1
|
Shen S, Hu M, Peng Y, Zheng Y, Zhang R. Research Progress in pathogenesis of connective tissue disease-associated interstitial lung disease from the perspective of pulmonary cells. Autoimmun Rev 2024; 23:103600. [PMID: 39151642 DOI: 10.1016/j.autrev.2024.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
The lungs are a principal factor in the increased morbidity and mortality observed in patients with Connective Tissue Disease (CTD), frequently presenting as CTD-associated Interstitial Lung Disease (ILD). Currently, there is a lack of comprehensive descriptions of the pulmonary cells implicated in the development of CTD-ILD. This review leverages the Human Lung Cell Atlas (HLCA) and spatial multi-omics atlases to discuss the advancements in research on the pathogenesis of CTD-ILD from a pulmonary cell perspective. This facilitates a more precise localization of disease sites and a more systematic consideration of disease progression, supporting further mechanistic studies and targeted therapies.
Collapse
Affiliation(s)
- Shuyi Shen
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ming Hu
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Peng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yi Zheng
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Rong Zhang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
2
|
Fang Q, Xie J, Zong J, Zhou Y, Zhou Q, Yin S, Cao L, Yin H, Zhou D. Expression and diagnostic value of interleukin-22 in rheumatoid arthritis-associated interstitial lung disease. Int Immunopharmacol 2024; 134:112173. [PMID: 38728884 DOI: 10.1016/j.intimp.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.
Collapse
Affiliation(s)
- Quanquan Fang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Jingzhi Xie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Juan Zong
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Yu Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Qin Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Songlou Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Lina Cao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Hanqiu Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| |
Collapse
|
3
|
Anton ML, Cardoneanu A, Burlui AM, Mihai IR, Richter P, Bratoiu I, Macovei LA, Rezus E. The Lung in Rheumatoid Arthritis-Friend or Enemy? Int J Mol Sci 2024; 25:6460. [PMID: 38928165 PMCID: PMC11203675 DOI: 10.3390/ijms25126460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition frequently found in rheumatological patients that sometimes raises diagnosis and management problems. The pathogenesis of the disease is complex and involves the activation of many cells and intracellular signaling pathways, ultimately leading to the activation of the innate and acquired immune system and producing extensive tissue damage. Along with joint involvement, RA can have numerous extra-articular manifestations (EAMs), among which lung damage, especially interstitial lung disease (ILD), negatively influences the evolution and survival of these patients. Although there are more and more RA-ILD cases, the pathogenesis is incompletely understood. In terms of genetic predisposition, external environmental factors act and subsequently determine the activation of immune system cells such as macrophages, neutrophils, B and T lymphocytes, fibroblasts, and dendritic cells. These, in turn, show the ability to secrete molecules with a proinflammatory role (cytokines, chemokines, growth factors) that will produce important visceral injuries, including pulmonary changes. Currently, there is new evidence that supports the initiation of the systemic immune response at the level of pulmonary mucosa where the citrullination process occurs, whereby the autoantibodies subsequently migrate from the lung to the synovial membrane. The aim of this paper is to provide current data regarding the pathogenesis of RA-associated ILD, starting from environmental triggers and reaching the cellular, humoral, and molecular changes involved in the onset of the disease.
Collapse
Affiliation(s)
- Maria-Luciana Anton
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Maria Burlui
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
4
|
Chang B, Wang Z, Cheng H, Xu T, Chen J, Wu W, Li Y, Zhang Y. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immun 2024; 30:11-20. [PMID: 38043934 PMCID: PMC10720600 DOI: 10.1177/17534259231216852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Acute lung injury (ALI) is the leading cause of death in patients with sepsis syndrome and without effective protective or therapeutic treatments. Acacetin, a natural dietary flavonoid, reportedly exerts several biological effects, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, acacetin's effect and underlying mechanism on sepsis-induced ALI remain unclear. Here, the mouse model was established to explore the impact of acacetin on sepsis-induced ALI. Acacetin significantly increased ALI murine survival and attenuated lung injury in histological examinations. Additionally, acacetin down-regulated myeloperoxidase activity, protein concentration, and number of neutrophils and macrophages in bronchoalveolar lavage fluid. Subsequently, inflammatory cytokines, including TNF-α, IL-1β, and IL-6, were examined. Results showed that acacetin dramatically suppressed the production of TNF-α, IL-1β, and IL-6. These above results indicated that acacetin attenuated sepsis-induced ALI by inhibiting the inflammatory response. Moreover, acacetin inhibited the expression of markers for M1-type (iNOS, CD86) macrophages and promoted the expression of markers for M2-type (CD206, Arg1) macrophages by western blot. In addition, acacetin down-regulated the expression TRAF6, NF-κB, and Cyclooxygenase-2 (COX2) by western blot. The high concentration of acacetin had a better effect than the low concentration. Besides, over-expression of TRAF6 up-regulated the expression of COX2, CD86, and iNOS, and the ratio of p-NF-κB to NF-κB increased the mRNA levels of TNF-α, IL-1β, and IL-6, down-regulated the expression of CD206 and Arg1. The effects of TRAF6 were the opposite of acacetin. And TRAF6 could offset the impact of acacetin. This study demonstrated that acacetin could prevent sepsis-induced ALI by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis.
Collapse
Affiliation(s)
- Binbin Chang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hui Cheng
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Tingyuan Xu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jieyu Chen
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wan Wu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yizhi Li
- Department of Anesthesiology, The 944 Hospital of the PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Tertemiz KC, Alpaydın AÖ, Güler N, Karaçam V, Gürel D, Gezer NS. Transbronchial lung cr onchial lung cryobiopsy for the diagnosis of diffuse obiopsy for the diagnosis of diffuse parenchymal lung disease: Pitfalls and challenges, a single center experience. Turk J Med Sci 2023; 53:100-108. [PMID: 36945960 PMCID: PMC10388003 DOI: 10.55730/1300-0144.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND : Transbronchial lung cryobiopsy (TBLC) is a minimally invasive technique of the diagnosis of diffuse parenchymal lung diseases (DPLD). The aim of this study is to determine the clinical-radiological and histopathological characteristics of patients in whom cryobiopsy contributes to the diagnosis. METHODS : In this retrospective study, we searched for the medical records of patients who underwent TBLC from July 2015 to March 2020 at the pulmonology department of our university hospital clinic. Radiological images were evaluated by a chest radiologist experienced in DPLD. Prediagnosis was indicated by clinical-radiological findings. The final diagnosis was determined by the contribution of histopathological diagnosis. The agreement of pretest/posttest diagnosis and the diagnostic yield of TBLC were calculated. RESULTS Sixty-one patients with female predominance (59.0%) and current or ex-smoker (49.2%) made up the study population. We found the diagnostic yield of TBLC 88.5%. The most common radiological and clinical-radiological diagnosis was idiopathic pulmonary fibrosis (IPF) (n = 12, 19.6%) while the most common multidisciplinary final diagnosis was cryptogenic organizing pneumonia (COP) (n = 14, %22.9). The concordance of pre/posttests was significant (p < 0.001) with a kappa agreement = 0.485. The usual interstitial pneumonia (UIP) diagnosis was detected in six patients among 12 who were prediagnosed as IPF having also a suspicion of other DPLD by clinical-radiological evaluation (p < 0.001). After the contribution of TBLC, the multidisciplinary final diagnosis of 22(36.1) patients changed. The histopathological diagnosis in which the clinical-radiological diagnosis changed the most was nonspecific interstitial pneumonia (NSIP). DISCUSSION We found the overall diagnostic yield of TBLC high. The pretest clinical-radiological diagnosis was often compatible with the multidisciplinary final diagnosis. However, TBLC is useful for the confirmation of clinical radiological diagnosis as well as clinical entities such as NSIP which is difficult to diagnose clinical-radiological. We also suggest that TBLC should be considered in patients whose clinicopathological IPF diagnosis is not precise.
Collapse
Affiliation(s)
- Kemal Can Tertemiz
- Department of Respiratory Diseases, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Aylin Özgen Alpaydın
- Department of Respiratory Diseases, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Nurcan Güler
- Department of Respiratory Diseases, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Volkan Karaçam
- Department of Thoracic Surgery, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Duygu Gürel
- Department of Pathology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | | |
Collapse
|
6
|
Hao X, Wei H. LncRNA H19 alleviates sepsis-induced acute lung injury by regulating the miR-107/TGFBR3 axis. BMC Pulm Med 2022; 22:371. [PMID: 36180862 PMCID: PMC9524034 DOI: 10.1186/s12890-022-02091-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Acute lung injury (ALI) increases sepsis morbidity and mortality. LncRNA H19 plays a critical role in sepsis. miR-107 is highly-expressed and TGFβ type III receptor (TGFBR3) is poorly-expressed in sepsis, yet their roles in sepsis development require further investigation. This study aimed to investigate the mechanism of H19 in alleviating sepsis-induced ALI through the miR-107/TGFBR3 axis. METHODS Mice were intravenously injected with Ad-H19 adenovirus vector or control vector one week before establishing the mouse model of cecal ligation and puncture (CLP). Pulmonary microvascular endothelial cells (PMVECs) were transfected with oe-H19 or oe-NC plasmids and then stimulated by lipopolysaccharide (LPS). Lung injury was assessed via hematoxylin-eosin staining, measurement of wet-to-dry (W/D) ratio, and TUNEL staining. Levels of H19, miR-107, and TGFBR3 were determined by RT-qPCR. Apoptosis of PMVECs was evaluated by flow cytometry. Levels of Bax and Bcl-2 in lung tissues and PMVECs were measured using Western blot. Total protein concentration and the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF) were quantified. Levels of TNF-α, IL-1β, IL-6, and IL-10 in BALF, lung tissues, and PMVECs were measured by ELISA. Cross-linking relationships among H19, miR-107 and TGFBR3 were verified by dual-luciferase and RIP assays. RESULTS H19 was poorly-expressed in CLP-operated mice. H19 overexpression attenuated sepsis-induced ALI, which was manifested with complete alveolar structure, decreased lung injury score and lung W/D ratio, and inhibited apoptosis in CLP-operated mice, which was manifested with decreased number of TUNEL-positive cells and Bax level and increased Bcl-2 level. CLP-operated mice had increased concentration of total protein and number of total cells, neutrophils, and macrophages in BALF, which was nullified by H19 overexpression. H19 overexpression declined levels of TNF-α, IL-1β, and IL-6 and elevated IL-10 levels. H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. H19 targeted TGFBR3 as the ceRNA of miR-107. miR-107 overexpression or silencing TGFBR3 partially averted the inhibition of H19 overexpression on LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production. CONCLUSION LncRNA H19 inhibited LPS-induced PMVEC apoptosis and pro-inflammatory cytokine production and attenuated sepsis-induced ALI by targeting TGFBR3 as the ceRNA of miR-107.
Collapse
Affiliation(s)
- Xiuling Hao
- Department of Respiratory Medicine, East Hospital, The Second Hospital of Hebei Medical University, No. 80, Huanghe Avenue, East Development Zone, Shijiazhuang City, 050000, Hebei Province, People's Republic of China
| | - Huiqiang Wei
- Department of Respiratory Medicine, East Hospital, The Second Hospital of Hebei Medical University, No. 80, Huanghe Avenue, East Development Zone, Shijiazhuang City, 050000, Hebei Province, People's Republic of China.
| |
Collapse
|
7
|
Qu Z, Dou W, Zhang K, Duan L, Zhou D, Yin S. IL-22 inhibits bleomycin-induced pulmonary fibrosis in association with inhibition of IL-17A in mice. Arthritis Res Ther 2022; 24:280. [PMID: 36564791 PMCID: PMC9789559 DOI: 10.1186/s13075-022-02977-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Interstitial lung disease, a common extra-articular complication of connective tissue disease, is characterized by progressive and irreversible pulmonary inflammation and fibrosis, which causes significant mortality. IL-22 shows a potential in regulating chronic inflammation and possibly plays an anti-fibrotic role by protecting epithelial cells. However, the detailed effects and underlying mechanisms are still unclear. In this study, we explored the impact of IL-22 on pulmonary fibrosis both in vivo and in vitro. METHODS To induce pulmonary fibrosis, wild-type mice and IL-22 knockout mice were intratracheally injected with bleomycin followed by treatments with recombinant IL-22 or IL-17A neutralizing antibody. We investigated the role of IL-22 on bleomycin-induced pulmonary fibrosis and the mechanism in the possible interaction between IL-22 and IL-17A. Fibrosis-related genes were detected using RT-qPCR, western blot, and immunofluorescence. Inflammatory and fibrotic changes were assessed based on histological features. We also used A549 human alveolar epithelial cells, NIH/3T3 mouse fibroblast cells, and primary mouse lung fibroblasts to study the impact of IL-22 on fibrosis in vitro. RESULTS IL-22 knockout mice showed aggravated pulmonary fibrosis compared with wild-type mice, and injection of recombinant IL-22 decreased the severe fibrotic manifestations in IL-22 knockout mice. In cell culture assays, IL-22 decreased protein levels of Collagen I in A549 cells, NIH/3T3 cells, and primary mouse lung fibroblasts. IL-22 also reduced the protein level of Collagen I in NIH/3T3 cells which were co-cultured with T cells. Mechanistically, IL-22 reduced the Th17 cell proportion and IL-17A mRNA level in lung tissues, and treatment with an IL-17A neutralizing antibody alleviated the severe pulmonary fibrosis in IL-22 knockout mice. The IL-17A neutralizing antibody also reduced Collagen I expression in NIH/3T3 cells in vitro. Knockdown of IL-17A with siRNAs or administration of IL-22 in NIH/3T3 cells and MLFs decreased expression of Collagen I, an effect blocked by concurrent use of recombinant IL-17A. CONCLUSIONS IL-22 mediated an anti-fibrogenesis effect in the bleomycin-induced pulmonary fibrosis model and this effect was associated with inhibition of IL-17A.
Collapse
Affiliation(s)
- Ziye Qu
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Wencan Dou
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Kexin Zhang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China
| | - Lili Duan
- Department of Rheumatology, The People’s Hospital of Jiawang District of Xuzhou, Xuzhou, 221011 China
| | - Dongmei Zhou
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| | - Songlou Yin
- grid.413389.40000 0004 1758 1622Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,grid.417303.20000 0000 9927 0537The First Clinical Medicine School, Xuzhou Medical University, Xuzhou, 221002 China
| |
Collapse
|
8
|
Chen Q, Shao X, He Y, Lu E, Zhu L, Tang W. Norisoboldine Attenuates Sepsis-Induced Acute Lung Injury by Modulating Macrophage Polarization via PKM2/HIF-1α/PGC-1α Pathway. Biol Pharm Bull 2021; 44:1536-1547. [PMID: 34602563 DOI: 10.1248/bpb.b21-00457] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the effect of norisopoldine (NOR) on acute lung injury in septic mice. Lipopolysaccharide (LPS) was used to establish sepsis induced acute lung injury (ALI) in mice. The dry and wet weight of mice lung was detected, and the pathological changes of lung were observed by hematoxylin and eosin (H&E) staining. Bronchoalveolar lavage fluid (BALF) was detected. Inflammatory factors in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The polarization of macrophages in lung tissue was detected by flow cytometry. The markers of M1 and M2 macrophages were detected by RT-PCR. LPS induced RAW264.7 cells were treated with NOR. Inflammatory response, macrophage polarization, glycolysis, and M2 pyruvate kinase (PKM2)/hypoxia inducible factor-1α (HIF-1α)/peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) signaling pathway were detected. NOR could effectively alleviate sepsis induced ALI, and reduce the number of total cells, total protein concentration, neutrophils, macrophages in BALF. NOR decreased the level of inflammatory factors and promoted macrophages from M1 to M2 type in vivo and vitro. Moreover, NOR could activated PKM2, and inhibited PKM2 from cytoplasm to nuclear, attenuated HIF-1α expression, and increased PGC-1α and peroxisome proliferator-activated receptor (PPAR)-γ expression. In addition, NOR inhibited glycolysis and promoted oxidative phosphorylation in RAW264.7 cells. Furthermore, PKM2 inhibitors could reverse the effect of NOR on PKM2/HIF-1α/PGC-1α signaling pathway in RAW264.7 cells. NOR alleviated sepsis induced AIL in mice, inhibited the inflammatory response, promote M2 polarization of macrophages through regulating PKM2/HIF-1α/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Qi Chen
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Xuebo Shao
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Yanyan He
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Enkui Lu
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Lijun Zhu
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Weidong Tang
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| |
Collapse
|
9
|
Pandey A, Kulshrestha R, Bansal SK. Dynamic role of LMW-hyaluronan fragments and Toll-like receptors 2,4 in progression of bleomycin induced lung parenchymal injury to fibrosis. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8138115 DOI: 10.1186/s43168-021-00073-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Pulmonary fibrosis (PF) is a progressive and lethal lung disease of elderly whose incidence has been increasing following the Covid-19 pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). PF immunopathogenesis involves progressive alveolar epithelial cell damage, release of damage-associated molecular patterns (DAMPs), and extracellular matrix (ECM) injury. We assessed the dynamic role of LMW-hyaluronan (LMW-HA) as DAMP in initiation of host immune TLR-2,4 responses and as determinant in progression of ECM injury to fibrosis. Male Wistar rats were divided into Group I (saline control, n = 24) and Group II (intratracheal bleomycin, 7 U/kg/animal, n = 24). Animals were euthanized on 0, 7, 14, and 28 days. The time course of release of LMW-HA, TLR-2,4 mRNA and protein levels, and NF-κB-p65 levels after bleomycin injury were correlated with the development of parenchymal inflammation, remodelling, and fibrosis. Results Acute lung injury caused by bleomycin significantly increases the pro-inflammatory LMW-HA levels and elevates TLR-2,4 levels on day 7. Subsequently, TLR-2 upregulation, TLR-4 downregulation, and NF-κB signalling follow on days 14 and 28. This results in progressive tissue inflammation, alveolar and interstitial macrophage accumulation, and fibrosis. Conclusions LMW-HA significantly increases in PF caused by non-infectious and infectious (Covid-19) etiologies. The accumulating HA fragments function as endogenous DAMPs and trigger inflammatory responses, through differential TLR2 and TLR4 signalling, thus promoting inflammation and macrophage influx. LMW-HA are reflective of the state of ongoing tissue inflammation and may be considered as a natural biosensor for fibrotic lung diseases and as potential therapeutic targets.
Collapse
|