1
|
Verma M, Panchal NS, Yadav PK. Exploring Chemical Space to Identify Partial Binders Against hMPV Nucleocapsid Protein. J Cell Biochem 2024:e30618. [PMID: 39286955 DOI: 10.1002/jcb.30618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 09/19/2024]
Abstract
Human metapneumovirus (hMPV) has gained prominence in recent times as the predominant etiological agent of acute respiratory tract infections. This virus targets children, the elderly, and individuals with compromised immune systems. Given the protracted duration of hMPV transmission, it is probable that the majority of children will have acquired the virus by the age of 5. In individuals with compromised immune systems, recurrence of hMPV infection is possible. As hMPV matures, it remains latent from the time of acquisition. The genome of hMPV encompasses a pivotal protein referred to as the nucleocapsid protein (N). This protein assumes the form of a left-handed helical nucleocapsid, enveloping the viral RNA genome. The primary function of this structure is to protect nucleases, rendering it a potentially promising target for therapeutic advancements. The present study employs a methodology that involves structure-based virtual screening, followed by molecular dynamics simulation at a 250-ns time scale, to identify potential natural molecules or their derivatives from the ZINC Database. These molecules are investigated for their binding properties against the hMPV nucleoprotein. Based on an evaluation of the docking score, binding site interaction, and molecular dynamics studies, it has been found that two naturally occurring molecules, namely M1 (ZINC85629735) and M3 (ZINC85569125), have shown notable docking scores of -9.6 and -10.7 kcal/mol, acceptable RMSD, RMSF, Rg, and so on calculated from molecular dynamics trajectory associated with MMGBSA binding energy of -81.94 and -99.63 kcal/mol, respectively. These molecules have shown the highest binding affinity toward nucleocapsid protein and demonstrated promising attributes as potential binders against hMPV.
Collapse
Affiliation(s)
- Monika Verma
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Nikita S Panchal
- Department of Pharmaceutical Chemistry, Maliba Pharmacy College, Uka Tarsadia University, Surat, Gujarat, India
| | - Pramod Kumar Yadav
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Stout CN, Renata H. Total Synthesis Facilitates In Vitro Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis. J Am Chem Soc 2024; 146:21815-21823. [PMID: 39042396 DOI: 10.1021/jacs.4c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Griseoviridin is a group A streptogramin natural product from Streptomyces with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond. While genetic and crystallographic experiments provided indirect evidence to support this hypothesis, the exact function of SgvP has never been confirmed biochemically. Herein, we report a convergent total synthesis of pre-griseoviridin, the putative substrate of P450 SgvP and precursor to griseoviridin. Our strategy features concise and rapid assembly of two fragments joined via sequential peptide coupling and Stille macrocyclization. Access to pre-griseoviridin then enabled in vitro validation of SgvP as the C-S bond-forming P450 during griseoviridin biosynthesis, culminating in a nine-step chemoenzymatic synthesis of griseoviridin.
Collapse
Affiliation(s)
- Carter N Stout
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Klumbys E, Xu W, Koduru L, Heng E, Wei Y, Wong FT, Zhao H, Ang EL. Discovery, characterization, and engineering of an advantageous Streptomyces host for heterologous expression of natural product biosynthetic gene clusters. Microb Cell Fact 2024; 23:149. [PMID: 38790014 PMCID: PMC11127301 DOI: 10.1186/s12934-024-02416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Streptomyces is renowned for its robust biosynthetic capacity in producing medically relevant natural products. However, the majority of natural products biosynthetic gene clusters (BGCs) either yield low amounts of natural products or remain cryptic under standard laboratory conditions. Various heterologous production hosts have been engineered to address these challenges, and yet the successful activation of BGCs has still been limited. In our search for a valuable addition to the heterologous host panel, we identified the strain Streptomyces sp. A4420, which exhibited rapid initial growth and a high metabolic capacity, prompting further exploration of its potential. RESULTS We engineered a polyketide-focused chassis strain based on Streptomyces sp. A4420 (CH strain) by deleting 9 native polyketide BGCs. The resulting metabolically simplified organism exhibited consistent sporulation and growth, surpassing the performance of most existing Streptomyces based chassis strains in standard liquid growth media. Four distinct polyketide BGCs were chosen and expressed in various heterologous hosts, including the Streptomyces sp. A4420 wild-type and CH strains, alongside Streptomyces coelicolor M1152, Streptomyces lividans TK24, Streptomyces albus J1074, and Streptomyces venezuelae NRRL B-65442. Remarkably, only the Streptomyces sp. A4420 CH strain demonstrated the capability to produce all metabolites under every condition outperforming its parental strain and other tested organisms. To enhance visualization and comparison of the tested strains, we developed a matrix-like analysis involving 15 parameters. This comprehensive analysis unequivocally illustrated the significant potential of the new strain to become a popular heterologous host. CONCLUSION Our engineered Streptomyces sp. A4420 CH strain exhibits promising attributes for the heterologous expression of natural products with a focus on polyketides, offering an alternative choice in the arsenal of heterologous production strains. As genomics and cloning strategies progress, establishment of a diverse panel of heterologous production hosts will be crucial for expediting the discovery and production of medically relevant natural products derived from Streptomyces.
Collapse
Affiliation(s)
- Evaldas Klumbys
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Wei Xu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Lokanand Koduru
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Elena Heng
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, #04-01, Nanos, Singapore, 138669, Republic of Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore.
- Synthetic Biology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Republic of Singapore.
| |
Collapse
|
4
|
Xue Y, Zhou Z, Feng F, Zhao H, Tan S, Li J, Wu S, Ju Z, He S, Ding L. Genomic Analysis of Kitasatospora setae to Explore Its Biosynthetic Potential Regarding Secondary Metabolites. Antibiotics (Basel) 2024; 13:459. [PMID: 38786187 PMCID: PMC11117518 DOI: 10.3390/antibiotics13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Actinomycetes have long been recognized as important sources of clinical antibiotics. However, the exploration of rare actinomycetes, despite their potential for producing bioactive molecules, has remained relatively limited compared to the extensively studied Streptomyces genus. The extensive investigation of Streptomyces species and their natural products has led to a diminished probability of discovering novel bioactive compounds from this group. Consequently, our research focus has shifted towards less explored actinomycetes, beyond Streptomyces, with particular emphasis on Kitasatospora setae (K. setae). The genome of K. setae was annotated and analyzed through whole-genome sequencing using multiple bio-informatics tools, revealing an 8.6 Mbp genome with a 74.42% G + C content. AntiSMASH analysis identified 40 putative biosynthetic gene clusters (BGCs), approximately half of which were recessive and unknown. Additionally, metabolomic mining utilizing mass spectrometry demonstrated the potential for this rare actinomycete to generate numerous bioactive compounds such as glycosides and macrolides, with bafilomycin being the major compound produced. Collectively, genomics- and metabolomics-based techniques confirmed K. setae's potential as a bioactive secondary metabolite producer that is worthy of further exploration.
Collapse
Affiliation(s)
- Yutong Xue
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Zhiyan Zhou
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Hang Zhao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Shuangling Tan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Jinling Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Zhiran Ju
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
5
|
Qiang X, Chen W, Zhu CS, Li J, Qi T, Lou L, Wang P, Tracey KJ, Wang H. Therapeutic potential of procathepsin L-inhibiting and progesterone-entrapping dimethyl-β-cyclodextrin nanoparticles in treating experimental sepsis. Front Immunol 2024; 15:1368448. [PMID: 38550581 PMCID: PMC10972846 DOI: 10.3389/fimmu.2024.1368448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The pathogenic mechanisms of bacterial infections and resultant sepsis are partly attributed to dysregulated inflammatory responses sustained by some late-acting mediators including the procathepsin-L (pCTS-L). It was entirely unknown whether any compounds of the U.S. Drug Collection could suppress pCTS-L-induced inflammation, and pharmacologically be exploited into possible therapies. Here, we demonstrated that a macrophage cell-based screening of a U.S. Drug Collection of 1360 compounds resulted in the identification of progesterone (PRO) as an inhibitor of pCTS-L-mediated production of several chemokines [e.g., Epithelial Neutrophil-Activating Peptide (ENA-78), Monocyte Chemoattractant Protein-1 (MCP-1) or MCP-3] and cytokines [e.g., Interleukin-10 (IL-10) or Tumor Necrosis Factor (TNF)] in primary human peripheral blood mononuclear cells (PBMCs). In vivo, these PRO-entrapping 2,6-dimethal-β-cyclodextrin (DM-β-CD) nanoparticles (containing 1.35 mg/kg PRO and 14.65 mg/kg DM-β-CD) significantly increased animal survival in both male (from 30% to 70%, n = 20, P = 0.041) and female (from 50% to 80%, n = 30, P = 0.026) mice even when they were initially administered at 24 h post the onset of sepsis. This protective effect was associated with a reduction of sepsis-triggered accumulation of three surrogate biomarkers [e.g., Granulocyte Colony Stimulating Factor (G-CSF) by 40%; Macrophage Inflammatory Protein-2 (MIP-2) by 45%; and Soluble Tumor Necrosis Factor Receptor I (sTNFRI) by 80%]. Surface Plasmon Resonance (SPR) analysis revealed a strong interaction between PRO and pCTS-L (KD = 78.2 ± 33.7 nM), which was paralleled with a positive correlation between serum PRO concentration and serum pCTS-L level (ρ = 0.56, P = 0.0009) or disease severity (Sequential Organ Failure Assessment, SOFA; ρ = 0.64, P = 0.0001) score in septic patients. Our observations support a promising opportunity to explore DM-β-CD nanoparticles entrapping lipophilic drugs as possible therapies for clinical sepsis.
Collapse
Affiliation(s)
- Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Timothy Qi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Li Lou
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
6
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
7
|
Chen W, Zhu CS, Qiang X, Chen S, Li J, Wang P, Tracey KJ, Wang H. Development of Procathepsin L (pCTS-L)-Inhibiting Lanosterol-Carrying Liposome Nanoparticles to Treat Lethal Sepsis. Int J Mol Sci 2023; 24:8649. [PMID: 37239992 PMCID: PMC10217857 DOI: 10.3390/ijms24108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of microbial infections and sepsis is partly attributable to dysregulated innate immune responses propagated by late-acting proinflammatory mediators such as procathepsin L (pCTS-L). It was previously not known whether any natural product could inhibit pCTS-L-mediated inflammation or could be strategically developed into a potential sepsis therapy. Here, we report that systemic screening of a NatProduct Collection of 800 natural products led to the identification of a lipophilic sterol, lanosterol (LAN), as a selective inhibitor of pCTS-L-induced production of cytokines [e.g., Tumor Necrosis Factor (TNF) and Interleukin-6 (IL-6)] and chemokines [e.g., Monocyte Chemoattractant Protein-1 (MCP-1) and Epithelial Neutrophil-Activating Peptide (ENA-78)] in innate immune cells. To improve its bioavailability, we generated LAN-carrying liposome nanoparticles and found that these LAN-containing liposomes (LAN-L) similarly inhibited pCTS-L-induced production of several chemokines [e.g., MCP-1, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted (RANTES) and Macrophage Inflammatory Protein-2 (MIP-2)] in human blood mononuclear cells (PBMCs). In vivo, these LAN-carrying liposomes effectively rescued mice from lethal sepsis even when the first dose was given at 24 h post the onset of this disease. This protection was associated with a significant attenuation of sepsis-induced tissue injury and systemic accumulation of serval surrogate biomarkers [e.g., IL-6, Keratinocyte-derived Chemokine (KC), and Soluble Tumor Necrosis Factor Receptor I (sTNFRI)]. These findings support an exciting possibility to develop liposome nanoparticles carrying anti-inflammatory sterols as potential therapies for human sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, New York, NY 11549, USA
| | - Cassie Shu Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, New York, NY 11549, USA
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, New York, NY 11549, USA
| | - Shujin Chen
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
| | - Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, New York, NY 11549, USA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, New York, NY 11549, USA
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, New York, NY 11030, USA; (W.C.); (C.S.Z.); (X.Q.); (S.C.); (J.L.); (P.W.); (K.J.T.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd., Hempstead, New York, NY 11549, USA
| |
Collapse
|
8
|
Hemmami H, Seghir BB, Zeghoud S, Ben Amor I, Kouadri I, Rebiai A, Zaater A, Messaoudi M, Benchikha N, Sawicka B, Atanassova M. Desert Endemic Plants in Algeria: A Review on Traditional Uses, Phytochemistry, Polyphenolic Compounds and Pharmacological Activities. Molecules 2023; 28:molecules28041834. [PMID: 36838819 PMCID: PMC9959599 DOI: 10.3390/molecules28041834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Due to their robust antioxidant capabilities, potential health benefits, wide variety of biological activities, and strong antioxidant qualities, phenolic compounds are substances that have drawn considerable attention in recent years. The main goal of the review is to draw attention to saharian Algerian medicinal plants and the determination of their bioactivity (antioxidant, anti-cancer, and anti-inflammatory importance), and to present their chemical composition as well as in vivo and in vitro studies, clinical studies, and other studies confirming their real impact on human health. Research results have revealed a rich variety of medicinal plants used to treat various disease states in this region. Based on in vivo and in vitro studies, biological activity, and clinical studies, a list of 34 species of desert plants, belonging to 20 botanical families, useful both in preventive actions and in the treatment of neoplastic diseases has been established, and polyphenolic compounds have been identified as key to the health potential of endemic diseases and desert plants. It has been shown that people who follow a diet rich in polyphenols are less prone to the risk of many cancers and chronic diseases, such as obesity and diabetes. In view of the increasing antioxidant potential of these plant species, as well as the increasing trade in herbal products from the Sahara region, phytosanitary and pharmaceutical regulations must change in this respect and should be in line with Trade Related Aspects of Intellectual Property Rights (TRIPS), and the sustainable use and development of plant products must be addressed at the same time.
Collapse
Affiliation(s)
- Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Bachir Ben Seghir
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University May 8, 1945, Guelma 24000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Imane Kouadri
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University May 8, 1945, Guelma 24000, Algeria
- Department of Process Engineering, Faculty of Technology, University May 8, 1945, Guelma 24000, Algeria
| | - Abdelkrim Rebiai
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Abdelmalek Zaater
- Biodiversity Laboratory and Application of Biotechnology in Agriculture, University of El Oued, El Oued 39000, Algeria
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued 39000, Algeria
| | - Mohammed Messaoudi
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
- Nuclear Research Centre of Birine, Ain Oussera, Djelfa 17200, Algeria
| | - Naima Benchikha
- Department of Chemistry, Faculty of Exact Sciences, University of El Oued, El Oued 39000, Algeria
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Science in Lublin, 20-950 Lublin, Poland
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
9
|
Yamaguchi S, Fujioka T, Yoshimi A, Kumagai T, Umemura M, Abe K, Machida M, Kawai K. Discovery of a gene cluster for the biosynthesis of novel cyclic peptide compound, KK-1, in Curvularia clavata. FRONTIERS IN FUNGAL BIOLOGY 2023; 3:1081179. [PMID: 37746209 PMCID: PMC10512319 DOI: 10.3389/ffunb.2022.1081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 09/26/2023]
Abstract
KK-1, a cyclic depsipeptide with 10 residues produced by a filamentous fungus Curvularia clavata BAUA-2787, is a promising pesticide active compound with high activity against many plant pathogens, especially Botrytis cinerea. As a first step toward the future mass production of KK-1 through synthetic biological approaches, we aimed to identify the genes responsible for the KK-1 biosynthesis. To achieve this, we conducted whole genome sequencing and transcriptome analysis of C. clavata BAUA-2787 to predict the KK-1 biosynthetic gene cluster. We then generated the overexpression and deletion mutants for each cluster gene using our originally developed transformation system for this fungus, and analyzed the KK-1 production and the cluster gene expression levels to confirm their involvement in KK-1 biosynthesis. As a result of these, a region of approximately 71 kb was found, containing 10 open reading frames, which were co-induced during KK-1 production, as a biosynthetic gene cluster. These include kk1B, which encodes nonribosomal peptide synthetase with a domain structure that is consistent with the structural features of KK-1, and kk1F, which encodes a transcription factor. The overexpression of kk1F increased the expression of the entire cluster genes and, consequently, improved KK-1 production, whereas its deletion decreased the expression of the entire cluster genes and almost eliminated KK-1 production, demonstrating that the protein encoded by kk1F regulates the expressions of the other nine cluster genes cooperatively as the pathway-specific transcription factor. Furthermore, the deletion of each cluster gene caused a reduction in KK-1 productivity, indicating that each gene is involved in KK-1 production. The genes kk1A, kk1D, kk1H, and kk1I, which showed a significant decrease in KK-1 productivity due to deletion, were presumed to be directly involved in KK-1 structure formation, including the biosynthesis of the constituent residues. kk1C, kk1E, kk1G, and kk1J, which maintained a certain level of KK-1 productivity despite deletion, were possibly involved in promoting or assisting KK-1 production, such as extracellular transportation and the removal of aberrant units incorporated into the peptide chain.
Collapse
Affiliation(s)
- Shigenari Yamaguchi
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Tomonori Fujioka
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Maiko Umemura
- Bio-system Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Keietsu Abe
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masayuki Machida
- Bio-system Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Graduate School of Engineering, Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Kiyoshi Kawai
- Biotechnology Laboratory, Life & Environment Research Center, Life Science Research Institute, Research & Development Division, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| |
Collapse
|
10
|
Allemailem KS. Aqueous Extract of Artemisia annua Shows In Vitro Antimicrobial Activity and an In Vivo Chemopreventive Effect in a Small-Cell Lung Cancer Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:3341. [PMID: 36501380 PMCID: PMC9739242 DOI: 10.3390/plants11233341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Artemisia annua (A. annua) has been used as a medicinal plant in the treatment of several infectious and non-infectious diseases in the forms of tea and press juice since ancient times. The aim of this study was to evaluate the aqueous extract of A. annua (AAE) as an antimicrobial agent in vitro and to evaluate its chemopreventive efficacy in vivo in a small-cell lung cancer (SCLC) animal model. The dried powder of AAE was prepared using the Soxhlet extraction system from the leaves of Artemisia annua. The in vitro activity of AAE was determined against Candida albicans (C. albicans), Enterococcus faecalis (E. faecalis), Klebsiella pneumoniae (K. pneumoniae), and methicillin-resistant Staphylococcus aureus (MRSA) using the agar well diffusion method and propidium iodide (PI)-stained microbial death under a confocal microscope. The pretreatment of mice with AAE was initiated two weeks before the first dose of benzo[a]pyrene and continued for 21 weeks. The chemopreventive potential of the extract was evaluated by flow cytometry and biochemical and histopathological analyses of the tissues and serum accordingly, after sacrificing the mice. The data revealed the antimicrobial potential of AAE against all the species investigated, as it showed growth-inhibitory activity by MIC, as well as confocal microscopy. The pretreatment of AAE exhibited significant protection in carcinogen-modulated, average body weight (ABW), and relative organ weight (ROW) cancer biomarkers in the serum and antioxidants in the lungs. The hematoxylin and eosin (H&E) staining of the tissues revealed that AAE prevented malignancy in the lungs. AAE also induced apoptosis and decreased intracellular reactive oxygen species (ROS) in the lung cells analyzed by flow cytometry. The current findings demonstrated the use of AAE as an alternative medicine in the treatment of infectious disease and the chemoprevention of lung cancer. To our knowledge, this is the first study that summarizes the chemopreventive potential of AAE in a lung cancer model in vivo. However, further investigations are suggested to understand the role of AAE to potentiate the therapeutic index of the commercially available drugs that show multiple drug resistance against microbial growth and high toxicity during cancer chemotherapy.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
11
|
Hooper AR, Oštrek A, Milian‐Lopez A, Sarlah D. Bioinspired Total Synthesis of Pyritide A2 through Pyridine Ring Synthesis. Angew Chem Int Ed Engl 2022; 61:e202212299. [PMID: 36123301 PMCID: PMC9827874 DOI: 10.1002/anie.202212299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 01/12/2023]
Abstract
Pyritides belong to the ribosomally synthesized and post-translationally modified peptide class of natural products that were recently genome-predicted and are structurally defined by unique pyridine-containing macrocycles. Inspired by their biosynthesis, proceeding through peptide modification and cycloaddition to form the heterocyclic core, we report the chemical synthesis of pyritide A2 involving pyridine ring synthesis from an amino acid precursor through aza-Diels-Alder reaction. This strategy permitted the preparation of the decorated pyridine core with an appended amino acid residue in two steps from a commercially available arginine derivative and secured pyritide A2 in ten steps. Moreover, the synthetic logic enables efficient preparation of different pyridine subunits associated with pyritides, allowing rapid and convergent access to this new class of natural products and analogues thereof.
Collapse
Affiliation(s)
- Annie R. Hooper
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Andraž Oštrek
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Ana Milian‐Lopez
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - David Sarlah
- Department of Chemistry and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| |
Collapse
|
12
|
Glassey E, King AM, Anderson DA, Zhang Z, Voigt CA. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLoS One 2022; 17:e0266488. [PMID: 36121811 PMCID: PMC9484694 DOI: 10.1371/journal.pone.0266488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
RiPPs (ribosomally-synthesized and post-translationally modified peptides) are a class of pharmaceutically-relevant natural products expressed as precursor peptides before being enzymatically processed into their final functional forms. Bioinformatic methods have illuminated hundreds of thousands of RiPP enzymes in sequence databases and the number of characterized chemical modifications is growing rapidly; however, it remains difficult to functionally express them in a heterologous host. One challenge is peptide stability, which we addressed by designing a RiPP stabilization tag (RST) based on a small ubiquitin-like modifier (SUMO) domain that can be fused to the N- or C-terminus of the precursor peptide and proteolytically removed after modification. This is demonstrated to stabilize expression of eight RiPPs representative of diverse phyla. Further, using Escherichia coli for heterologous expression, we identify a common set of media and growth conditions where 24 modifying enzymes, representative of diverse chemistries, are functional. The high success rate and broad applicability of this system facilitates: (i) RiPP discovery through high-throughput “mining” and (ii) artificial combination of enzymes from different pathways to create a desired peptide.
Collapse
Affiliation(s)
- Emerson Glassey
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Andrew M. King
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Daniel A. Anderson
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Zhengan Zhang
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Christopher A. Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Shaaban MT, Abdelhamid RM, Zayed M, Ali SM. Evaluation of a new antimicrobial agent production (RSMM C3) by using metagenomics approaches from Egyptian marine biota. BIOTECHNOLOGY REPORTS 2022; 34:e00706. [PMID: 35686002 PMCID: PMC9171440 DOI: 10.1016/j.btre.2022.e00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Metagenomics technique has the ability for production of novel antimicrobial agents. Marine sediment samples from Alexandria used as a source for production of novel antimicrobial agents. Activity of the RSMM C3 antimicrobial agent was a wide spectrum towards different microorganisms. Molecular analysis and characterization of RSMM C3 antimicrobial agent ensure novelty.
Diseases and epidemics in the current days need new types of antibiotics in order to be able to eliminate them. The goal of this research is to use metagenomics to identify isolated utilitarian gene (s) as antimicrobial specialists. Collection of diverse locations from sea sediment samples from Alexandria and extraction of total DNA, restriction enzyme fragmentation, cloning into pUC19 vector, and expression of the isolated gene(s) in E. coli DH5α were all part of the process. Characterization of Antimicrobial agent was done for the best clone for antimicrobial agent's production to detect efficiency, optimum pH, thermal stability, pH stability, effect of different compounds on antimicrobial activity, and residual activity of product after preservation in room temperature. Amino acid sequence of RSMM C3 gene (1250 bp) was 72% identity with Herbaspirillum sp. The ideal temperature level of the RSMM C3 antimicrobial agent production was 36 °C. The antimicrobial agent RSMM C3′s stability was stable at -20 °Celsius for up to two months without thawing. The antibacterial agent RSMM C3 was stable at 4 °C for 14 days without loss in activity. The ideal pH level of the RSMM C3 antimicrobial agent was 6. Remain activity was gradually decreased at pH 5, 6, 6.5 and 7 (86.1, 96.9, 97.2 and 94.9%, respectively). On the other hand, residual activity was (92 and 84%) at (pH 7.5 and 8) for 8 days. The tested antimicrobial RSMM C3 was stable against 1 mM of different compounds (DMSO, Glycerol, NaCl, CaCl2, MgCl2, ZnCl2, FeSO4, MnSO4 and CuSO4). The research provides for the Metagenomics technique that has the ability for the production of novel antimicrobial agents produced by clone RSMM C3 which has a wide spectrum activity towards different microorganisms comparing to other antibiotics as Ampicillin and Tetracycline.
Collapse
Affiliation(s)
- Mohamed T Shaaban
- Botany and Microbiology Department, Menoufia University, Shebin El-Kom, Egypt
| | - Reham M Abdelhamid
- Botany and Microbiology Department, Menoufia University, Shebin El-Kom, Egypt
- Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Muhammad Zayed
- Botany and Microbiology Department, Menoufia University, Shebin El-Kom, Egypt
| | - Safaa M Ali
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
14
|
Chao WW, Chan WC, Ma HT, Chou ST. Phenolic acids and flavonoids-rich Glechoma hederacea L. (Lamiaceae) water extract against H 2 O 2 -induced apoptosis in PC12 cells. J Food Biochem 2021; 46:e14032. [PMID: 34914114 DOI: 10.1111/jfbc.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress is reportedly associated with progressive neuronal cell damage. Glechoma hederacea L. (Lamiaceae), belonging to the Labiatae family, has demonstrated several biologic activities including depigmentation, antimelanogenic, antitumor, antioxidative, hepatoprotective, and anti-inflammatory activities. Previously, we reported that rosmarinic acid, chlorogenic acid, caffeic acid, rutin, genistin, and ferulic acids were the most abundant phytochemicals detected in hot water extracts of G. hederacea L. (HWG). This study aimed to study the neuroprotective effects of phenolic acids and flavonoid-rich HWG against hydrogen peroxide (H2 O2 )-induced oxidative damage in PC12 cells and its inhibitory effect on acetylcholinesterase (AChE). The experiment analyzed cytotoxicity, ROS production, mitochondrial transmembrane potential (MMP) level, and caspase-3 activity and used comet assay and antioxidant enzyme activity to determine the redox status of PC12 cells. Results showed that the inhibitory effect of HWG on AChE was in a competitive pattern (IC50 , 23.23 mg/ml). HWG antagonized H2 O2 -mediated cytotoxicity and DNA damage, reduced ROS production, stabilized MMP, and inhibited caspase-3 activity and apoptosis. Furthermore, HWG inhibited the release of cytochrome C and apoptosis-inducing factors (AIF) and decreased the malondialdehyde levels in PC12 cells. Collectively, HWG rich in antioxidant phenolic acids and flavonoids may have neuroprotective effects. PRACTICAL APPLICATIONS: Polyphenolic compounds are one of the most important natural products, known to possess a range of health-promoting effects. In this study, it was found that HWG, which is rich in antioxidant phenolic acids and flavonoids, can protect PC12 cells from oxidative stress induced by H2 O2 and may have neuroprotective effects.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Wan-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hao-Ting Ma
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| |
Collapse
|
15
|
Synthetic Biology Advanced Natural Product Discovery. Metabolites 2021; 11:metabo11110785. [PMID: 34822443 PMCID: PMC8617713 DOI: 10.3390/metabo11110785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions.
Collapse
|
16
|
Metagenomic Sequencing of Multiple Soil Horizons and Sites in Close Vicinity Revealed Novel Secondary Metabolite Diversity. mSystems 2021; 6:e0101821. [PMID: 34636675 PMCID: PMC8510542 DOI: 10.1128/msystems.01018-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Discovery of novel antibiotics is crucial for combating rapidly spreading antimicrobial resistance and new infectious diseases. Most of the clinically used antibiotics are natural products—secondary metabolites produced by soil microbes that can be cultured in the lab. Rediscovery of these secondary metabolites during discovery expeditions costs both time and resources. Metagenomics approaches can overcome this challenge by capturing both culturable and unculturable hidden microbial diversity. To be effective, such an approach should address questions like the following. Which sequencing method is better at capturing the microbial diversity and biosynthesis potential? What part of the soil should be sampled? Can patterns and correlations from such big-data explorations guide future novel natural product discovery surveys? Here, we address these questions by a paired amplicon and shotgun metagenomic sequencing survey of samples from soil horizons of multiple forest sites very close to each other. Metagenome mining identified numerous novel biosynthetic gene clusters (BGCs) and enzymatic domain sequences. Hybrid assembly of both long reads and short reads improved the metagenomic assembly and resulted in better BGC annotations. A higher percentage of novel domains was recovered from shotgun metagenome data sets than from amplicon data sets. Overall, in addition to revealing the biosynthetic potential of soil microbes, our results suggest the importance of sampling not only different soils but also their horizons to capture microbial and biosynthetic diversity and highlight the merits of metagenome sequencing methods. IMPORTANCE This study helped uncover the biosynthesis potential of forest soils via exploration of shotgun metagenome and amplicon sequencing methods and showed that both methods are needed to expose the full microbial diversity in soil. Based on our metagenome mining results, we suggest revising the historical strategy of sampling soils from far-flung places, as we found a significant number of novel and diverse BGCs and domains even in different soils that are very close to each other. Furthermore, sampling of different soil horizons can reveal the additional diversity that often remains hidden and is mainly caused by differences in environmental key parameters such as soil pH and nutrient content. This paired metagenomic survey identified diversity patterns and correlations, a step toward developing a rational approach for future natural product discovery surveys.
Collapse
|
17
|
|
18
|
Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective Effects of Rhynchophylline Against Aβ 1-42-Induced Oxidative Stress, Neurodegeneration, and Memory Impairment Via Nrf2-ARE Activation. Neurochem Res 2021; 46:2439-2450. [PMID: 34170454 DOI: 10.1007/s11064-021-03343-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Extensive studies have shown that oxidative stress is a crucial pathogenic factor in Alzheimer's disease (AD). Nuclear factor E2-related factor 2 (Nrf2) is a master cytoprotective regulator against oxidative stress, and thus represents an attractive therapeutic target in AD. The goal of our study is to investigate the contribution of Nrf2 in Rhynchophylline (Rhy)-induced neuroprotection in AD. The data showed that intraperitoneal administration of Rhy (10 or 20 mg/kg) could ameliorate Aβ1-42-induced cognitive impairment, evidenced by performance improvement in memory tests. The result of Antioxidant response element (ARE)-luciferase activity assay indicated that Rhy treatment improved ARE promoter activity. The results of reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) assessment in the frontal cortex and hippocampus showed that Rhy treatment could attenuate Aβ1-42-induced oxidative stress to some extent, evidenced by reversion of these cytokines compared to Aβ1-42 + Veh group. Rhy treatment also restored expression of Nrf2 and its downstream protein heme oxygenase-1 (HO-1), NAD(P)H/quinone oxidoreductase 1 (NOQ1), and recombinant glutamate cysteine ligase, modifier subunit (GCLM) in the frontal cortex and hippocampus of Aβ1-42-treated mice. In addition, to investigate whether activation of Nrf2-mediated pathway is responsible for the neuroprotection of Rhy, Nrf2 siRNA was used in human neuroblastoma cells (SH-SY5Y). Interestingly, the results showed that the protective effects of Rhy, including anti-oxidative, anti-apoptosis and elevation of Nrf2 and its downstream proteins, were abolished in Nrf2 siRNA-transfected cells. These findings indicate that Rhynchophylline is protective against Aβ1-42-induced neurotoxicity via Nrf2-ARE activation, and suggest that Rhy may serve as a potential candidate and promising Nrf2 activator for management of AD.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
19
|
Eusebio N, Rego A, Glasser NR, Castelo-Branco R, Balskus EP, Leão PN. Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics 2021; 22:633. [PMID: 34461836 PMCID: PMC8406957 DOI: 10.1186/s12864-021-07939-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC - the first predicted dimetal-carboxylate halogenase to be characterized - was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. RESULTS In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. CONCLUSIONS Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds.
Collapse
Affiliation(s)
- Nadia Eusebio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
20
|
Pusparajah P, Letchumanan V, Law JWF, Ab Mutalib NS, Ong YS, Goh BH, Tan LTH, Lee LH. Streptomyces sp.-A Treasure Trove of Weapons to Combat Methicillin-Resistant Staphylococcus aureus Biofilm Associated with Biomedical Devices. Int J Mol Sci 2021; 22:ijms22179360. [PMID: 34502269 PMCID: PMC8431294 DOI: 10.3390/ijms22179360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| |
Collapse
|
21
|
Scherlach K, Hertweck C. Mining and unearthing hidden biosynthetic potential. Nat Commun 2021; 12:3864. [PMID: 34162873 PMCID: PMC8222398 DOI: 10.1038/s41467-021-24133-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Genetically encoded small molecules (secondary metabolites) play eminent roles in ecological interactions, as pathogenicity factors and as drug leads. Yet, these chemical mediators often evade detection, and the discovery of novel entities is hampered by low production and high rediscovery rates. These limitations may be addressed by genome mining for biosynthetic gene clusters, thereby unveiling cryptic metabolic potential. The development of sophisticated data mining methods and genetic and analytical tools has enabled the discovery of an impressive array of previously overlooked natural products. This review shows the newest developments in the field, highlighting compound discovery from unconventional sources and microbiomes. Natural products are an important source of bioactive compounds and have versatile applications in different fields, but their discovery is challenging. Here, the authors review the recent developments in genome mining for discovery of natural products, focusing on compounds from unconventional microorganisms and microbiomes.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
22
|
Prichula J, Primon-Barros M, Luz RCZ, Castro ÍMS, Paim TGS, Tavares M, Ligabue-Braun R, d’Azevedo PA, Frazzon J, Frazzon APG, Seixas A, Gilmore MS. Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci. Mar Drugs 2021; 19:328. [PMID: 34204046 PMCID: PMC8229437 DOI: 10.3390/md19060328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.
Collapse
Affiliation(s)
- Janira Prichula
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Muriel Primon-Barros
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Romeu C. Z. Luz
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Ícaro M. S. Castro
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Thiago G. S. Paim
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Maurício Tavares
- Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR), Universidade Federal do Rio Grande do Sul (UFRGS), Campus Litoral Norte, Imbé 95625-000, RS, Brazil;
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Pedro A. d’Azevedo
- Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil; (J.P.); (M.P.-B.); (R.C.Z.L.); (Í.M.S.C.); (T.G.S.P.); (P.A.d.)
| | - Jeverson Frazzon
- Food Science Institute, UFRGS, Porto Alegre 90035-003, RS, Brazil;
| | - Ana P. G. Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90050-170, RS, Brazil;
| | - Adriana Seixas
- Department of Pharmacosciences, UFCSPA, Porto Alegre 90050-170, RS, Brazil; (R.L.-B.); (A.S.)
| | - Michael S. Gilmore
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
23
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
24
|
Sukmarini L. Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules 2021; 26:molecules26092542. [PMID: 33925414 PMCID: PMC8123854 DOI: 10.3390/molecules26092542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain the most consistently successful source of drugs and drug leads. They offer major opportunities for finding novel lead structures that are active against a broad spectrum of assay targets, particularly those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limitations relying on untargeted screening methods, there is a growing trend to employ unconventional secondary metabolomics techniques. Aided by the more in-depth understanding of different biosynthetic pathways and the technological advancement in analytical instrumentation, the development of new methodologies provides an alternative that can accelerate discoveries of new lead-structures of natural origin. This present mini-review briefly discusses selected examples regarding advancements in bioinformatics and genomics (focusing on genome mining and metagenomics approaches), as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and development. The selected recent discoveries from 2015 to 2020 are featured herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor 16911, West Java, Indonesia
| |
Collapse
|
25
|
Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021; 78:3921-3940. [PMID: 33532865 PMCID: PMC7853169 DOI: 10.1007/s00018-021-03759-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
The emergence and re-emergence of viral epidemics and the risks of antiviral drug resistance are a serious threat to global public health. New options to supplement or replace currently used drugs for antiviral therapy are urgently needed. The research in the field of ribosomally synthesized and post-translationally modified peptides (RiPPs) has been booming in the last few decades, in particular in view of their strong antimicrobial activities and high stability. The RiPPs with antiviral activity, especially those against enveloped viruses, are now also gaining more interest. RiPPs have a number of advantages over small molecule drugs in terms of specificity and affinity for targets, and over protein-based drugs in terms of cellular penetrability, stability and size. Moreover, the great engineering potential of RiPPs provides an efficient way to optimize them as potent antiviral drugs candidates. These intrinsic advantages underscore the good therapeutic prospects of RiPPs in viral treatment. With the aim to highlight the underrated antiviral potential of RiPPs and explore their development as antiviral drugs, we review the current literature describing the antiviral activities and mechanisms of action of RiPPs, discussing the ongoing efforts to improve their antiviral potential and demonstrate their suitability as antiviral therapeutics. We propose that antiviral RiPPs may overcome the limits of peptide-based antiviral therapy, providing an innovative option for the treatment of viral disease.
Collapse
Affiliation(s)
- Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Ate H Jaarsma
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
26
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
27
|
Stout CN, Renata H. Reinvigorating the Chiral Pool: Chemoenzymatic Approaches to Complex Peptides and Terpenoids. Acc Chem Res 2021; 54:1143-1156. [PMID: 33543931 DOI: 10.1021/acs.accounts.0c00823] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biocatalytic transformations that leverage the selectivity and efficiency of enzymes represent powerful tools for the construction of complex natural products. Enabled by innovations in genome mining, bioinformatics, and enzyme engineering, synthetic chemists are now more than ever able to develop and employ enzymes to solve outstanding chemical problems, one of which is the reliable and facile generation of stereochemistry within natural product scaffolds. In recognition of this unmet need, our group has sought to advance novel chemoenzymatic strategies to both expand and reinvigorate the chiral pool. Broadly defined, the chiral pool comprises cheap, enantiopure feedstock chemicals that serve as popular foundations for asymmetric total synthesis. Among these building blocks, amino acids and enantiopure terpenes, whose core structures can be mapped onto several classes of structurally and pharmaceutically intriguing natural products, are of particular interest to the synthetic community.In this Account, we summarize recent efforts from our group in leveraging biocatalytic transformations to expand the chiral pool, as well as efforts toward the efficient application of these transformations in natural products total synthesis, the ultimate testing ground for any novel methodology. First, we describe several examples of enzymatic generation of noncanonical amino acids as means to simplify the synthesis of peptide natural products. By extracting amino acid hydroxylases from native biosynthetic pathways, we obtain efficient access to hydroxylated variants of proline, lysine, arginine, and their derivatives. The newly installed hydroxyl moiety then becomes a chemical handle that can facilitate additional complexity generation, thereby expanding the pool of amino acid-derived building blocks available for peptide synthesis. Next, we present our efforts in enzymatic C-H oxidations of diverse terpene scaffolds, in which traditional chemistry can be combined with strategic applications of biocatalysis to selectively and efficiently derivatize several commercial terpenoid skeletons. The synergistic logic of this approach enables a small handful of synthetic intermediates to provide access to a plethora of terpenoid natural product families. Taken together, these findings demonstrate the advantages of applying enzymes in total synthesis in conjunction with established methodologies, as well as toward the expansion of the chiral pool to enable facile incorporation of stereochemistry during synthetic campaigns.
Collapse
Affiliation(s)
- Carter N. Stout
- Department of Chemistry, Scripps Research, 110 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, Scripps Research, 110 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
28
|
Zeb M, Lee CH. Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules 2021; 26:E251. [PMID: 33419035 PMCID: PMC7825331 DOI: 10.3390/molecules26020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mushrooms, the fruiting bodies of fungi, are known for a long time in different cultures around the world to possess medicinal properties and are used to treat various human diseases. Mushrooms that are parts of traditional medicine in Asia had been extensively studied and this has led to identification of their bioactive ingredients. North America, while home to one of the world's largest and diverse ecological systems, has not subjected its natural resources especially its diverse array of mushroom species for bioprospecting purposes: Are mushrooms native to North America a good source for drug discovery? In this review, we compile all the published studies up to September 2020 on the bioprospecting of North American mushrooms. Out of the 79 species that have been investigated for medicinal properties, 48 species (60%) have bioactivities that have not been previously reported. For a mere 16 selected species, 17 new bioactive compounds (10 small molecules, six polysaccharides and one protein) have already been isolated. The results from our literature search suggest that mushrooms native to North America are indeed a good source for drug discovery.
Collapse
Affiliation(s)
| | - Chow H. Lee
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| |
Collapse
|
29
|
Erken MT, Cansaran-Duman D, Tanman U. In silico prediction of type I PKS gene modules in nine lichenized fungi. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1879679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
| | - Demet Cansaran-Duman
- System Biotechnology Advance Research Unit, Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Ummugulsum Tanman
- System Biotechnology Advance Research Unit, Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Stahlecker J, Mingyar E, Ziemert N, Mungan MD. SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance. Molecules 2020; 26:molecules26010144. [PMID: 33396183 PMCID: PMC7795190 DOI: 10.3390/molecules26010144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 01/05/2023] Open
Abstract
The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline.
Collapse
Affiliation(s)
- Jason Stahlecker
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (J.S.); (E.M.); (N.Z.)
| | - Erik Mingyar
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (J.S.); (E.M.); (N.Z.)
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (J.S.); (E.M.); (N.Z.)
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 38124 Tübingen, Germany
| | - Mehmet Direnç Mungan
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (J.S.); (E.M.); (N.Z.)
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 38124 Tübingen, Germany
- Correspondence:
| |
Collapse
|
31
|
Hwang N, Pei Y, Clement J, Robertson ES, Du Y. Identification of a 3-β-homoalanine conjugate of brusatol with reduced toxicity in mice. Bioorg Med Chem Lett 2020; 30:127553. [PMID: 32971261 DOI: 10.1016/j.bmcl.2020.127553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Brusatol, a quassinoid natural product, is effective against multiple diseases including hematologic malignancies, as we reported recently by targeting the PI3Kγ isoform, but toxicity limits its further development. Herein, we report the synthesis of a series of conjugates of brusatol with amino acids and short peptides at its enolic hydroxyl at C-3. A number of conjugates with smaller amino acids and peptides demonstrated activities comparable to brusatol. Through in vitro and in vivo evaluations, we identified UPB-26, a conjugate of brusatol with a L- β-homoalanine, which exhibits good chemical stability at physiological pH's (SGF and SIF), moderate rate of conversion to brusatol in both human and rat plasmas, improved mouse liver microsomal stability, and most encouragingly, enhanced safety compared to brusatol in mice upon IP administration.
Collapse
Affiliation(s)
- Nicky Hwang
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, and the Tumor Virology Program, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA, USA.
| |
Collapse
|
32
|
Rapid SERS Detection of Thiol-Containing Natural Products in Culturing Complex. Int J Anal Chem 2020; 2020:9271236. [PMID: 32802063 PMCID: PMC7416272 DOI: 10.1155/2020/9271236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
Thiol-containing natural products possess a wide range of bioactivities. The burst of synthetic biology technology facilitates the discovery of new thiol-containing active ingredients. Herein, we report a sensitive, quick, and robust surface-enhanced Raman scattering technology for specific and multiplex detection of thiol-containing compounds without purification requirements and also indicating the thiols with different chemical environments. Using this platform, we successfully demonstrated the simultaneous detection of thiol-containing compounds from as low as 1 μM of analytes spiked in complex culture matrices.
Collapse
|
33
|
Qiao Y, Hayashi H, Chong Teo S. Chemical Toolbox to Decode the Microbiota Lexicon. Chem Asian J 2020; 15:2117-2128. [PMID: 32558250 DOI: 10.1002/asia.202000541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/14/2020] [Indexed: 12/15/2022]
Abstract
The human microbiota deploys a diverse range of molecules and metabolites to engage in chemical communications with the host, mediating fundamental aspects of host health. Studies of the structures and activities of bioactive molecules produced by the microbiota are imperative to address their implications in microbiota associated diseases in human. By drawing experiences from different research fields, chemists and chemical biologists, who are experts in dealing with chemical molecules, are uniquely positioned to contribute to the emerging knowledge of human microbiota. In this minireview, we discuss the current chemical tools and methods that are pertinent to the discovery of microbiota molecules and metabolites, characterizations of their protein targets, as well as evaluations of their biodistributions in hosts. These are key aspects in understanding the chemical underpinnings of the microbiota-host interactions that would enable future development of diagnostics and therapeutics targeting the human microbiota.
Collapse
Affiliation(s)
- Yuan Qiao
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Hirohito Hayashi
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| | - Seng Chong Teo
- School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University (NTU), 21 Nanyang Link, CBC 04-22, Singapore, 637371, Singapore
| |
Collapse
|
34
|
Mutwil M. Computational approaches to unravel the pathways and evolution of specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:38-46. [PMID: 32200228 DOI: 10.1016/j.pbi.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/19/2020] [Accepted: 01/31/2020] [Indexed: 05/13/2023]
Abstract
Specialized metabolites serve as a chemical arsenal that protects plants from abiotic stress, pathogens, and herbivores, and they are an essential component of our nutrition and medicine. Despite their importance, we are still at the beginning of unravelling biosynthetic pathways that produce these compounds, which is needed to produce more resilient and nutritious crops, expand our inventory of useful biomolecules, and give valuable insights into plant evolution. This review focuses on the evolution of specialized metabolism in the plant kingdom and the state-of-the-art approaches used to identify the biosynthetic pathways of these useful compounds.
Collapse
Affiliation(s)
- Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
35
|
Ma Z, Lu Y, Yang F, Li S, He X, Gao Y, Zhang G, Ren E, Wang Y, Kang X. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways. Toxicol Appl Pharmacol 2020; 397:115014. [PMID: 32320792 DOI: 10.1016/j.taap.2020.115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI. Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1β and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IκB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Fengguang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shaoping Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xuegang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yicheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Enhui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Gansu 730000, China.
| |
Collapse
|
36
|
Ma L, Wang H, Wang J, Liu L, Zhang S, Bu M. Novel Steroidal 5α,8α-Endoperoxide Derivatives with Semicarbazone/Thiosemicarbazone Side-chain as Apoptotic Inducers through an Intrinsic Apoptosis Pathway: Design, Synthesis and Biological Studies. Molecules 2020; 25:molecules25051209. [PMID: 32156024 PMCID: PMC7179397 DOI: 10.3390/molecules25051209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
A series of novel steroidal 5α,8α-endoperoxide derivatives bearing semicarbazone (7a–g) or thiosemicarbazone (7h–k) side chain were designed, synthesized and evaluated for their cytotoxicities in four human cancer cell lines (HepG2, HCT-116, MCF-7, and A549) using the MTT assay in vitro. The results showed that compound 7j exhibited significant cytotoxic activity against HepG2 cells (IC50 = 3.52 μM), being more potent than ergosterol peroxide. Further cellular mechanism studies in HepG2 cells indicated that compound 7j triggered the mitochondrial-mediated apoptosis by decreasing mitochondrial membrane potential (MMP), which was associated with up-regulation of Bax, down-regulation of Bcl-2, activation levels of the caspase cascade, and formation of reactive oxygen species (ROS). The above findings indicated that compound 7j may be used as a promising skeleton for antitumor agents with improved efficacy.
Collapse
Affiliation(s)
- Liwei Ma
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China;
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
| | - Song Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar 161006, China;
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (H.W.); (J.W.); (L.L.)
- Correspondence: ; Tel.: +86-0452-266-3881
| |
Collapse
|
37
|
Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast. Nat Protoc 2020; 15:734-749. [PMID: 32005981 DOI: 10.1038/s41596-019-0280-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022]
Abstract
Here, we describe an extension of our original transformation-associated recombination (TAR) cloning protocol, enabling selective isolation of DNA segments from microbial genomes. The technique is based on the previously described TAR cloning procedure developed for isolation of a desirable region from mammalian genomes that are enriched in autonomously replicating sequence (ARS)-like sequences, elements that function as the origin of replication in yeast. Such sequences are not common in microbial genomes. In this Protocol Extension, an ARS is inserted into the TAR vector along with a counter-selectable marker, allowing for selection of cloning events against vector circularization. Pre-treatment of microbial DNA with CRISPR-Cas9 to generate double-stranded breaks near the targeted sequences greatly increases the yield of region-positive colonies. In comparison to other available methods, this Protocol Extension allows selective isolation of any region from microbial genomes as well as from environmental DNA samples. The entire procedure can be completed in 10 d.
Collapse
|
38
|
Yeo WL, Heng E, Tan LL, Lim YW, Ching KC, Tsai DJ, Jhang YW, Lauderdale TL, Shia KS, Zhao H, Ang EL, Zhang MM, Lim YH, Wong FT. Biosynthetic engineering of the antifungal, anti-MRSA auroramycin. Microb Cell Fact 2020; 19:3. [PMID: 31906943 PMCID: PMC6943886 DOI: 10.1186/s12934-019-1274-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Using an established CRISPR-Cas mediated genome editing technique for streptomycetes, we explored the combinatorial biosynthesis potential of the auroramycin biosynthetic gene cluster in Streptomyces roseosporous. Auroramycin is a potent anti-MRSA polyene macrolactam. In addition, auroramycin has antifungal activities, which is unique among structurally similar polyene macrolactams, such as incednine and silvalactam. In this work, we employed different engineering strategies to target glycosylation and acylation biosynthetic machineries within its recently elucidated biosynthetic pathway. Auroramycin analogs with variations in C-, N- methylation, hydroxylation and extender units incorporation were produced and characterized. By comparing the bioactivity profiles of five of these analogs, we determined that unique disaccharide motif of auroramycin is essential for its antimicrobial bioactivity. We further demonstrated that C-methylation of the 3, 5-epi-lemonose unit, which is unique among structurally similar polyene macrolactams, is key to its antifungal activity.
Collapse
Affiliation(s)
- Wan Lin Yeo
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Elena Heng
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore
| | - Lee Ling Tan
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore
| | - Yi Wee Lim
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Kuan Chieh Ching
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - De-Juin Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Yi Wun Jhang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes (NHRI), Zhunan, Miaoli, Taiwan
| | - Huimin Zhao
- Departments of Chemical and Biomolecular Engineering, Chemistry, Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ee Lui Ang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore
| | - Mingzi M Zhang
- Metabolic Engineering, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yee Hwee Lim
- Integrated Bio & Organic Chemistry, Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, A*STAR, Biopolis, Singapore.
| | - Fong T Wong
- Molecular Engineering Laboratory, Institute of Bioengineering and Nanotechnology, A*STAR, Biopolis, Singapore.
| |
Collapse
|
39
|
Xu W, Klumbys E, Ang EL, Zhao H. Emerging molecular biology tools and strategies for engineering natural product biosynthesis. Metab Eng Commun 2019; 10:e00108. [PMID: 32547925 PMCID: PMC7283510 DOI: 10.1016/j.mec.2019.e00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products and their related derivatives play a significant role in drug discovery and have been the inspiration for the design of numerous synthetic bioactive compounds. With recent advances in molecular biology, numerous engineering tools and strategies were established to accelerate natural product synthesis in both academic and industrial settings. However, many obstacles in natural product biosynthesis still exist. For example, the native pathways are not appropriate for research or production; the key enzymes do not have enough activity; the native hosts are not suitable for high-level production. Emerging molecular biology tools and strategies have been developed to not only improve natural product titers but also generate novel bioactive compounds. In this review, we will discuss these emerging molecular biology tools and strategies at three main levels: enzyme level, pathway level, and genome level, and highlight their applications in natural product discovery and development.
Collapse
Affiliation(s)
- Wei Xu
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Evaldas Klumbys
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Ee Lui Ang
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore
| | - Huimin Zhao
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology, and Research, Singapore.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
40
|
Sinha R, Sharma B, Dangi AK, Shukla P. Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development. World J Microbiol Biotechnol 2019; 35:166. [DOI: 10.1007/s11274-019-2746-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/13/2019] [Indexed: 02/08/2023]
|
41
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Hu SS, Liang MJ, Mi QL, Chen W, Ling J, Chen X, Li J, Yang GY, Hu QF, Wang WG, Guo YD. Two New Diphenyl Ether Derivatives from the Fermentation Products of the Endophytic Fungus Phomopsis asparagi. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02828-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36:1281-1294. [PMID: 31453623 DOI: 10.1039/c9np00023b] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time span of literature covered: 2010-2018The genome mining of streptomycetes has revealed their great biosynthetic potential to produce novel natural products. One of the most promising exploitation routes of this biosynthetic potential is the refactoring and heterologous expression of corresponding biosynthetic gene clusters in a panel of specifically selected and optimized chassis strains. This article will review selected recent reports on heterologous production of natural products in streptomycetes. In the first part, the importance of heterologous production for drug discovery will be discussed. In the second part, the review will discuss recently developed genetic control elements (such as promoters, ribosome binding sites, terminators) and their application to achieve successful heterologous expression of biosynthetic gene clusters. Finally, the most widely used Streptomyces hosts for heterologous expression of biosynthetic gene clusters will be compared in detail. The article will be of interest to natural product chemists, molecular biologists, pharmacists and all individuals working in the natural products drug discovery field.
Collapse
Affiliation(s)
| | - Andriy Luzhetskyy
- Saarland University, Department Pharmacy, Saarbrücken, Germany and Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
| |
Collapse
|
44
|
Yang HY, Duan YQ, Yang YK, Liu X, Ye L, Mi QL, Kong WS, Zhou M, Yang GY, Hu QF, Li XM, Li J. Two New Diphenyl Ether Derivatives from the Fermentation Products of an Endophytic Fungus Phomopsis fukushii. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02706-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Oueis E, Klefisch T, Zaburannyi N, Garcia R, Plaza A, Müller R. Two Biosynthetic Pathways in Jahnella thaxteri for Thaxteramides, Distinct Types of Lipopeptides. Org Lett 2019; 21:5407-5412. [PMID: 31184172 DOI: 10.1021/acs.orglett.9b01524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The structures of five linear lipopeptides, thaxteramides A1, A2, B1, B2, and C isolated from the myxobacterium Jahnella thaxteri, were elucidated. They have a C-terminal common tetrapeptidic Tyr-Gly-β-Ala-Tyr core but differ in the stereochemistry of the tyrosine units, methylations, the remaining amino acids, and the N-terminal polyketide. In silico analysis of the genome sequence complemented with feeding experiments revealed two distinct hybrid PKS/NRPS gene clusters. Three semisynthesized cyclic analogues were found to inhibit the growth of Gram-positive bacteria.
Collapse
Affiliation(s)
- Emilia Oueis
- Department of microbial natural products , Helmholtz-institute for pharmaceutical research Saarland (HIPS), Helmholtz center for infection research (HZI) , Campus E8.1 , 66123 Saarbrücken , Germany
| | - Thorsten Klefisch
- Department of microbial natural products , Helmholtz-institute for pharmaceutical research Saarland (HIPS), Helmholtz center for infection research (HZI) , Campus E8.1 , 66123 Saarbrücken , Germany
| | - Nestor Zaburannyi
- Department of microbial natural products , Helmholtz-institute for pharmaceutical research Saarland (HIPS), Helmholtz center for infection research (HZI) , Campus E8.1 , 66123 Saarbrücken , Germany
| | - Ronald Garcia
- Department of microbial natural products , Helmholtz-institute for pharmaceutical research Saarland (HIPS), Helmholtz center for infection research (HZI) , Campus E8.1 , 66123 Saarbrücken , Germany.,German Centre for Infection Research (DZIF) , Partner Site Hannover , 38124 Braunschweig , Germany
| | - Alberto Plaza
- Department of microbial natural products , Helmholtz-institute for pharmaceutical research Saarland (HIPS), Helmholtz center for infection research (HZI) , Campus E8.1 , 66123 Saarbrücken , Germany
| | - Rolf Müller
- Department of microbial natural products , Helmholtz-institute for pharmaceutical research Saarland (HIPS), Helmholtz center for infection research (HZI) , Campus E8.1 , 66123 Saarbrücken , Germany.,German Centre for Infection Research (DZIF) , Partner Site Hannover , 38124 Braunschweig , Germany
| |
Collapse
|
46
|
Liang Y, Zou Y, Niu C, Niu Y. Astragaloside IV and ferulic acid synergistically promote neurite outgrowth through Nrf2 activation. Mech Ageing Dev 2019; 180:70-81. [PMID: 30978363 DOI: 10.1016/j.mad.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022]
Abstract
Recently, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) have nuclear localization and nuclear exclusion signals and shuttle between the cytoplasm and the nucleus. Thus, we hypothesised that astragaloside IV (AS-IV) induction nuclear import of Nrf2 and ferulic acid (FA) inhibition nuclear export of Nrf2 contribute to synergistic antioxidant effects of combination of FA and AS-IV (FA/AS-IV). Here, we have demonstrated that FA/AS-IV enhances neurite outgrowth of PC12 cells challenged with lead acetate (PbAc) via antioxidant properties in a synergistic manner. Concomitantly, FA/AS-IV significantly promotes Nrf2 activation and induces "phase-II'' enzymes during PbAc toxicity, compared with either FA or AS-IV alone. Interestingly, FA but not AS-IV activates the extracellular signal-regulated kinases 1 and 2 (ERK1/2), leading to an increase in both de novo synthesis of Nrf2 and nuclear import of Nrf2. Simultaneously, AS-IV but not FA suppresses Fyn phosphorylation via Akt-mediated inhibition of GSK-3β, which inhibited nuclear export of Nrf2. Importantly, dual activation of both ERK1/2 and Akt by FA/AS-IV in PC12 cells challenged with PbAc is mediated by independent mechanisms, which are supported by pharmacological inhibitors. Collectively, these results support the notion that the FA/AS-IV may be promising in therapy for lead developmental neurotoxicity. This combination deserves further study in vivo.
Collapse
Affiliation(s)
- Yini Liang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Zou
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Chengu Niu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
47
|
Gao YH, Zheng R, Li J, Kong WS, Liu X, Ye L, Mi QL, Kong WS, Zhou M, Yang GY, Hu QF, Du G, Yang HY, Li XM. Three new diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:316-322. [PMID: 29338435 DOI: 10.1080/10286020.2017.1421177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Three new diphenyl ethers (1-3), together with four known isopentylated diphenyl ethers derivatives (4-7), were isolated from the fermentation products of an endophytic fungus Phomopsis fukushii. Their structures were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compounds 1-3 were evaluated for their anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity. The results revealed that compounds 1 and 2 showed strong inhibitions with inhibition zone diameters (IZD) of 20.2 ± 2.5 mm and 17.9 ± 2.2 mm, respectively. Compound 3 also showed good inhibition with IZD 15.2 ± 1.8 mm. The IZD data of compound 1 is close to that of positive control with IZD 21.9 ± 2.1 mm.
Collapse
Affiliation(s)
- Yu-Hong Gao
- a Department of Clinical Laboratories , The First People's Hospital of Yunnan Province , Kunming 650032 , China
| | - Rui Zheng
- a Department of Clinical Laboratories , The First People's Hospital of Yunnan Province , Kunming 650032 , China
| | - Jing Li
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Wei-Song Kong
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Xin Liu
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Lin Ye
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Qi-Li Mi
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Wei-Song Kong
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Min Zhou
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Guang-Yu Yang
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Qiu-Fen Hu
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Gang Du
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Hai-Ying Yang
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Xue-Mei Li
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| |
Collapse
|
48
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
49
|
Olotu FA, Munsamy G, Soliman MES. Does Size Really Matter? Probing the Efficacy of Structural Reduction in the Optimization of Bioderived Compounds - A Computational "Proof-of-Concept". Comput Struct Biotechnol J 2018; 16:573-586. [PMID: 30546858 PMCID: PMC6280605 DOI: 10.1016/j.csbj.2018.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023] Open
Abstract
Over the years, numerous synthetic approaches have been utilized in drug design to improve the pharmacological properties of naturally derived compounds and most importantly, minimize toxic effects associated with their transition to drugs. The reduction of complex bioderived compounds to simpler bioactive fragments has been identified as a viable strategy to develop lead compounds with improved activities and minimal toxicities. Although this ‘reductive’ strategy has been widely exemplified, underlying biological events remain unresolved, hence the unanswered question remains how does the fragmentation of a natural compound improve its bioactivity and reduce toxicities? Herein, using a combinatorial approach, we initialize a computational “proof-of- concept” to expound the differential pharmacological and antagonistic activities of a natural compound, Anguinomycin D, and its synthetic fragment, SB640 towards Exportin Chromosome Region Maintenance 1 (CRM1). Interestingly, our findings revealed that in comparison with the parent compound, SB640 exhibited improved pharmacological attributes, while toxicities and off-target activities were relatively minimal. Moreover, we observed that the reduced size of SB640 allowed ‘deep access’ at the Nuclear Export Signals (NES) binding groove of CRM1, which favored optimal and proximal positioning towards crucial residues while the presence of the long polyketide tail in Anguinomycin D constrained its burial at the hydrophobic groove. Furthermore, with regards to their antagonistic functions, structural inactivation (rigidity) was more pronounced in CRM1 when bound by SB640 as compared to Anguinomycin D. These findings provide essential insights that portray synthetic fragmentation of natural compounds as a feasible approach towards the discovery of potential leads in disease treatment.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Geraldene Munsamy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
50
|
Heterologous expression-facilitated natural products' discovery in actinomycetes. J Ind Microbiol Biotechnol 2018; 46:415-431. [PMID: 30446891 DOI: 10.1007/s10295-018-2097-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
Actinomycetes produce many of the drugs essential for human and animal health as well as crop protection. Genome sequencing projects launched over the past two decades reveal dozens of cryptic natural product biosynthetic gene clusters in each actinomycete genome that are not expressed under regular laboratory conditions. This so-called 'chemical dark matter' represents a potentially rich untapped resource for drug discovery in the genomic era. Through improved understanding of natural product biosynthetic logic coupled with the development of bioinformatic and genetic tools, we are increasingly able to access this 'dark matter' using a wide variety of strategies with downstream potential application in drug development. In this review, we discuss recent research progress in the field of cloning of natural product biosynthetic gene clusters and their heterologous expression in validating the potential of this methodology to drive next-generation drug discovery.
Collapse
|