1
|
Guo W, Na M, Liu S, Li K, Du H, Zhang J, Na R. Rumen-Degradable Starch Improves Rumen Fermentation, Function, and Growth Performance by Altering Bacteria and Its Metabolome in Sheep Fed Alfalfa Hay or Silage. Animals (Basel) 2024; 15:34. [PMID: 39794977 DOI: 10.3390/ani15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment. The four treatments were a combination of two forage types (alfalfa hay; AH vs. alfalfa silage; AS) and two rumen-degradable starch levels (low RDS; LR vs. high RDS; HR) with a 15 d adaptation and 60 d experimental period. The rumen content and rumen epithelium samples were collected after slaughter. Feeding AS increased the rumen isobutyrate, valerate, ammonia-N (NH3-N) concentration, urase activity, and papillae height (p < 0.05) and reduced the feed to gain (F:G), rumen bacterial protein (BCP), rumen lactic acid concentration, and papillae width (p < 0.05) of sheep. Increased RDS in the diet improved the daily matter intake, average daily gain, and rumen weight, reduced the F:G, and enhanced the rumen nitrogen capture rate by decreasing total amino acids and the NH3-N concentration to increase BCP, aquaporins 3 gene, and protein expression. The rumen microbiota also changed as the HR diet reduced the Chao index (p < 0.05). The metabolomics analysis showed that feeding AS upregulated the rumen tryptophan metabolism and steroid hormone biosynthesis, while the purine metabolism, linoleic acid metabolism, and amino acid biosynthesis were downregulated. Furthermore, increased RDS in the diet upregulated rumen lysine degradation and sphingolipid metabolism, while aromatic amino acid biosynthesis was downregulated. Additionally, the correlation analysis results showed that ADG was positively correlated with 5-aminopentanoic acid, and three microorganisms (unclassified_f__Selenomonadaceae, Quinella, Christensenellaceae_R-7_group) were positively correlated with the rumen isobutyrate, valerate, NH3-N concentration, urase activity, tryptophan metabolism, and steroid hormone biosynthesis and negatively correlated with linoleic acid metabolism and amino acid biosynthesis in sheep. In summary, increased RDS in the diet improved the growth performance and rumen N utilization and reduced bacterial diversity in sheep. The alfalfa silage diet only increased feed efficiency; it did not affect growth performance. Additionally, it decreased rumen nitrogen utilization, linoleic acid, and amino acid biosynthesis. Nevertheless, there were limited interactions between forage and RDS; increased RDS in the AS diet enhanced the nitrogen capture rate of rumen microorganisms for alfalfa silage, with only slight improvements in the purine metabolism, linoleic acid, and amino acid synthesis.
Collapse
Affiliation(s)
- Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Meila Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Kenan Li
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Haidong Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Renhua Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Moreira da Silva AE, Franco AM, Ferguson BS, Fonseca MA. Influence of previous plane of nutrition on molecular mechanisms regulating the expression of urea and water metabolism related genes in the rumen and kidney of finishing crossbred Angus steers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:232-243. [PMID: 38800739 PMCID: PMC11126772 DOI: 10.1016/j.aninu.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 05/29/2024]
Abstract
This study aimed to understand how molecular mechanisms controlling water and urea metabolism at the finishing phase can be affected by previous plane of nutrition of crossbred Angus beef steers. Twenty-four (n = 24) animals were randomly distributed into either a moderate (MP) or high plane of nutrition during the background phase for 85 d. Animals were then blocked by their previous plane and were moved onto a 105-d finishing phase in a 2 × 2 factorial arrangement. The forage-finished group received only high-quality alfalfa hay, whereas the grain-fed group received a high grain diet (80% whole corn and 20% alfalfa hay). By the end of the finishing phase, animals were harvested and tissue samples from the rumen and kidney were collected. Changes in gene expression of aquaporins (AQP)-2, -3, -4, -7, ATP1A1, ATP1B1, SGK1, CLIC1 (kidney and rumen), UT-A1 (kidney only) and UT-B (rumen only), were assayed via real-time qPCR; 18S rRNA was used as an endogenous control. One-way ANOVA followed by Tukey's post hoc analysis was conducted. When animals were from MP, forage-finishing increased the relative abundance of AQP3 (P ≤ 0.05), AQP7 (P ≤ 0.05), ATP1B1 (P ≤ 0.05), and SGK1 (P ≤ 0.05) in the kidney when compared to grain-fed animals. In the rumen, for the MP group, AQP7 was differentially expressed in both treatments at the finishing phase (P ≤ 0.01), with forage-finished steers having the highest expression of AQP7. For the MP group, UT-B had a tendency of presenting a higher expression on grain-fed animals (P = 0.075). Overall, these results suggest that previous plane can impact expression of genes associated with water and urea metabolism during the finishing phase, namely AQP3, AQP7, ATP1B1, and SGK1 in the kidney, and AQP7 and UT-B in the rumen. The greatest impact observed on gene expression changes of investigated genes at the finishing phase was reflective of animals backgrounded on the moderate previous plane.
Collapse
Affiliation(s)
- Aghata E. Moreira da Silva
- College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Reno, NV 89503, USA
| | - Arturo Macias Franco
- College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Reno, NV 89503, USA
| | - Bradley S. Ferguson
- College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Reno, NV 89503, USA
| | - Mozart A. Fonseca
- College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, Reno, NV 89503, USA
- Department of Animal and Range Sciences, Clayton Livestock Research Center, New Mexico State University, Clayton, NM 88415, USA
| |
Collapse
|
3
|
Prahl MC, Müller CBM, Wimmers K, Kuhla B. Mammary gland, kidney and rumen urea and uric acid transporters of dairy cows differing in milk urea concentration. Sci Rep 2023; 13:17231. [PMID: 37821556 PMCID: PMC10567808 DOI: 10.1038/s41598-023-44416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
The milk urea concentration (MUC) serves as indicator of urinary nitrogen emissions, but at comparable crude protein (CP) intake, cows with high (HMU) and low (LMU) MUC excrete equal urea amounts. We hypothesized that urea and uric acid transporters and sizes of the kidney, mammary gland, and rumen account for these phenotypes. Eighteen HMU and 18 LMU Holstein dairy cows fed a low (LP) and normal (NP) CP diet were studied. Milk, plasma and urinary urea concentrations were greater with NP feeding, while plasma and urinary urea concentrations were comparable between phenotypes. Milk and plasma uric acid concentrations were higher with LP feeding but not affected by phenotype. The milk-urine uric acid ratio was greater in HMU cows. The mRNA expressions of the ruminal urea transporter SLC14A1 and AQP10, the mammary gland and rumen AQP3, and the mammary gland uric acid transporter ABCG2 were not affected by group or diet. Renal AQP10, but not AQP3, AQP7, and SLC14A2 expressions, and the kidney weights were lower in HMU cows. These data indicate that renal size and AQP10 limit the urea transfer from blood to urine, and that MUC determines if uric acid is more released with milk or urine.
Collapse
Affiliation(s)
- Marie C Prahl
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Carolin B M Müller
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology 'Oskar Kellner', Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
4
|
Zhong C, Long R, Stewart GS. The role of rumen epithelial urea transport proteins in urea nitrogen salvage: A review. ANIMAL NUTRITION 2022; 9:304-313. [PMID: 35600543 PMCID: PMC9097623 DOI: 10.1016/j.aninu.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
|
5
|
Zhong C, Griffin LL, Heussaff O, O’Dea R, Whelan C, Stewart G. Sex-Related Differences in UT-B Urea Transporter Abundance in Fallow Deer Rumen. Vet Sci 2022; 9:vetsci9020073. [PMID: 35202326 PMCID: PMC8878845 DOI: 10.3390/vetsci9020073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Rumen studies have focused almost exclusively on livestock species under strictly regimented diets. This means that the ruminal condition of free-living and free-feeding wildlife remains practically unstudied. Urea nitrogen salvaging, a process by which urea is passed into the rumen, to both provide a valuable source of nitrogen for bacterial growth and to buffer the potentially harmful acidic effects of bacterial short chain fatty acids, has remained unexplored in wild ruminants, such as deer. UT-B2 transporters are the key proteins reported to facilitate the transepithelial ruminal urea transport. In this study, we investigate the expression, abundance and localisation of urea transporters in the rumen of a semi-wild fallow deer (Dama dama) population. Physical measurements confirmed that males had larger rumen than females, while adults had longer papillae than juveniles. Initial RT-PCR experiments confirmed the expression of UT-B2, while immunolocalisation studies revealed that strong UT-B staining was present in the stratum basale of deer rumen. Western blotting analysis demonstrated that a 50 kDa UT-B2 protein was significantly more abundant in adult females compared to adult males. This study confirms the presence of UT-B2 urea transporters in deer rumen and suggests that sex-related differences occur, bringing new insight into our understanding of rumen physiology.
Collapse
Affiliation(s)
- Chongliang Zhong
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Laura L. Griffin
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Orla Heussaff
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Ruairi O’Dea
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Conor Whelan
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Gavin Stewart
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
- Correspondence:
| |
Collapse
|
6
|
Hailemariam S, Zhao S, He Y, Wang J. Urea transport and hydrolysis in the rumen: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:989-996. [PMID: 34738029 PMCID: PMC8529027 DOI: 10.1016/j.aninu.2021.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Inefficient dietary nitrogen (N) conversion to microbial proteins, and the subsequent use by ruminants, is a major research focus across different fields. Excess bacterial ammonia (NH3) produced due to degradation or hydrolyses of N containing compounds, such as urea, leads to an inefficiency in a host's ability to utilize nitrogen. Urea is a non-protein N containing compound used by ruminants as an ammonia source, obtained from feed and endogenous sources. It is hydrolyzed by ureases from rumen bacteria to produce NH3 which is used for microbial protein synthesis. However, lack of information exists regarding urea hydrolysis in ruminal bacteria, and how urea gets to hydrolysis sites. Therefore, this review describes research on sites of urea hydrolysis, urea transport routes towards these sites, the role and structure of urea transporters in rumen epithelium and bacteria, the composition of ruminal ureolytic bacteria, mechanisms behind urea hydrolysis by bacterial ureases, and factors influencing urea hydrolysis. This review explores the current knowledge on the structure and physiological role of urea transport and ureolytic bacteria, for the regulation of urea hydrolysis and recycling in ruminants. Lastly, underlying mechanisms of urea transportation in rumen bacteria and their physiological importance are currently unknown, and therefore future research should be directed to this subject.
Collapse
Affiliation(s)
- Samson Hailemariam
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Dilla University, College of Agriculture and Natural Resource, Dilla P. O. Box 419, Ethiopia
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
7
|
Zhong C, Farrell A, Stewart GS. Localization of aquaporin-3 proteins in the bovine rumen. J Dairy Sci 2020; 103:2814-2820. [PMID: 31980228 DOI: 10.3168/jds.2019-17735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022]
Abstract
Urea nitrogen salvaging is a crucial mechanism that ruminants have evolved to conserve nitrogen. Facilitative urea transporter-B proteins are known to be involved in urea transport across the rumen epithelium and thus efficiently facilitate the urea nitrogen salvaging process. Recently, functional studies have suggested that aquaglyceroporin transporters might also play a significant role in ruminal urea transport and aquaporin-3 (AQP3) protein has previously been detected in rumen tissue. In this current study, we investigated the specific localization of AQP3 transporters in the bovine rumen. First, end-point reverse-transcription PCR experiments confirmed strong AQP3 expression in both bovine rumen and kidney. Immunoblotting analysis using 2 separate anti-AQP3 antibodies detected AQP3 protein signals at 25, 32, and 42-45 kDa. Further immunolocalization studies showed AQP3 protein located in all the layers of rumen epithelium, especially in the stratum basale, and in the basolateral membranes of kidney collecting duct cells. These data confirm that AQP3 transporters are highly abundant within the bovine rumen and appear to be located throughout the ruminal epithelial layers. The physiological significance of the multiple AQP3 proteins detected and their location is not yet clear, hence further investigation is required to determine their exact contribution to ruminal urea transport.
Collapse
Affiliation(s)
- Chongliang Zhong
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan Farrell
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gavin S Stewart
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Silva LFP, Dixon RM, Costa DFA. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19234] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability of cattle to grow and reproduce when ingesting low-protein diets is a crucial attribute for productive beef cattle systems in the seasonally dry tropics and subtropics. Nitrogen (N) recycling to the rumen is an important and known physiological mechanism allowing ruminants to efficiently grow in low-protein diets, but is usually disregarded in the nutritional models. This review discusses the role and magnitude of N recycling to provide additional N as microbial substrate in the rumen and in determining the efficiency of ruminants ingesting low-protein diets, to better understand the major factors regulating N recycling to the rumen. In addition to a review of the literature, study-adjusted regressions were used to evaluate various aspects of crude protein (CP) intake and availability, N recycling and excretion. There is large variation in N excretion and N-use efficiency among diets and among individuals, illustrating the opportunity for improvement in overall efficiency of cattle production. These data indicated that N recycling to the entire gastrointestinal tract supplies from half to twice as much N available for microbial growth as does the diet. Addition of rumen-degradable protein can increase rumen efficiency in using the available energy, as, conversely, the addition of fermentable energy can increase rumen efficiency in using the available CP. The present review has demonstrated that both are possible because of greater N recycling. Also, the importance of preserving the available N for determining individual variation in feed efficiency and the implications for selection are discussed. Nitrogen recycling can be controlled at both the epithelial wall of compartments of the gastrointestinal tract and at the liver, where ureagenesis occurs. Addition of fermentable energy can increase N recycling to the rumen and to post-ruminal tract by acting at both sites, and the mechanisms for this are discussed in the text. Although the effect of altering CP concentration in the diet has been substantially investigated, other factors potentially modulating N recycling, such as total fermentable energy, sources of protein and energy, hormonal modulation, and genetic variance, remain poorly understood. The selection of more efficient animals and development of diets with a lower environmental impact inescapably means further elucidation of the N-recycling mechanism.
Collapse
|