1
|
Nasilli G, Verkerk AO, O’Reilly M, Yiangou L, Davis RP, Casini S, Remme CA. Chronic Mexiletine Administration Increases Sodium Current in Non-Diseased Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Biomedicines 2024; 12:1212. [PMID: 38927420 PMCID: PMC11200762 DOI: 10.3390/biomedicines12061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A sodium current (INa) reduction occurs in the setting of many acquired and inherited conditions and is associated with cardiac conduction slowing and increased arrhythmia risks. The sodium channel blocker mexiletine has been shown to restore the trafficking of mutant sodium channels to the membrane. However, these studies were mostly performed in heterologous expression systems using high mexiletine concentrations. Moreover, the chronic effects on INa in a non-diseased cardiomyocyte environment remain unknown. In this paper, we investigated the chronic and acute effects of a therapeutic dose of mexiletine on INa and the action potential (AP) characteristics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of a healthy individual. Control hiPSC-CMs were incubated for 48 h with 10 µM mexiletine or vehicle. Following the wash-out of mexiletine, patch clamp analysis and immunocytochemistry experiments were performed. The incubation of hiPSC-CMs for 48 h with mexiletine (followed by wash-out) induced a significant increase in peak INa of ~75%, without any significant change in the voltage dependence of (in)activation. This was accompanied by a significant increase in AP upstroke velocity, without changes in other AP parameters. The immunocytochemistry experiments showed a significant increase in membrane Nav1.5 fluorescence following a 48 h incubation with mexiletine. The acute re-exposure of hiPSC-CMs to 10 µM mexiletine resulted in a small but significant increase in AP duration, without changes in AP upstroke velocity, peak INa density, or the INa voltage dependence of (in)activation. Importantly, the increase in the peak INa density and resulting AP upstroke velocity induced by chronic mexiletine incubation was not counteracted by the acute re-administration of the drug. In conclusion, the chronic administration of a clinically relevant concentration of mexiletine increases INa density in non-diseased hiPSC-CMs, likely by enhancing the membrane trafficking of sodium channels. Our findings identify mexiletine as a potential therapeutic strategy to enhance and/or restore INa and cardiac conduction.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Molly O’Reilly
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
3
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
A robust bacterial high-throughput screening system to evaluate single nucleotide polymorphisms of human homogentisate 1,2-dioxygenase in the context of alkaptonuria. Sci Rep 2022; 12:19452. [PMID: 36376482 PMCID: PMC9663557 DOI: 10.1038/s41598-022-23702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaptonuria (AKU) is a rare inborn error of metabolism caused by a defective homogentisate 1,2-dioxygenase (HGD), an enzyme involved in the tyrosine degradation pathway. Loss of HGD function leads to the accumulation of homogentisic acid (HGA) in connective body tissues in a process called ochronosis, which results on the long term in an early-onset and severe osteoarthropathy. HGD's quaternary structure is known to be easily disrupted by missense mutations, which makes them an interesting target for novel treatment strategies that aim to rescue enzyme activity. However, only prediction models are available providing information on a structural basis. Therefore, an E. coli based whole-cell screening was developed to evaluate HGD missense variants in 96-well microtiter plates. The screening principle is based on HGD's ability to convert the oxidation sensitive HGA into maleylacetoacetate. More precisely, catalytic activity could be deduced from pyomelanin absorbance measurements, derived from the auto-oxidation of remaining HGA. Optimized screening conditions comprised several E. coli expression strains, varied expression temperatures and varied substrate concentrations. In addition, plate uniformity, signal variability and spatial uniformity were investigated and optimized. Finally, eight HGD missense variants were generated via site-directed mutagenesis and evaluated with the developed high-throughput screening (HTS) assay. For the HTS assay, quality parameters passed the minimum acceptance criterion for Z' values > 0.4 and single window values > 2. We found that activity percentages versus wildtype HGD were 70.37 ± 3.08% (for M368V), 68.78 ± 6.40% (for E42A), 58.15 ± 1.16% (for A122V), 69.07 ± 2.26% (for Y62C), 35.26 ± 1.90% (for G161R), 35.86 ± 1.14% (for P230S), 23.43 ± 4.63% (for G115R) and 19.57 ± 11.00% (for G361R). To conclude, a robust, simple, and cost-effective HTS system was developed to reliably evaluate and distinguish human HGD missense variants by their HGA consumption ability. This HGA quantification assay may lay the foundation for the development of novel treatment strategies for missense variants in AKU.
Collapse
|
5
|
Bravo-Pérez C, Toderici M, Chambers JE, Martínez-Menárguez JA, Garrido-Rodriguez P, Pérez-Sanchez H, de la Morena-Barrio B, Padilla J, Miñano A, Cifuentes-Riquelme R, Vicente V, Lozano ML, Marciniak SJ, de la Morena-Barrio ME, Corral J. Full-length antithrombin frameshift variant with aberrant C-terminus causes endoplasmic reticulum retention with a dominant-negative effect. JCI Insight 2022; 7:161430. [PMID: 36214221 PMCID: PMC9675572 DOI: 10.1172/jci.insight.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023] Open
Abstract
Antithrombin, a major endogenous anticoagulant, is a serine protease inhibitor (serpin). We characterized the biological and clinical impact of variants involving C-terminal antithrombin. We performed comprehensive molecular, cellular, and clinical characterization of patients with C-terminal antithrombin variants from a cohort of 444 unrelated individuals with confirmed antithrombin deficiency. We identified 17 patients carrying 12 C-terminal variants, 5 of whom had the p.Arg445Serfs*17 deletion. Five missense variants caused qualitative deficiency, and 7, including 4 insertion-deletion variants, induced severe quantitative deficiency, particularly p.Arg445Serfs*17 (antithrombin <40%). This +1 frameshift variant had a molecular size similar to that of WT antithrombin but possessed a different C-terminus. Morphologic and cotransfection experiments showed that recombinant p.Arg445Serfs*17 was retained at the endoplasmic reticulum and had a dominant-negative effect on WT antithrombin. Characterization of different 1+ frameshift, aberrant C-terminal variants revealed that protein secretion was determined by frameshift site. The introduction of Pro441 in the aberrant C-terminus, shared by 5 efficiently secreted variants, partially rescued p.Arg445Serfs*17 secretion. C-terminal antithrombin mutants have notable heterogeneity, related to variant type and localization. Aberrant C-terminal variants caused by 1+ frameshift, with similar size as WT antithrombin, may be secreted or not, depending on frameshift site. The severe clinical phenotypes of these genetic changes are consistent with their dominant-negative effects.
Collapse
Affiliation(s)
- Carlos Bravo-Pérez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Mara Toderici
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Joseph E. Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, Biomedical Research Institute of Murcia, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Pedro Garrido-Rodriguez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Horacio Pérez-Sanchez
- Structural Bioinformatics and High Performance Computing Research Group, Universidad Católica de Murcia, Murcia, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Rosa Cifuentes-Riquelme
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Maria L. Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Maria Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| |
Collapse
|
6
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
7
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
8
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
9
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
10
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
11
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
12
|
Zhao P, Tassew GB, Lee JY, Oskouian B, Muñoz DP, Hodgin JB, Watson GL, Tang F, Wang JY, Luo J, Yang Y, King S, Krauss RM, Keller N, Saba JD. Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome. JCI Insight 2021; 6:145936. [PMID: 33755599 PMCID: PMC8119223 DOI: 10.1172/jci.insight.145936] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9–mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Cure Genetics, Suzhou, China
| | | | - Joanna Y Lee
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Babak Oskouian
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Denise P Muñoz
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gordon L Watson
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Felicia Tang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jen-Yeu Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah King
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Ronald M Krauss
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nancy Keller
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Julie D Saba
- Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
13
|
Enshaei H, Puiggalí-Jou A, Saperas N, Alemán C. Conducting polymer nanoparticles for a voltage-controlled release of pharmacological chaperones. SOFT MATTER 2021; 17:3314-3321. [PMID: 33629701 DOI: 10.1039/d1sm00036e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pharmacological chaperones (PCs) are low-molecular weight chemical molecules used in patients for the treatment of some rare diseases caused primarily by protein instability. A controlled and on-demand release of PCs via nanoparticles is an alternative for cases in which long treatments are needed and prolonged oral administration could have adverse effects. In this work, pyrimethamine (PYR), which is a potent PC consisting of pyrimidine-2,4-diamine substituted at position 5 by a p-chlorophenyl group and at position 6 by an ethyl group, was successfully loaded in electroresponsive poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The PYR-loading capacity was 11.4 ± 1.5%, with both loaded and unloaded PEDOT NPs exhibiting similar sizes (215 ± 3 and 203 ± 1 nm, respectively) and net surface charges (-26 ± 7 and -29 ± 6 mV, respectively). In the absence of electrical stimulus, the release of PC from loaded NPs is very low (1.6% in 24 h and 18% in 80 days) in aqueous environments. Instead, electrical stimuli that sustained for 30 min enhanced the release of PYR, which was ∼50% when the voltage was scanned from -0.5 V to 0.5 V (cyclic voltammetry) and ∼35% when a constant voltage of 1.0 V was applied (chronoamperometry).
Collapse
Affiliation(s)
- Hamidreza Enshaei
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain.
| | | | | | | |
Collapse
|
14
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
15
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
16
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
17
|
Sahbani D, Strumbo B, Tedeschi S, Conte E, Camerino GM, Benetti E, Montini G, Aceto G, Procino G, Imbrici P, Liantonio A. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Front Pharmacol 2020; 11:327. [PMID: 32256370 PMCID: PMC7092721 DOI: 10.3389/fphar.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type III and IV Bartter syndromes (BS) are rare kidney tubulopathies caused by loss-of-function mutations in the CLCNKB and BSND genes coding respectively for the ClC-Kb chloride channels and accessory subunit barttin. ClC-K channels are expressed in the Henle's loop, distal convoluted tubule, and cortical collecting ducts of the kidney and contribute to chloride absorption and urine concentration. In our Italian cohort, we identified two new mutations in CLCNKB, G167V and G289R, in children affected by BS and previously reported genetic variants, A242E, a chimeric gene and the deletion of the whole CLCNKB. All the patients had hypokalemia and metabolic alkalosis, increased serum renin and aldosterone levels and were treated with a symptomatic therapy. In order to define the molecular mechanisms responsible for BS, we co-expressed ClC-Kb wild type and channels with point mutations with barttin in HEK 293 cells and characterized chloride currents through the patch-clamp technique. In addition, we attempted to revert the functional defect caused by BS mutations through barttin overexpression. G167V and A242E channels showed a drastic current reduction compared to wild type, likely suggesting compromised expression of mutant channels at the plasma membrane. Conversely, G289R channel was similar to wild type raising the doubt that an additional mutation in another gene or other mechanisms could account for the clinical phenotype. Interestingly, increasing ClC-K/barttin ratio augmented G167V and A242E mutants' chloride current amplitudes towards wild type levels. These results confirm a genotype-phenotype correlation in BS and represent a preliminary proof of concept that molecules functioning as molecular chaperones can restore channel function in expression-defective ClC-Kb mutants.
Collapse
Affiliation(s)
- Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Bice Strumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Elisa Benetti
- Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis, and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Liguori L, Monticelli M, Allocca M, Hay Mele B, Lukas J, Cubellis MV, Andreotti G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int J Mol Sci 2020; 21:ijms21020489. [PMID: 31940970 PMCID: PMC7014102 DOI: 10.3390/ijms21020489] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
The term “pharmacological chaperone” was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.
Collapse
Affiliation(s)
- Ludovica Liguori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Maria Monticelli
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
| | - Mariateresa Allocca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Maria Vittoria Cubellis
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-679118; Fax: +39-081-679233
| | | |
Collapse
|
19
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
20
|
Modulation of proteostasis and protein trafficking: a therapeutic avenue for misfolded G protein-coupled receptors causing disease in humans. Emerg Top Life Sci 2019; 3:39-52. [PMID: 33523195 DOI: 10.1042/etls20180055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022]
Abstract
Proteostasis refers to the process whereby the cell maintains in equilibrium the protein content of different compartments. This system consists of a highly interconnected network intended to efficiently regulate the synthesis, folding, trafficking, and degradation of newly synthesized proteins. Molecular chaperones are key players of the proteostasis network. These proteins assist in the assembly and folding processes of newly synthesized proteins in a concerted manner to achieve a three-dimensional structure compatible with export from the endoplasmic reticulum to other cell compartments. Pharmacologic interventions intended to modulate the proteostasis network and tackle the devastating effects of conformational diseases caused by protein misfolding are under development. These include small molecules called pharmacoperones, which are highly specific toward the target protein serving as a molecular framework to cause misfolded mutant proteins to fold and adopt a stable conformation suitable for passing the scrutiny of the quality control system and reach its correct location within the cell. Here, we review the main components of the proteostasis network and how pharmacoperones may be employed to correct misfolding of two G protein-coupled receptors, the vasopressin 2 receptor and the gonadotropin-releasing hormone receptor, whose mutations lead to X-linked nephrogenic diabetes insipidus and congenital hypogonadotropic hypogonadism in humans respectively.
Collapse
|
21
|
Bailly C, Waring MJ. Pharmacological effectors of GRP78 chaperone in cancers. Biochem Pharmacol 2019; 163:269-278. [PMID: 30831072 DOI: 10.1016/j.bcp.2019.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
The protein chaperone GRP78 is a master regulator of endoplasmic reticulum (ER) functions and is frequently over-expressed at the surface of cancer cells where it contributes to chemo-resistance. It represents a well-studied ER stress marker but an under-explored target for new drug development. This review aims to untangle the structural and functional diversity of GRP78 modulators, covering over 130 natural products, synthetic molecules, specific peptides and monoclonal antibodies that target GRP78. Several approaches to promote or to incapacitate GRP78 are presented, including the use of oligonucleotides and specific cell-delivery peptides often conjugated to cytotoxic payloads to design GRP78-targeted therapeutics. A repertoire of drugs that turn on/off GRP78 is exposed, including molecules which bind directly to GRP78, principally to its ATP site. There exist many options to regulate positively or negatively the expression of the chaperone, or to interfere with its cellular trafficking. This review provides a molecular cartography of GRP78 pharmacological effectors and adds weight to the notion that GRP78 repressors could represent promising anticancer therapeutics, notably as regards limiting chemo-resistance of cancer cells. The potential of GRP78-targeting drugs in other therapeutic modalities is also evoked.
Collapse
Affiliation(s)
- Christian Bailly
- UMR-S 1172, Centre de Recherche Jean-Pierre Aubert, INSERM, University of Lille, CHU Lille, 59045 Lille, France.
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
22
|
Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A. Relationships Between Ion Channels, Mitochondrial Functions and Inflammation in Human Aging. Front Physiol 2019; 10:158. [PMID: 30881309 PMCID: PMC6405477 DOI: 10.3389/fphys.2019.00158] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a loss of function. We believe aging to be more an adaptation to the various, and often continuous, stressors encountered during life in order to maintain overall functionality of the systems. The maladaptation of a system during aging may increase the susceptibility to diseases. There are basic cellular functions that may influence and/or are influenced by aging. Mitochondrial function is amongst these. Their presence in almost all cell types makes of these valuable targets for interventions to slow down or even reserve signs of aging. In this review, the role of mitochondria and essential physiological regulators of mitochondria and cellular functions, ion channels, will be discussed in the context of human aging. The origins of inflamm-aging, associated with poor clinical outcomes, will be linked to mitochondria and ion channel biology.
Collapse
Affiliation(s)
- Marie Strickland
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sylvia L. F. Pender
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Chinese University of Hong Kong – University of Southampton Joint Lab for Stem Cell and Regenerative Medicine, Hong Kong, China
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Golan Y, Alhadeff R, Glaser F, Ganoth A, Warshel A, Assaraf YG. Demonstrating aspects of multiscale modeling by studying the permeation pathway of the human ZnT2 zinc transporter. PLoS Comput Biol 2018; 14:e1006503. [PMID: 30388104 PMCID: PMC6241132 DOI: 10.1371/journal.pcbi.1006503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/14/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
Multiscale modeling provides a very powerful means of studying complex biological systems. An important component of this strategy involves coarse-grained (CG) simplifications of regions of the system, which allow effective exploration of complex systems. Here we studied aspects of CG modeling of the human zinc transporter ZnT2. Zinc is an essential trace element with 10% of the proteins in the human proteome capable of zinc binding. Thus, zinc deficiency or impairment of zinc homeostasis disrupt key cellular functions. Mammalian zinc transport proceeds via two transporter families: ZnT and ZIP; however, little is known about the zinc permeation pathway through these transporters. As a step towards this end, we herein undertook comprehensive computational analyses employing multiscale techniques, focusing on the human zinc transporter ZnT2 and its bacterial homologue, YiiP. Energy calculations revealed a favorable pathway for zinc translocation via alternating access. We then identified key residues presumably involved in the passage of zinc ions through ZnT2 and YiiP, and functionally validated their role in zinc transport using site-directed mutagenesis of ZnT2 residues. Finally, we use a CG Monte Carlo simulation approach to sample the transition between the inward-facing and the outward-facing states. We present our structural models of the inward- and outward-facing conformations of ZnT2 as a blueprint prototype of the transporter conformations, including the putative permeation pathway and participating residues. The insights gained from this study may facilitate the delineation of the pathways of other zinc transporters, laying the foundations for the molecular basis underlying ion permeation. This may possibly facilitate the development of therapeutic interventions in pathological states associated with zinc deficiency and other disorders based on loss-of-function mutations in solute carriers.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Raphael Alhadeff
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States of America
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Assaf Ganoth
- The Interdisciplinary Center (IDC), Herzliya, Israel
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States of America
- * E-mail: (AW); (YGA)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail: (AW); (YGA)
| |
Collapse
|
24
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|