1
|
Gupta YD, Bhandary S. Artificial Intelligence for Understanding Mechanisms of Antimicrobial Resistance and Antimicrobial Discovery. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DRUG DESIGN AND DEVELOPMENT 2024:117-156. [DOI: 10.1002/9781394234196.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Serafim MSM, Kronenberger T, Rocha REO, Rosa ADRA, Mello TLG, Poso A, Ferreira RS, Abrahão JS, Kroon EG, Mota BEF, Maltarollo VG. Aminopyrimidine Derivatives as Multiflavivirus Antiviral Compounds Identified from a Consensus Virtual Screening Approach. J Chem Inf Model 2024; 64:393-411. [PMID: 38194508 DOI: 10.1021/acs.jcim.3c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Around three billion people are at risk of infection by the dengue virus (DENV) and potentially other flaviviruses. Worldwide outbreaks of DENV, Zika virus (ZIKV), and yellow fever virus (YFV), the lack of antiviral drugs, and limitations on vaccine usage emphasize the need for novel antiviral research. Here, we propose a consensus virtual screening approach to discover potential protease inhibitors (NS3pro) against different flavivirus. We employed an in silico combination of a hologram quantitative structure-activity relationship (HQSAR) model and molecular docking on characterized binding sites followed by molecular dynamics (MD) simulations, which filtered a data set of 7.6 million compounds to 2,775 hits. Lastly, docking and MD simulations selected six final potential NS3pro inhibitors with stable interactions along the simulations. Five compounds had their antiviral activity confirmed against ZIKV, YFV, DENV-2, and DENV-3 (ranging from 4.21 ± 0.14 to 37.51 ± 0.8 μM), displaying aggregator characteristics for enzymatic inhibition against ZIKV NS3pro (ranging from 28 ± 7 to 70 ± 7 μM). Taken together, the compounds identified in this approach may contribute to the design of promising candidates to treat different flavivirus infections.
Collapse
Affiliation(s)
- Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Rafael Eduardo Oliveira Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Amanda Del Rio Abreu Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Thaysa Lara Gonçalves Mello
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
- Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Tübingen 70211, Germany
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Jonatas Santos Abrahão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
3
|
Almeida RL, Maltarollo VG, Coelho FGF. Overcoming class imbalance in drug discovery problems: Graph neural networks and balancing approaches. J Mol Graph Model 2024; 126:108627. [PMID: 37801808 DOI: 10.1016/j.jmgm.2023.108627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
This research investigates the application of Graph Neural Networks (GNNs) to enhance the cost-effectiveness of drug development, addressing the limitations of cost and time. Class imbalances within classification datasets, such as the discrepancy between active and inactive compounds, give rise to difficulties that can be resolved through strategies like oversampling, undersampling, and manipulation of the loss function. A comparison is conducted between three distinct datasets using three different GNN architectures. This benchmarking research can steer future investigations and enhance the efficacy of GNNs in drug discovery and design. Three hundred models for each combination of architecture and dataset were trained using hyperparameter tuning techniques and evaluated using a range of metrics. Notably, the oversampling technique outperforms eight experiments, showcasing its potential. While balancing techniques boost imbalanced dataset models, their efficacy depends on dataset specifics and problem type. Although oversampling aids molecular graph datasets, more research is needed to optimize its usage and explore other class imbalance solutions.
Collapse
Affiliation(s)
- Rafael Lopes Almeida
- Graduate Program in Electrical Engineering - Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| | - Vinícius Gonçalves Maltarollo
- Department of Pharmaceutical Products - Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil.
| | - Frederico Gualberto Ferreira Coelho
- Department of Electronical Engineering - Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|
4
|
Mohiuddin A, Mondal S. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infect Disord Drug Targets 2023; 23:IDDT-EPUB-133706. [PMID: 37584349 PMCID: PMC11348471 DOI: 10.2174/1871526523666230816151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Positive strides have been achieved in developing vaccines to combat the coronavirus-2019 infection (COVID-19) pandemic. Still, the outline of variations, particularly the most current delta divergent, has posed significant health encounters for people. Therefore, developing strong treatment strategies, such as an anti-COVID-19 medicine plan, may help deal with the pandemic more effectively. During the COVID-19 pandemic, some drug design techniques were effectively used to develop and substantiate relevant critical medications. Extensive research, both experimental and computational, has been dedicated to comprehending and characterizing the devastating COVID-19 disease. The urgency of the situation has led to the publication of over 130,000 COVID-19-related research papers in peer-reviewed journals and preprint servers. A significant focus of these efforts has been the identification of novel drug candidates and the repurposing of existing drugs to combat the virus. Many projects have utilized computational or computer-aided approaches to facilitate their studies. In this overview, we will explore the key computational methods and their applications in the discovery of small-molecule therapeutics for COVID-19, as reported in the research literature. We believe that the true effectiveness of computational tools lies in their ability to provide actionable and experimentally testable hypotheses, which in turn facilitate the discovery of new drugs and combinations thereof. Additionally, we recognize that open science and the rapid sharing of research findings are vital in expediting the development of much-needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Abu Mohiuddin
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| | - Sumanta Mondal
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| |
Collapse
|
5
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Veríssimo GC, Serafim MSM, Kronenberger T, Ferreira RS, Honorio KM, Maltarollo VG. Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opin Drug Discov 2022; 17:929-947. [PMID: 35983695 DOI: 10.1080/17460441.2022.2114451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Modern drug discovery generally is accessed by useful information from previous large databases or uncovering novel data. The lack of biological and/or chemical data tends to slow the development of scientific research and innovation. Here, approaches that may help provide solutions to generate or obtain enough relevant data or improve/accelerate existing methods within the last five years were reviewed. AREAS COVERED One-shot learning (OSL) approaches, structural modeling, molecular docking, scoring function space (SFS), molecular dynamics (MD), and quantum mechanics (QM) may be used to amplify the amount of available data to drug design and discovery campaigns, presenting methods, their perspectives, and discussions to be employed in the near future. EXPERT OPINION Recent works have successfully used these techniques to solve a range of issues in the face of data scarcity, including complex problems such as the challenging scenario of drug design aimed at intrinsically disordered proteins and the evaluation of potential adverse effects in a clinical scenario. These examples show that it is possible to improve and kickstart research from scarce available data to design and discover new potential drugs.
Collapse
Affiliation(s)
- Gabriel C Veríssimo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mateus Sá M Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thales Kronenberger
- Department of Medical Oncology and Pneumology, Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kathia M Honorio
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
7
|
Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, Ray TK, Uddin MB, Kali MSK, Dua K, Kamal MA, Chellappan DK. Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance. Bioengineering (Basel) 2022; 9:bioengineering9080335. [PMID: 35892749 PMCID: PMC9332125 DOI: 10.3390/bioengineering9080335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Sayedul Abrar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence:
| |
Collapse
|
8
|
Wang J, Zhang Y, Nie W, Luo Y, Deng L. Computational anti-COVID-19 drug design: progress and challenges. Brief Bioinform 2022; 23:bbab484. [PMID: 34850817 PMCID: PMC8690229 DOI: 10.1093/bib/bbab484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.
Collapse
Affiliation(s)
- Jinxian Wang
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, 150001, Harbin, China
| | - Wenjuan Nie
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Yi Luo
- School of Science, The University of Auckland,Auckland 1010, Auckland, New Zealand
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| |
Collapse
|
9
|
Machine learning & deep learning in data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry. Future Med Chem 2021; 14:245-270. [PMID: 34939433 DOI: 10.4155/fmc-2021-0243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Predicting novel small molecule bioactivities for the target deconvolution, hit-to-lead optimization in drug discovery research, requires molecular representation. Previous reports have demonstrated that machine learning (ML) and deep learning (DL) have substantial implications in virtual screening, peptide synthesis, drug ADMET screening and biomarker discovery. These strategies can increase the positive outcomes in the drug discovery process without false-positive rates and can be achieved in a cost-effective way with a minimum duration of time by high-quality data acquisition. This review substantially discusses the recent updates in AI tools as cheminformatics application in medicinal chemistry for the data-driven decision making of drug discovery and challenges in high-quality data acquisition in the pharmaceutical industry while improving small-molecule bioactivities and properties.
Collapse
|
10
|
Liu Q, Wan J, Wang G. A survey on computational methods in discovering protein inhibitors of SARS-CoV-2. Brief Bioinform 2021; 23:6384382. [PMID: 34623382 PMCID: PMC8524468 DOI: 10.1093/bib/bbab416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
The outbreak of acute respiratory disease in 2019, namely Coronavirus Disease-2019 (COVID-19), has become an unprecedented healthcare crisis. To mitigate the pandemic, there are a lot of collective and multidisciplinary efforts in facilitating the rapid discovery of protein inhibitors or drugs against COVID-19. Although many computational methods to predict protein inhibitors have been developed [
1–
5], few systematic reviews on these methods have been published. Here, we provide a comprehensive overview of the existing methods to discover potential inhibitors of COVID-19 virus, so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First, we briefly categorize and describe computational approaches by the basic algorithms involved in. Then we review the related biological datasets used in such predictions. Furthermore, we emphatically discuss current knowledge on SARS-CoV-2 inhibitors with the latest findings and development of computational methods in uncovering protein inhibitors against COVID-19.
Collapse
Affiliation(s)
- Qiaoming Liu
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| | - Jun Wan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guohua Wang
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China.,Information and Computer Engineering College, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
11
|
Fernandes PO, Martins DM, de Souza Bozzi A, Martins JPA, de Moraes AH, Maltarollo VG. Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking. Mol Divers 2021; 25:1301-1314. [PMID: 34191245 PMCID: PMC8241884 DOI: 10.1007/s11030-021-10261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Abelson kinase (c-Abl) is a non-receptor tyrosine kinase involved in several biological processes essential for cell differentiation, migration, proliferation, and survival. This enzyme's activation might be an alternative strategy for treating diseases such as neutropenia induced by chemotherapy, prostate, and breast cancer. Recently, a series of compounds that promote the activation of c-Abl has been identified, opening a promising ground for c-Abl drug development. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) methodologies have significantly impacted recent drug development initiatives. Here, we combined SBDD and LBDD approaches to characterize critical chemical properties and interactions of identified c-Abl's activators. We used molecular docking simulations combined with tree-based machine learning models-decision tree, AdaBoost, and random forest to understand the c-Abl activators' structural features required for binding to myristoyl pocket, and consequently, to promote enzyme and cellular activation. We obtained predictive and robust models with Matthews correlation coefficient values higher than 0.4 for all endpoints and identified characteristics that led to constructing a structure-activity relationship model (SAR).
Collapse
Affiliation(s)
- Philipe Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Magno Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline de Souza Bozzi
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adolfo Henrique de Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|