternative to administer insulin orally because they have the ability to promote insulin paracellular or transcellular transport across the intestinal mucosa. In this review, different delivery systems intended to increase the oral bioavailability of insulin will be discussed, with a special focus on nanoparticulate carrier systems, as well as the efforts that pharmaceutical companies are making to bring to the market the first oral delivery system of insulin. The toxicological and safety data of delivery systems, the clinical value and progress of oral insulin delivery, and the future prospects in this research field will be also scrutinized.
Collapse
Affiliation(s)
- Pedro Fonte
- Centro de Investigação em Ciências da Saúde (CICS), Instituto Superior de Ciências da Saúde—Norte, CESPU, Gandra, Portugal
- REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Francisca Araújo
- Centro de Investigação em Ciências da Saúde (CICS), Instituto Superior de Ciências da Saúde—Norte, CESPU, Gandra, Portugal
| | - Salette Reis
- REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Bruno Sarmento
- Centro de Investigação em Ciências da Saúde (CICS), Instituto Superior de Ciências da Saúde—Norte, CESPU, Gandra, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- INEB—Institute for Biomedical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reis CP, Neufeld R, Veiga F, Figueiredo IV, Jones J, Soares AF, Nunes P, Damgé C, Carvalho RA. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by13C and2H isotopomer analysis. J Microencapsul 2011; 29:167-76. [DOI: 10.3109/02652048.2011.638992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Katsnelson BA, Degtyareva TD, Minigalieva II, Privalova LI, Kuzmin SV, Yeremenko OS, Kireyeva EP, Sutunkova MP, Valamina II, Khodos MY, Kozitsina AN, Shur VY, Vazhenin VA, Potapov AP, Morozova MV. Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int J Toxicol 2011; 30:59-68. [PMID: 21398218 DOI: 10.1177/1091581810385149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aqueous suspensions of 10 nm, 50 nm, or 1 μm Fe(3)O(4) particles were injected intraperitoneally (ip) to rats at a dose of 500 mg/kg in 4 mL of sterile deionized water 3 times a week for 5 weeks. Following exposure, functional and biochemical indices and histopathological examinations of spleen and liver tissues of exposed rats were evaluated for signs of toxicity. The iron content of the blood was measured photometrically, and that of the liver and the spleen by atomic adsorption spectroscopy (AAS) and electron paramagnetic resonance (EPR) methods. It was found that, given equal mass doses, Fe(3)O(4) nanoparticles possess considerably higher systemic toxicity than microparticles, but within the nanometric range the relationship between particle size and resorptive toxicity is intricate and nonunique. The latter fact may be attributed to differences in different nanoparticles' toxicokinetics, which are controlled by both more or less substantial direct penetration of nanoparticles through biological barriers and their unequal solubility.
Collapse
Affiliation(s)
- Boris A Katsnelson
- Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|