1
|
Urgessa OE, Woldesemayat AA. OMICs approaches and technologies for understanding low-high feed efficiency traits in chicken: implication to breeding. Anim Biotechnol 2023; 34:4147-4166. [PMID: 36927292 DOI: 10.1080/10495398.2023.2187404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
In poultry production, there has been a trend of continuous increase in cost of feed ingredients which represents the major proportion of the production costs. Feed costs can be reduced by improving feed efficiency traits which increase the possibility of using various indigestible feed sources and decrease the environmental impact of the enhanced poultry production. Therefore, feed efficiency has been used as one of the most important economic traits of selection in the breeding program of chickens. Recently, many OMICs experimental studies have been designed to characterize biological differences between the high and low feed efficiency chicken phenotypes. Biological complexity cannot be fully captured by main individual OMICs such as genomics, transcriptomics, proteomics and metabolomics. Therefore, researchers have combined multiple assays from the same set of samples to create multi-OMICs datasets. OMICs findings are crucial in improving existing approaches to poultry breeding. The current review aimed to highlight the components of feed efficiency and general OMICs approaches and technologies. Besides, individual and multi-OMICs based understanding of chicken feed efficiency traits and the application of the acquired knowledge in the chicken breeding program were addressed.
Collapse
Affiliation(s)
- Olyad Erba Urgessa
- School of Biological Sciences and Biotechnology, College of Natural and Computational Sciences, Haramaya University, Dire Dawa, Ethiopia
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Adugna Abdi Woldesemayat
- College of Biological and Chemical Engineering, Department of Biotechnology, Genomics and Bioinformatics Research Unit, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- College of Agriculture & Environmental Sciences, University of South Africa, Florida Science Campus, 28 Pioneer Ave, Florida Park, Roodepoort, South Africa
| |
Collapse
|
2
|
Sarrami Z, Sedghi M, Mohammadi I, Kim WK, Mahdavi AH. Effects of bacteriophage supplement on the growth performance, microbial population, and PGC-1α and TLR4 gene expressions of broiler chickens. Sci Rep 2022; 12:14391. [PMID: 35999253 PMCID: PMC9399175 DOI: 10.1038/s41598-022-18663-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Bacteriophages (BP) are viruses that invade bacteria and propagate inside them, leading to the lysis of the bacterial cells. The aim of this study was to investigate the effect of adding BP to the broiler's diet and its effect on the performance, morphology and bacterial population of the gut, some immune responses and expression of some intestinal genes. Accordingly, dietary treatments were as follows: basal diet (control), and control + 0.3 g/kg colistin or 0.5, 1 and 1.5 g BP/kg of diet. BP increased the body weight gain and reduced the feed conversion ratio (FCR), as compared to the colistin treatment, in the finisher and overall period (P < 0.05). European efficiency factor was significantly higher in 1.5 g BP-fed birds, as compared to the control and colistin treatments. meanwhile, bacteriophage and colistin-fed birds had higher Lactobacillus and lowered coliform bacteria counts, as compared to the control treatment (P < 0.05). Cecal concentrations of propionate in the 1.5 g BP-fed birds were higher than those in the control treatment (P < 0.05). BP-fed birds had a significantly increased villus height to crypt depth ratio, as compared to the control treatment. BP increased the serum concentrations of the total antibody, immunoglobulin (Ig) M, and IgG, as compared to the control treatment (P < 0.05). In the ileum, the expression of the Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) gene was decreased by dietary BP supplementation (P < 0.05). Furthermore, Toll-like receptor 4 (TLR4) gene expression was down-regulated in the BP-fed birds, whereas Interleukin 10 (IL-10) gene expression was up-regulated (P < 0.05). Overall, the use of BP may be a promising alternative to growth-promoting antibiotics in broilers by altering the gastrointestinal tract microbiota, enhancing immunological responses and improving the gut's morphology.
Collapse
Affiliation(s)
- Zahra Sarrami
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Sedghi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ishmael Mohammadi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
3
|
Karimi P, Bakhtiarizadeh MR, Salehi A, Izadnia HR. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken. Sci Rep 2022; 12:2558. [PMID: 35169237 PMCID: PMC8847365 DOI: 10.1038/s41598-022-06528-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Feed efficiency is an important economic trait and reduces the production costs per unit of animal product. Up to now, few studies have conducted transcriptome profiling of liver tissue in feed efficiency-divergent chickens (Ross vs native breeds). Also, molecular mechanisms contributing to differences in feed efficiency are not fully understood, especially in terms of long non-coding RNAs (lncRNAs). Hence, transcriptome profiles of liver tissue in commercial and native chicken breeds were analyzed. RNA-Seq data along with bioinformatics approaches were applied and a series of lncRNAs and target genes were identified. Furthermore, protein-protein interaction network construction, co-expression analysis, co-localization analysis of QTLs and functional enrichment analysis were used to functionally annotate the identified lncRNAs. In total, 2,290 lncRNAs were found (including 1,110 annotated, 593 known and 587 novel), of which 53 (including 39 known and 14 novel), were identified as differentially expressed genes between two breeds. The expression profile of lncRNAs was validated by RT-qPCR. The identified novel lncRNAs showed a number of characteristics similar to those of known lncRNAs. Target prediction analysis showed that these lncRNAs have the potential to act in cis or trans mode. Functional enrichment analysis of the predicted target genes revealed that they might affect the differences in feed efficiency of chicken by modulating genes associated with lipid metabolism, carbohydrate metabolism, growth, energy homeostasis and glucose metabolism. Some gene members of significant modules in the constructed co-expression networks were reported as important genes related to feed efficiency. Co-localization analysis of QTLs related to feed efficiency and the identified lncRNAs suggested several candidates to be involved in residual feed intake. The findings of this study provided valuable resources to further clarify the genetic basis of regulation of feed efficiency in chicken from the perspective of lncRNAs.
Collapse
Affiliation(s)
- Parastoo Karimi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Abdolreza Salehi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Hamid Reza Izadnia
- Animal Science Improvement Research Department, Agricultural and Natural Resources Research and Education Center, Safiabad AREEO, Dezful, Iran
| |
Collapse
|
4
|
Identification of Copy Number Variations and Genetic Diversity in Italian Insular Sheep Breeds. Animals (Basel) 2022; 12:ani12020217. [PMID: 35049839 PMCID: PMC8773107 DOI: 10.3390/ani12020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
Copy number variants (CNVs) are one of the major contributors to genetic diversity and phenotypic variation in livestock. The aim of this work is to identify CNVs and perform, for the first time, a CNV-based population genetics analysis with five Italian sheep breeds (Barbaresca, Comisana, Pinzirita, Sarda, and Valle del Belìce). We identified 10,207 CNVs with an average length of 1.81 Mb. The breeds showed similar mean numbers of CNVs, ranging from 20 (Sarda) to 27 (Comisana). A total of 365 CNV regions (CNVRs) were determined. The length of the CNVRs varied among breeds from 2.4 Mb to 124.1 Mb. The highest number of shared CNVRs was between Comisana and Pinzirita, and only one CNVR was shared among all breeds. Our results indicated that segregating CNVs expresses a certain degree of diversity across all breeds. Despite the low/moderate genetic differentiation among breeds, the different approaches used to disclose the genetic relationship showed that the five breeds tend to cluster in distinct groups, similar to the previous studies based on single-nucleotide polymorphism markers. Gene enrichment was described for the 37 CNVRs selected, considering the top 10%. Out of 181 total genes, 67 were uncharacterized loci. Gene Ontology analysis showed that several of these genes are involved in lipid metabolism, immune response, and the olfactory pathway. Our results corroborated previous studies and showed that CNVs represent valuable molecular resources for providing useful information for separating the population and could be further used to explore the function and evolutionary aspect of sheep genome.
Collapse
|
5
|
Revealing Pathways Associated with Feed Efficiency and Meat Quality Traits in Slow-Growing Chickens. Animals (Basel) 2021; 11:ani11102977. [PMID: 34679997 PMCID: PMC8532858 DOI: 10.3390/ani11102977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Korat is a new chicken breed with high-protein meat, low fat, and low purine content. However, the effects of improving the breed’s feed efficiency, which would enhance production, on meat quality are unknown. Hence, understanding the genetic architecture underlying feed efficiency and meat quality traits in chicken offers new opportunities toward genetic improvement. Through a weighted gene co-expression network analysis on Korat chickens, the presented results provide new information on the molecular pathways that play important roles in FE and meat quality that could help achieve the optimum feed efficiency while maintaining meat quality in Korat chickens. Abstract Here, molecular pathways and genes involved in the feed efficiency (FE) and thigh-meat quality of slow-growing Korat chickens were investigated. Individual feed intake values and body weights were collected weekly to the calculate feed conversion ratios (FCR) and residual feed intake. The biochemical composition and meat quality parameters were also measured. On the basis of extreme FCR values at 10 weeks of age, 9 and 12 birds from the high and the low FCR groups, respectively, were selected, and their transcriptomes were investigated using the 8 × 60 K Agilent chicken microarray. A weighted gene co-expression network analysis was performed to determine the correlations between co-expressed gene modules and FE, thigh-meat quality, or both. Groups of birds with different FE values also had different nucleotide, lipid, and protein contents in their thigh muscles. In total, 38 modules of co-expressed genes were identified, and 12 were correlated with FE and some meat quality traits. A functional analysis highlighted several enriched functions, such as biological processes, metabolic processes, nucleotide metabolism, and immune responses. Several molecular factors were involved in the interactions between FE and meat quality, including the assembly competence domain, baculoviral IAP repeat containing 5, cytochrome c oxidase assembly factor 3, and myosin light chain 9 genes.
Collapse
|
6
|
Gheyas AA, Vallejo-Trujillo A, Kebede A, Lozano-Jaramillo M, Dessie T, Smith J, Hanotte O. Integrated Environmental and Genomic Analysis Reveals the Drivers of Local Adaptation in African Indigenous Chickens. Mol Biol Evol 2021; 38:4268-4285. [PMID: 34021753 PMCID: PMC8476150 DOI: 10.1093/molbev/msab156] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breeding for climate resilience is currently an important goal for sustainable livestock production. Local adaptations exhibited by indigenous livestock allow investigating the genetic control of this resilience. Ecological niche modeling (ENM) provides a powerful avenue to identify the main environmental drivers of selection. Here, we applied an integrative approach combining ENM with genome-wide selection signature analyses (XPEHH and Fst) and genotype-environment association (redundancy analysis), with the aim of identifying the genomic signatures of adaptation in African village chickens. By dissecting 34 agro-climatic variables from the ecosystems of 25 Ethiopian village chicken populations, ENM identified six key drivers of environmental challenges: One temperature variable-strongly correlated with elevation, three precipitation variables as proxies for water availability, and two soil/land cover variables as proxies of food availability for foraging chickens. Genome analyses based on whole-genome sequencing (n = 245), identified a few strongly supported genomic regions under selection for environmental challenges related to altitude, temperature, water scarcity, and food availability. These regions harbor several gene clusters including regulatory genes, suggesting a predominantly oligogenic control of environmental adaptation. Few candidate genes detected in relation to heat-stress, indicates likely epigenetic regulation of thermo-tolerance for a domestic species originating from a tropical Asian wild ancestor. These results provide possible explanations for the rapid past adaptation of chickens to diverse African agro-ecologies, while also representing new landmarks for sustainable breeding improvement for climate resilience. We show that the pre-identification of key environmental drivers, followed by genomic investigation, provides a powerful new approach for elucidating adaptation in domestic animals.
Collapse
Affiliation(s)
- Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana Vallejo-Trujillo
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Adebabay Kebede
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
- Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Maria Lozano-Jaramillo
- Wageningen University & Research Animal Breeding and Genomics, Wageningen, The Netherlands
| | - Tadelle Dessie
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivier Hanotte
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene—CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Prakash A, Saxena VK, Kumar R, Tomar S, Singh MK, Singh G. Differential gene expression in liver of colored broiler chicken divergently selected for residual feed intake. Trop Anim Health Prod 2021; 53:403. [PMID: 34268607 DOI: 10.1007/s11250-021-02844-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Feed constitutes about 60-70% of the total cost of poultry production. So maximizing the feed efficiency will reduce production cost. The rapid growth in the juvenile period is essential to achieve higher body weight. Therefore, identifying the genes and pathways involved in rapid growth at an early age with a lesser requirement of feed is of utmost importance to further economize the broiler production. The efficiency of feed utilization was measured using RFI (residual feed intake). The present study aimed to estimate the RFI (0-5 week) in a population of indigenously developed colored broiler sire line chicken as well as identifying the differentially expressed genes influencing RFI in high and low RFI groups. The liver samples of high and low RFI broiler chicken aged 35 days were used for microarray analysis. A total of 2798 differentially expressed genes (DEGs) were identified, out of which 913 genes were downregulated and 1885 were upregulated. The fold change varied from - 475.17 to 552.94. A subset of genes was confirmed by qRT-PCR, and outcomes were matched well with microarray data. In the functional annotation study of DEGs, the highest significant GO (Gene Ontology) terms in the biological process included protein transport, protein localization, regulation of apoptosis, and mitochondrial transport. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. Study of the important genes which were differentially expressed and the related molecular pathways in this population may hold the potential for future breeding strategies for augmenting feed efficiency.
Collapse
Affiliation(s)
- A Prakash
- College of Veterinary Science, GADVASU, Rampura Phul, Bathinda, Punjab, India.
| | - V K Saxena
- Division of Avian Genetics and Breeding, Central Avian Research Institute - Indian Council of Agricultural Research, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Ravi Kumar
- Department of Animal Biotechnology, National Institute of Animal Biotechnology, Hyderabad, 500075, Telangana, India
| | - S Tomar
- Division of Avian Genetics and Breeding, Central Avian Research Institute - Indian Council of Agricultural Research, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - M K Singh
- COVS, DUVASU, Mathura, Uttar Pradesh, India
| | - Gagandeep Singh
- College of Veterinary Science, GADVASU, Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
8
|
Ali A, Ponnampalam EN, Pushpakumara G, Cottrell JJ, Suleria HAR, Dunshea FR. Cinnamon: A Natural Feed Additive for Poultry Health and Production-A Review. Animals (Basel) 2021; 11:2026. [PMID: 34359154 PMCID: PMC8300125 DOI: 10.3390/ani11072026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
The increased bacterial resistance to synthetic antibiotics and consumer awareness about the health and food safety concerns have triggered the ban on the use of antibiotic growth promotors (AGPs) in the poultry industry. This situation encouraged the poultry sector and industry to explore safe alternatives to AGPs and focus on developing more sustainable feed management strategies to improve the intestinal health and growth performance of poultry. Consequently, phytogenic feed additives (PFAs) have emerged as natural alternatives to AGPs and have great potential in the poultry industry. In recent years, cinnamon (one of the most widely used spices) has attracted attention from researchers as a natural product with numerous health benefits for poultry. The essential oils in cinnamon, in particular, are of interest because of their antioxidant, anti-microbial, anti-inflammatory, antifungal, and hypocholesterolaemic effects, in addition to their ability to stimulate digestive enzymes in the gut. This review mainly emphasizes the potential impact of cinnamon as a natural feed additive on overall gut health, nutrient digestibility, blood biochemical profile, gene expression, gut microbiota and immune response.
Collapse
Affiliation(s)
- Akhtar Ali
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.); (H.A.R.S.)
| | - Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia;
| | - Gamini Pushpakumara
- Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (A.A.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Xiao C, Deng J, Zeng L, Sun T, Yang Z, Yang X. Transcriptome Analysis Identifies Candidate Genes and Signaling Pathways Associated With Feed Efficiency in Xiayan Chicken. Front Genet 2021; 12:607719. [PMID: 33815460 PMCID: PMC8010316 DOI: 10.3389/fgene.2021.607719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Feed efficiency is an important economic factor in poultry production, and the rate of feed efficiency is generally evaluated using residual feed intake (RFI). The molecular regulatory mechanisms of RFI remain unknown. Therefore, the objective of this study was to identify candidate genes and signaling pathways related to RFI using RNA-sequencing for low RFI (LRFI) and high RFI (HRFI) in the Xiayan chicken, a native chicken of the Guangxi province. Chickens were divided into four groups based on FE and sex: LRFI and HRFI for males and females, respectively. We identified a total of 1,015 and 742 differentially expressed genes associated with RFI in males and females, respectively. The 32 and 7 Gene Ontology (GO) enrichment terms, respectively, identified in males and females chiefly involved carbohydrate, amino acid, and energy metabolism. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 11 and 5 significantly enriched signaling pathways, including those for nutrient metabolism, insulin signaling, and MAPK signaling, respectively. Protein-protein interaction (PPI) network analysis showed that the pathways involving CAT, ACSL1, ECI2, ABCD2, ACOX1, PCK1, HSPA2, and HSP90AA1 may have an effect on feed efficiency, and these genes are mainly involved in the biological processes of fat metabolism and heat stress. Gene set enrichment analysis indicated that the increased expression of genes in LRFI chickens was related to intestinal microvilli structure and function, and to the fat metabolism process in males. In females, the highly expressed set of genes in the LRFI group was primarily associated with nervous system and cell development. Our findings provide further insight into RFI regulation mechanisms in chickens.
Collapse
Affiliation(s)
- Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linghu Zeng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Cendron F, Perini F, Mastrangelo S, Tolone M, Criscione A, Bordonaro S, Iaffaldano N, Castellini C, Marzoni M, Buccioni A, Soglia D, Schiavone A, Cerolini S, Lasagna E, Cassandro M. Genome-Wide SNP Analysis Reveals the Population Structure and the Conservation Status of 23 Italian Chicken Breeds. Animals (Basel) 2020; 10:E1441. [PMID: 32824706 PMCID: PMC7460279 DOI: 10.3390/ani10081441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/06/2023] Open
Abstract
The genomic variability of local Italian chicken breeds, which were monitored under a conservation plan, was studied using single nucleotide polymorphisms (SNPs) to understand their genetic diversity and population structure. A total of 582 samples from 23 local breeds and four commercial stocks were genotyped using the Affymetrix 600 K Chicken SNP Array. In general, the levels of genetic diversity, investigated through different approaches, were lowest in the local chicken breeds compared to those in the commercial stocks. The level of genomic inbreeding, based on runs of homozygosity (FROH), was markedly different among the breeds and ranged from 0.121 (Valdarnese) to 0.607 (Siciliana). In all breeds, short runs of homozygosity (ROH) (<4 Mb in length) were more frequent than long segments. The patterns of genetic differentiation, model-based clustering, and neighbor networks showed that most breeds formed non-overlapping clusters and were clearly separate populations, which indicated the presence of gene flow, especially among breeds that originated from the same geographical area. Four genomic regions were identified as hotspots of autozygosity (islands) among the breeds, where the candidate genes are involved in morphological traits, such as body weight and feed conversion ratio. We conclude that the investigated breeds have conserved authentic genetic patterns, and these results can improve conservation strategies; moreover, the conservation of local breeds may play an important role in the local economy as a source of high-quality products for consumers.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (F.C.); (M.C.)
| | - Francesco Perini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.P.); (C.C.)
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest sciences, University of Palermo, Viale delle Scienze, Ed. 4, 90128 Palermo, Italy; (S.M.); (M.T.)
| | - Marco Tolone
- Department of Agricultural, Food and Forest sciences, University of Palermo, Viale delle Scienze, Ed. 4, 90128 Palermo, Italy; (S.M.); (M.T.)
| | - Andrea Criscione
- Department of Agronomy, Food, and Environment, University of Catania, Via Valdisavoia, 5, 95100 Catania, Italy; (A.C.); (S.B.)
| | - Salvatore Bordonaro
- Department of Agronomy, Food, and Environment, University of Catania, Via Valdisavoia, 5, 95100 Catania, Italy; (A.C.); (S.B.)
| | - Nicolaia Iaffaldano
- Department of Agricultural, Environment and Food, University of Molise, Via De Sanctis s/n, 86100 Campobasso, Italy;
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.P.); (C.C.)
| | - Margherita Marzoni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, Via di San Bonaventura, 50145 Firenze, Italy;
| | - Dominga Soglia
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy; (D.S.); (A.S.)
| | - Achille Schiavone
- Department of Veterinary Science, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy; (D.S.); (A.S.)
| | - Silvia Cerolini
- Department of Veterinary Science, University of Milano, Via Trentacoste, 2, 20134 Milano, Italy;
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.P.); (C.C.)
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (F.C.); (M.C.)
| |
Collapse
|
11
|
Yang L, He T, Xiong F, Chen X, Fan X, Jin S, Geng Z. Identification of key genes and pathways associated with feed efficiency of native chickens based on transcriptome data via bioinformatics analysis. BMC Genomics 2020; 21:292. [PMID: 32272881 PMCID: PMC7146967 DOI: 10.1186/s12864-020-6713-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Improving feed efficiency is one of the important breeding targets for poultry industry. The aim of current study was to investigate the breast muscle transcriptome data of native chickens divergent for feed efficiency. Residual feed intake (RFI) value was calculated for 1008 closely related chickens. The 5 most efficient (LRFI) and 5 least efficient (HRFI) birds were selected for further analysis. Transcriptomic data were generated from breast muscle collected post-slaughter. RESULTS The differently expressed genes (DEGs) analysis showed that 24 and 325 known genes were significantly up- and down-regulated in LRFI birds. An enrichment analysis of DEGs showed that the genes and pathways related to inflammatory response and immune response were up-regulated in HRFI chickens. Moreover, Gene Set Enrichment Analysis (GSEA) was also employed, which indicated that LRFI chickens increased expression of genes related to mitochondrial function. Furthermore, protein network interaction and function analyses revealed ND2, ND4, CYTB, RAC2, VCAM1, CTSS and TLR4 were key genes for feed efficiency. And the 'phagosome', 'cell adhesion molecules (CAMs)', 'citrate cycle (TCA cycle)' and 'oxidative phosphorylation' were key pathways contributing to the difference in feed efficiency. CONCLUSIONS In summary, a series of key genes and pathways were identified via bioinformatics analysis. These key genes may influence feed efficiency through deep involvement in ROS production and inflammatory response. Our results suggested that LRFI chickens may synthesize ATP more efficiently and control reactive oxygen species (ROS) production more strictly by enhancing the mitochondrial function in skeletal muscle compared with HRFI chickens. These findings provide some clues for understanding the molecular mechanism of feed efficiency in birds and will be a useful reference data for native chicken breeding.
Collapse
Affiliation(s)
- Lei Yang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Tingting He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Fengliang Xiong
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xianzhen Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xinfeng Fan
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China. .,Key laboratory of local livestock and poultry genetic resource conservation and bio-breeding, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|