1
|
Takeuchi H. Olfactory cilia, regulation and control of olfaction. Physiol Rep 2024; 12:e70057. [PMID: 39358841 PMCID: PMC11446836 DOI: 10.14814/phy2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The sense of smell is still considered a fuzzy sensation. Softly wafting aromas can stimulate the appetite and trigger memories; however, there are many unexplored aspects of its underlying mechanisms, and not all of these have been elucidated. Although the final sense of smell takes place in the brain, it is greatly affected during the preliminary stage, when odorants are converted into electrical signals. After signal conversion through ion channels in olfactory cilia, action potentials are generated through other types of ion channels located in the cell body. Spike trains through axons transmit this information as digital signals to the brain, however, before odorants are converted into digital electric signals, such as an action potential, modification of the transduction signal has already occurred. This review focuses on the early stages of olfactory signaling. Modification of signal transduction mechanisms and their effect on the human sense of smell through three characteristics (signal amplification, olfactory adaptation, and olfactory masking) produced by olfactory cilia, which is the site of signal transduction are being addressed in this review.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduated School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
2
|
Dibattista M, Pifferi S, Hernandez-Clavijo A, Menini A. The physiological roles of anoctamin2/TMEM16B and anoctamin1/TMEM16A in chemical senses. Cell Calcium 2024; 120:102889. [PMID: 38677213 DOI: 10.1016/j.ceca.2024.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Chemical senses allow animals to detect and discriminate a vast array of molecules. The olfactory system is responsible of the detection of small volatile molecules, while water dissolved molecules are detected by taste buds in the oral cavity. Moreover, many animals respond to signaling molecules such as pheromones and other semiochemicals through the vomeronasal organ. The peripheral organs dedicated to chemical detection convert chemical signals into perceivable information through the employment of diverse receptor types and the activation of multiple ion channels. Two ion channels, TMEM16B, also known as anoctamin2 (ANO2) and TMEM16A, or anoctamin1 (ANO1), encoding for Ca2+-activated Cl¯ channels, have been recently described playing critical roles in various cell types. This review aims to discuss the main properties of TMEM16A and TMEM16B-mediated currents and their physiological roles in chemical senses. In olfactory sensory neurons, TMEM16B contributes to amplify the odorant response, to modulate firing, response kinetics and adaptation. TMEM16A and TMEM16B shape the pattern of action potentials in vomeronasal sensory neurons increasing the interspike interval. In type I taste bud cells, TMEM16A is activated during paracrine signaling mediated by ATP. This review aims to shed light on the regulation of diverse signaling mechanisms and neuronal excitability mediated by Ca-activated Cl¯ channels, hinting at potential new roles for TMEM16A and TMEM16B in the chemical senses.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy.
| | - Andres Hernandez-Clavijo
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy.
| |
Collapse
|
3
|
Hernandez-Clavijo A, Sánchez Triviño CA, Guarneri G, Ricci C, Mantilla-Esparza FA, Gonzalez-Velandia KY, Boscolo-Rizzo P, Tofanelli M, Bonini P, Dibattista M, Tirelli G, Menini A. Shedding light on human olfaction: Electrophysiological recordings from sensory neurons in acute slices of olfactory epithelium. iScience 2023; 26:107186. [PMID: 37456832 PMCID: PMC10345129 DOI: 10.1016/j.isci.2023.107186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The COVID-19 pandemic brought attention to our limited understanding of human olfactory physiology. While the cellular composition of the human olfactory epithelium is similar to that of other vertebrates, its functional properties are largely unknown. We prepared acute slices of human olfactory epithelium from nasal biopsies and used the whole-cell patch-clamp technique to record electrical properties of cells. We measured voltage-gated currents in human olfactory sensory neurons and supporting cells, and action potentials in neurons. Additionally, neuronal inward current and action potentials responses to a phosphodiesterase inhibitor suggested a transduction cascade involving cAMP as a second messenger. Furthermore, responses to odorant mixtures demonstrated that the transduction cascade was intact in this preparation. This study provides the first electrophysiological characterization of olfactory sensory neurons in acute slices of the human olfactory epithelium, paving the way for future research to expand our knowledge of human olfactory physiology.
Collapse
Affiliation(s)
- Andres Hernandez-Clavijo
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | - Giorgia Guarneri
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Chiara Ricci
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | | | | | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Margherita Tofanelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Pierluigi Bonini
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari A. Moro, 70121 Bari, Italy
| | - Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34149 Trieste, Italy
| | - Anna Menini
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| |
Collapse
|
4
|
Cherkashin AP, Rogachevskaja OA, Khokhlov AA, Kabanova NV, Bystrova MF, Kolesnikov SS. Contribution of TRPC3-mediated Ca 2+ entry to taste transduction. Pflugers Arch 2023:10.1007/s00424-023-02834-8. [PMID: 37369785 DOI: 10.1007/s00424-023-02834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
The current concept of taste transduction implicates the TASR/PLCβ2/IP3R3/TRPM5 axis in mediating chemo-electrical coupling in taste cells of the type II. While generation of IP3 has been verified as an obligatory step, DAG appears to be a byproduct of PIP2 cleavage by PLCβ2. Here, we provide evidence that DAG-signaling could play a significant and not yet recognized role in taste transduction. In particular, we found that DAG-gated channels are functional in type II cells but not in type I and type III cells. The DAG-gated current presumably constitutes a fraction of the generator current triggered by taste stimulation in type II cells. Bitter stimuli and DAG analogs produced Ca2+ transients in type II cells, which were greatly decreased at low bath Ca2+, indicating their dependence on Ca2+ influx. Among DAG-gated channels, transcripts solely for TRPC3 were detected in the taste tissue, thus implicating this channel in mediating DAG-regulated Ca2+ entry. Release of the afferent neurotransmitter ATP from CV papillae was monitored online by using the luciferin/luciferase method and Ussing-like chamber. It was shown that ATP secretion initiated by bitter stimuli and DAG analogs strongly depended on mucosal Ca2+. Based on the overall findings, we speculate that in taste transduction, IP3-driven Ca2+ release is transient and mainly responsible for rapid activation of Ca2+-gated TRPM5 channels, thus forming the initial phase of receptor potential. DAG-regulated Ca2+ entry through apically situated TRPC3 channels extends the primary Ca2+ signal and preserves TRPM5 activity, providing a needful prolongation of the receptor potential.
Collapse
Affiliation(s)
- Alexander P Cherkashin
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Alexander A Khokhlov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Kabanova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
5
|
Takeuchi H, Kurahashi T. Segregation of Ca2+ signaling in olfactory signal transduction. J Gen Physiol 2023; 155:213865. [PMID: 36787110 PMCID: PMC9960254 DOI: 10.1085/jgp.202213165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
Olfactory signal transduction is conducted through a cAMP-mediated second messenger cascade. The cytoplasmic Ca2+ concentration increases through the opening of CNG channels, a phenomenon that underlies two major functions, namely, signal boosting and olfactory adaptation. Signal boosting is achieved by an additional opening of the Ca2+-activated Cl- channel whereas adaptation is regulated by Ca2+ feedback to the CNG channel. Thus, the influx of Ca2+ and the resultant increase in cytoplasmic Ca2+ levels play seemingly opposing effects: increasing the current while reducing the current through adaptation. The two functions could be interpreted as compensating for each other. However, in real cells, both functions should be segregated. Ca2+ dynamics in olfactory cilia need to be directly measured, but technical difficulties accompanying the thin structure of olfactory cilia have prevented systematic analyses. In this study, using a combination of electrophysiology, local photolysis of caged cAMP, and Ca2+ imaging, we found that free Ca2+ in the local ciliary cytoplasm decreased along with a reduction in the current containing Ca2+-activated Cl- components returning to the basal level, whereas Ca2+-dependent adaptation persisted for a longer period. The activity of Cl- channels is highly likely to be regulated by the free Ca2+ that is present only immediately after the influx through the CNG channel, and an exclusive interaction between Ca2+ and Ca2+-binding proteins that mediate the adaptation may modulate the adaptation lifetime.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Correspondence to Hiroko Takeuchi:
| | - Takashi Kurahashi
- Department of Biophysical Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Mi T, Mack JO, Koolmees W, Lyon Q, Yochimowitz L, Teng ZQ, Jiang P, Montell C, Zhang YV. Alkaline taste sensation through the alkaliphile chloride channel in Drosophila. Nat Metab 2023; 5:466-480. [PMID: 36941450 PMCID: PMC10665042 DOI: 10.1038/s42255-023-00765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023]
Abstract
The sense of taste is an important sentinel governing what should or should not be ingested by an animal, with high pH sensation playing a critical role in food selection. Here we explore the molecular identities of taste receptors detecting the basic pH of food using Drosophila melanogaster as a model. We identify a chloride channel named alkaliphile (Alka), which is both necessary and sufficient for aversive taste responses to basic food. Alka forms a high-pH-gated chloride channel and is specifically expressed in a subset of gustatory receptor neurons (GRNs). Optogenetic activation of alka-expressing GRNs is sufficient to suppress attractive feeding responses to sucrose. Conversely, inactivation of these GRNs causes severe impairments in the aversion to high pH. Altogether, our discovery of Alka as an alkaline taste receptor lays the groundwork for future research on alkaline taste sensation in other animals.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - John O Mack
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Quinn Lyon
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Yali V Zhang
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Physiology, The Diabetes Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Arreola J, López-Romero AE, Pérez-Cornejo P, Rodríguez-Menchaca AA. Phosphatidylinositol 4,5-Bisphosphate and Cholesterol Regulators of the Calcium-Activated Chloride Channels TMEM16A and TMEM16B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:279-304. [PMID: 36988885 DOI: 10.1007/978-3-031-21547-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | | | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Aldo A Rodríguez-Menchaca
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
8
|
Guarneri G, Pifferi S, Dibattista M, Reisert J, Menini A. Paradoxical electro-olfactogram responses in TMEM16B knock-out mice. Chem Senses 2023; 48:bjad003. [PMID: 36744918 PMCID: PMC9951260 DOI: 10.1093/chemse/bjad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
The Ca2+-activated Cl¯ channel TMEM16B carries up to 90% of the transduction current evoked by odorant stimulation in olfactory sensory neurons and control the number of action potential firing and therefore the length of the train of action potentials. A loss of function approach revealed that TMEM16B is required for olfactory-driven behaviors such as tracking unfamiliar odors. Here, we used the electro-olfactogram (EOG) technique to investigate the contribution of TMEM16B to odorant transduction in the whole olfactory epithelium. Surprisingly, we found that EOG responses from Tmem16b knock out mice have a bigger amplitude compared to those of wild type. Moreover, the kinetics of EOG responses is faster in absence of TMEM16B, while the ability to adapt to repeated stimulation is altered in knock out mice. The larger EOG responses in Tmem16b knock out may be the results of the removal of the clamping and/or shunting action of the Ca2+-activated Cl¯ currents leading to the paradox of having smaller transduction current but larger generator potential.
Collapse
Affiliation(s)
- Giorgia Guarneri
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Michele Dibattista
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Anna Menini
- Neuroscience Area, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| |
Collapse
|
9
|
Expression pattern of Stomatin-domain proteins in the peripheral olfactory system. Sci Rep 2022; 12:11447. [PMID: 35794236 PMCID: PMC9259621 DOI: 10.1038/s41598-022-15572-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.
Collapse
|
10
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Razmara P, Imbery JJ, Koide E, Helbing CC, Wiseman SB, Gauthier PT, Bray DF, Needham M, Haight T, Zovoilis A, Pyle GG. Mechanism of copper nanoparticle toxicity in rainbow trout olfactory mucosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117141. [PMID: 33901984 DOI: 10.1016/j.envpol.2021.117141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Chemosensory perception is crucial for fish reproduction and survival. Direct contact of olfactory neuroepithelium to the surrounding environment makes it vulnerable to contaminants in aquatic ecosystems. Copper nanoparticles (CuNPs), which are increasingly used in commercial and domestic applications due their exceptional properties, can impair fish olfactory function. However, the molecular events underlying olfactory toxicity of CuNPs are largely unexplored. Our results suggested that CuNPs were bioavailable to olfactory mucosal cells. Using RNA-seq, we compared the effect of CuNPs and copper ions (Cu2+) on gene transcript profiles of rainbow trout (Oncorhynchus mykiss) olfactory mucosa. The narrow overlap in differential gene expression between the CuNP- and Cu2+-exposed fish revealed that these two contaminants exert their effects through distinct mechanisms. We propose a transcript-based conceptual model that shows that olfactory signal transduction, calcium homeostasis, and synaptic vesicular signaling were affected by CuNPs in the olfactory sensory neurons (OSNs). Neuroregenerative pathways were also impaired by CuNPs. In contrast, Cu2+ did not induce toxicity pathways and rather upregulated regeneration pathways. Both Cu treatments reduced immune system pathway transcripts. However, suppression of transcripts that were associated with inflammatory signaling was only observed with CuNPs. Neither oxidative stress nor apoptosis were triggered by Cu2+ or CuNPs in mucosal cells. Dysregulation of transcripts that regulate function, maintenance, and reestablishment of damaged olfactory mucosa represents critical mechanisms of toxicity of CuNPs. The loss of olfaction by CuNPs may impact survival of rainbow trout and impose an ecological risk to fish populations in contaminated environments.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Jacob J Imbery
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Emily Koide
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Steve B Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Patrick T Gauthier
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas F Bray
- Canadian Center for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Maurice Needham
- Canadian Center for Behavioral Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Travis Haight
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
12
|
TMEM16A and TMEM16B Modulate Pheromone-Evoked Action Potential Firing in Mouse Vomeronasal Sensory Neurons. eNeuro 2021; 8:ENEURO.0179-21.2021. [PMID: 34433575 PMCID: PMC8445037 DOI: 10.1523/eneuro.0179-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
The mouse vomeronasal system controls several social behaviors. Pheromones and other social cues are detected by sensory neurons in the vomeronasal organ (VNO). Stimuli activate a transduction cascade that leads to membrane potential depolarization, increase in cytosolic Ca2+ level, and increased firing. The Ca2+-activated chloride channels TMEM16A and TMEM16B are co-expressed within microvilli of vomeronasal neurons, but their physiological role remains elusive. Here, we investigate the contribution of each of these channels to vomeronasal neuron firing activity by comparing wild-type (WT) and knock-out (KO) mice. Performing loose-patch recordings from neurons in acute VNO slices, we show that spontaneous activity is modified by Tmem16a KO, indicating that TMEM16A, but not TMEM16B, is active under basal conditions. Upon exposure to diluted urine, a rich source of mouse pheromones, we observe significant changes in activity. Vomeronasal sensory neurons (VSNs) from Tmem16a cKO and Tmem16b KO mice show shorter interspike intervals (ISIs) compared with WT mice, indicating that both TMEM16A and TMEM16B modulate the firing pattern of pheromone-evoked activity in VSNs.
Collapse
|
13
|
Anion and Cation Permeability of the Mouse TMEM16F Calcium-Activated Channel. Int J Mol Sci 2021; 22:ijms22168578. [PMID: 34445284 PMCID: PMC8395294 DOI: 10.3390/ijms22168578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
TMEM16F is involved in several physiological processes, such as blood coagulation, bone development and virus infections. This protein acts both as a Ca2+-dependent phospholipid scramblase and a Ca2+-activated ion channel but several studies have reported conflicting results about the ion selectivity of the TMEM16F-mediated current. Here, we have performed a detailed side-by-side comparison of the ion selectivity of TMEM16F using the whole-cell and inside-out excised patch configurations to directly compare the results. In inside-out configuration, Ca2+-dependent activation was fast and the TMEM16F-mediated current was activated in a few milliseconds, while in whole-cell recordings full activation required several minutes. We determined the relative permeability between Na+ and Cl¯ (PNa/PCl) using the dilution method in both configurations. The TMEM16F-mediated current was highly nonselective, but there were differences depending on the configuration of the recordings. In whole-cell recordings, PNa/PCl was approximately 0.5, indicating a slight preference for Cl¯ permeation. In contrast, in inside-out experiments the TMEM16F channel showed a higher permeability for Na+ with PNa/PCl reaching 3.7. Our results demonstrate that the time dependence of Ca2+ activation and the ion selectivity of TMEM16F depend on the recording configuration.
Collapse
|
14
|
Gupta R, Mittal A, Agrawal V, Gupta S, Gupta K, Jain RR, Garg P, Mohanty SK, Sogani R, Chhabra HS, Gautam V, Mishra T, Sengupta D, Ahuja G. OdoriFy: A conglomerate of artificial intelligence-driven prediction engines for olfactory decoding. J Biol Chem 2021; 297:100956. [PMID: 34265305 PMCID: PMC8342790 DOI: 10.1016/j.jbc.2021.100956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/01/2022] Open
Abstract
The molecular mechanisms of olfaction, or the sense of smell, are relatively underexplored compared with other sensory systems, primarily because of its underlying molecular complexity and the limited availability of dedicated predictive computational tools. Odorant receptors (ORs) allow the detection and discrimination of a myriad of odorant molecules and therefore mediate the first step of the olfactory signaling cascade. To date, odorant (or agonist) information for the majority of these receptors is still unknown, limiting our understanding of their functional relevance in odor-induced behavioral responses. In this study, we introduce OdoriFy, a Web server featuring powerful deep neural network-based prediction engines. OdoriFy enables (1) identification of odorant molecules for wildtype or mutant human ORs (Odor Finder); (2) classification of user-provided chemicals as odorants/nonodorants (Odorant Predictor); (3) identification of responsive ORs for a query odorant (OR Finder); and (4) interaction validation using Odorant-OR Pair Analysis. In addition, OdoriFy provides the rationale behind every prediction it makes by leveraging explainable artificial intelligence. This module highlights the basis of the prediction of odorants/nonodorants at atomic resolution and for the ORs at amino acid levels. A key distinguishing feature of OdoriFy is that it is built on a comprehensive repertoire of manually curated information of human ORs with their known agonists and nonagonists, making it a highly interactive and resource-enriched Web server. Moreover, comparative analysis of OdoriFy predictions with an alternative structure-based ligand interaction method revealed comparable results. OdoriFy is available freely as a web service at https://odorify.ahujalab.iiitd.edu.in/olfy/.
Collapse
Affiliation(s)
- Ria Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Vishesh Agrawal
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Sushant Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Krishan Gupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Rishi Raj Jain
- Department of Computer Science and Design, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Prakriti Garg
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Sanjay Kumar Mohanty
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Riya Sogani
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Harshit Singh Chhabra
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Vishakha Gautam
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India
| | - Tripti Mishra
- Pathfinder Research and Training Foundation, Greater Noida, Uttar Pradesh, India
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India; Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India; Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), New Delhi, India.
| |
Collapse
|
15
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Guarascio DM, Gonzalez-Velandia KY, Hernandez-Clavijo A, Menini A, Pifferi S. Functional expression of TMEM16A in taste bud cells. J Physiol 2021; 599:3697-3714. [PMID: 34089532 PMCID: PMC8361675 DOI: 10.1113/jp281645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Key points Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+‐activated Cl– channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+‐activated Cl− currents blocked by Ani‐9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+‐activated Cl– currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells.
Abstract The Ca2+‐activated Cl– channels TMEM16A and TMEM16B have relevant roles in many physiological processes including neuronal excitability and regulation of Cl– homeostasis. Here, we examined the presence of Ca2+‐activated Cl– channels in taste cells of mouse vallate papillae by using immunohistochemistry and electrophysiological recordings. By using immunohistochemistry we showed that only TMEM16A, and not TMEM16B, was expressed in taste bud cells where it largely co‐localized with the inwardly rectifying K+ channel KNCJ1 in the apical part of type I cells. By using whole‐cell patch‐clamp recordings in isolated cells from taste buds, we measured an average current of −1083 pA at −100 mV in 1.5 μm Ca2+ and symmetrical Cl– in type I cells. Ion substitution experiments and blockage by Ani‐9, a specific TMEM16A channel blocker, indicated that Ca2+ activated anionic currents through TMEM16A channels. We did not detect any Ca2+‐activated Cl– currents in type II or III taste cells. ATP is released by type II cells in response to various tastants and reaches type I cells where it is hydrolysed by ecto‐ATPases. Type I cells also express P2Y purinergic receptors and stimulation of type I cells with extracellular ATP produced large Ca2+‐activated Cl− currents blocked by Ani‐9, indicating a possible role of TMEM16A in ATP‐mediated signalling. These results provide a definitive demonstration that TMEM16A‐mediated currents are functional in type I taste cells and provide a foundation for future studies investigating physiological roles for these often‐neglected taste cells. Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+‐activated Cl– channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+‐activated Cl− currents blocked by Ani‐9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+‐activated Cl– currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells.
Collapse
Affiliation(s)
- Domenico M Guarascio
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Italy
| | | | - Andres Hernandez-Clavijo
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, 34136, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, 60126, Italy
| |
Collapse
|
17
|
Ukhanov K, Uytingco C, Green W, Zhang L, Schurmans S, Martens JR. INPP5E controls ciliary localization of phospholipids and the odor response in olfactory sensory neurons. J Cell Sci 2021; 135:jcs.258364. [PMID: 33771931 PMCID: PMC8126451 DOI: 10.1242/jcs.258364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
The lipid composition of the primary cilia membrane is emerging as a critical regulator of cilia formation, maintenance and function. Here, we show that conditional deletion of the phosphoinositide 5′-phosphatase gene Inpp5e, mutation of which is causative of Joubert syndrome, in terminally developed mouse olfactory sensory neurons (OSNs), leads to a dramatic remodeling of ciliary phospholipids that is accompanied by marked elongation of cilia. Phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], which is normally restricted to the proximal segment redistributed to the entire length of cilia in Inpp5e knockout mice with a reduction in phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2] and elevation of phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] in the dendritic knob. The redistribution of phosphoinositides impaired odor adaptation, resulting in less efficient recovery and altered inactivation kinetics of the odor-evoked electrical response and the odor-induced elevation of cytoplasmic Ca2+. Gene replacement of Inpp5e through adenoviral expression restored the ciliary localization of PI(4,5)P2 and odor response kinetics in OSNs. Our findings support the role of phosphoinositides as a modulator of the odor response and in ciliary biology of native multi-ciliated OSNs. Summary: Cilia of olfactory sensory neurons have a unique lipid composition. Localization of phospholipids is controlled by the INPP5E phosphatase and is involved in modulation of the odor response.
Collapse
Affiliation(s)
- Kirill Ukhanov
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| | - Cedric Uytingco
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA
| | - Warren Green
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA
| | - Lian Zhang
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| | - Stephane Schurmans
- Laboratory of Functional Genetics, GIGA-Molecular Biology of Disease, University of Liège, Liège, Belgium
| | - Jeffrey R Martens
- University of Florida, Department of Pharmacology and Therapeutics, Gainesville, FL 32603, USA.,University of Florida, Center for Smell and Taste, FL 32610-0267, USA
| |
Collapse
|
18
|
Reisert J, Golden GJ, Dibattista M, Gelperin A. Odor sampling strategies in mice with genetically altered olfactory responses. PLoS One 2021; 16:e0249798. [PMID: 33939692 PMCID: PMC8092659 DOI: 10.1371/journal.pone.0249798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/25/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral sensory cells and the central neuronal circuits that monitor environmental changes to drive behaviors should be adapted to match the behaviorally relevant kinetics of incoming stimuli, be it the detection of sound frequencies, the speed of moving objects or local temperature changes. Detection of odorants begins with the activation of olfactory receptor neurons in the nasal cavity following inhalation of air and airborne odorants carried therein. Thus, olfactory receptor neurons are stimulated in a rhythmic and repeated fashion that is determined by the breathing or sniffing frequency that can be controlled and altered by the animal. This raises the question of how the response kinetics of olfactory receptor neurons are matched to the imposed stimulation frequency and if, vice versa, the kinetics of olfactory receptor neuron responses determine the sniffing frequency. We addressed this question by using a mouse model that lacks the K+-dependent Na+/Ca2+ exchanger 4 (NCKX4), which results in markedly slowed response termination of olfactory receptor neuron responses and hence changes the temporal response kinetics of these neurons. We monitored sniffing behaviors of freely moving wildtype and NCKX4 knockout mice while they performed olfactory Go/NoGo discrimination tasks. Knockout mice performed with similar or, surprisingly, better accuracy compared to wildtype mice, but chose, depending on the task, different odorant sampling durations depending on the behavioral demands of the odorant identification task. Similarly, depending on the demands of the behavioral task, knockout mice displayed a lower basal breathing frequency prior to odorant sampling, a possible mechanism to increase the dynamic range for changes in sniffing frequency during odorant sampling. Overall, changes in sniffing behavior between wildtype and NCKX4 knockout mice were subtle, suggesting that, at least for the particular odorant-driven task we used, slowed response termination of the odorant-induced receptor neuron response either has a limited detrimental effect on odorant-driven behavior or mice are able to compensate via an as yet unknown mechanism.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
- * E-mail: (JR); (AG)
| | - Glen J. Golden
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| | - Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari “A. Moro”, Bari, Italy
| | - Alan Gelperin
- Princeton Neuroscience Program, Princeton University, Princeton, NJ, United States of America
- * E-mail: (JR); (AG)
| |
Collapse
|
19
|
A Role for STOML3 in Olfactory Sensory Transduction. eNeuro 2021; 8:ENEURO.0565-20.2021. [PMID: 33637538 PMCID: PMC7986538 DOI: 10.1523/eneuro.0565-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons (OSNs), but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of OSNs. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Because of its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in OSNs. To investigate the functional role of STOML3, we performed loose patch recordings from wild-type (WT) and Stoml3 knock-out (KO) OSNs. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals (ISIs) distributions in Stoml3 KOs compared with WT neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared with WT neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by OSNs.
Collapse
|
20
|
Prediction of Functional Consequences of Missense Mutations in ANO4 Gene. Int J Mol Sci 2021; 22:ijms22052732. [PMID: 33800471 PMCID: PMC7962975 DOI: 10.3390/ijms22052732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
The anoctamin (TMEM16) family of transmembrane protein consists of ten members in vertebrates, which act as Ca2+-dependent ion channels and/or Ca2+-dependent scramblases. ANO4 which is primarily expressed in the CNS and certain endocrine glands, has been associated with various neuronal disorders. Therefore, we focused our study on prioritizing missense mutations that are assumed to alter the structure and stability of ANO4 protein. We employed a wide array of evolution and structure based in silico prediction methods to identify potentially deleterious missense mutations in the ANO4 gene. Identified pathogenic mutations were then mapped to the modeled human ANO4 structure and the effects of missense mutations were studied on the atomic level using molecular dynamics simulations. Our data show that the G80A and A500T mutations significantly alter the stability of the mutant proteins, thus providing new perspective on the role of missense mutations in ANO4 gene. Results obtained in this study may help to identify disease associated mutations which affect ANO4 protein structure and function and might facilitate future functional characterization of ANO4.
Collapse
|
21
|
Grigoriev VV. [Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:17-33. [PMID: 33645519 DOI: 10.18097/pbmc20216701017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ca2+-activated chloride channels (CaCC) are a class of intracellular calcium activated chloride channels that mediate numerous physiological functions. In 2008, the molecular structure of CaCC was determined. CaCC are formed by the protein known as anoctamine 1 (ANO1 or TMEM16A). CaCC mediates the secretion of Cl- in secretory epithelia, such as the airways, salivary glands, intestines, renal tubules, and sweat glands. The presence of CaCC has also been recognized in the vascular muscles, smooth muscles of the respiratory tract, which control vascular tone and hypersensitivity of the respiratory tract. TMEM16A is activated in many cancers; it is believed that TMEM16A is involved in carcinogenesis. TMEM16A is also involved in cancer cells proliferation. The role of TMEM16A in the mechanisms of hypertension, asthma, cystic fibrosis, nociception, and dysfunction of the gastrointestinal tract has been determined. In addition to TMEM16A, its isoforms are involved in other physiological and pathophysiological processes. TMEM16B (or ANO2) is involved in the sense of smell, while ANO6 works like scramblase, and its mutation causes a rare bleeding disorder, known as Scott syndrome. ANO5 is associated with muscle and bone diseases. TMEM16A interacts with various cellular signaling pathways including: epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK), calmodulin (CaM) kinases, transforming growth factor TGF-β. The review summarizes existing information on known natural and synthetic compounds that can block/modulate CaCC currents and their effect on some pathologies in which CaCC is involved.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Abstract
Animals use their sensory systems to detect danger in their environments. New research shows that larval zebrafish navigate away from dangerous salt water by using their olfactory systems to detect the presence of both sodium and chloride ions.
Collapse
Affiliation(s)
- Matthew Lovett-Barron
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Dibattista M, Al Koborssy D, Genovese F, Reisert J. The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story. Cell Tissue Res 2021; 383:409-427. [PMID: 33447880 DOI: 10.1007/s00441-020-03349-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Olfactory marker protein (OMP) was first described as a protein expressed in olfactory receptor neurons (ORNs) in the nasal cavity. In particular, OMP, a small cytoplasmic protein, marks mature ORNs and is also expressed in the neurons of other nasal chemosensory systems: the vomeronasal organ, the septal organ of Masera, and the Grueneberg ganglion. While its expression pattern was more easily established, OMP's function remained relatively vague. To date, most of the work to understand OMP's role has been done using mice lacking OMP. This mostly phenomenological work has shown that OMP is involved in sharpening the odorant response profile and in quickening odorant response kinetics of ORNs and that it contributes to targeting of ORN axons to the olfactory bulb to refine the glomerular response map. Increasing evidence shows that OMP acts at the early stages of olfactory transduction by modulating the kinetics of cAMP, the second messenger of olfactory transduction. However, how this occurs at a mechanistic level is not understood, and it might also not be the only mechanism underlying all the changes observed in mice lacking OMP. Recently, OMP has been detected outside the nose, including the brain and other organs. Although no obvious logic has become apparent regarding the underlying commonality between nasal and extranasal expression of OMP, a broader approach to diverse cellular systems might help unravel OMP's functions and mechanisms of action inside and outside the nose.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | | | | | | |
Collapse
|
25
|
Kalra S, Mittal A, Bajoria M, Mishra T, Maryam S, Sengupta D, Ahuja G. Challenges and possible solutions for decoding extranasal olfactory receptors. FEBS J 2020; 288:4230-4241. [PMID: 33085840 DOI: 10.1111/febs.15606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Olfactory receptors are primarily known to be expressed in the olfactory epithelium of the nasal cavity and therefore assist in odor perception. With the advent of high-throughput omics technologies such as tissue microarray or RNA sequencing, a large number of olfactory receptors have been reported to be expressed in the nonolfactory tissues. Although these technologies uncovered the expression of these olfactory receptors in the nonchemosensory tissues, unfortunately, they failed to reveal the information about their cell type of origin. Accurate characterization of the cell types should be the first step towards devising cell type-specific assays for their functional evaluation. Single-cell RNA-sequencing technology resolved some of these apparent limitations and opened new means to interrogate the expression of these extranasal olfactory receptors at the single-cell resolution. Moreover, the availability of large-scale, multi-organ/species single-cell expression atlases offer ample resources for the systematic reannotation of these receptors in a cell type-specific manner. In this Viewpoint article, we discuss some of the technical limitations that impede the in-depth understanding of these extranasal olfactory receptors, with a special focus on odorant receptors. Moreover, we also propose a list of single cell-based omics technologies that could further promulgate the opportunity to decipher the regulatory network that drives the odorant receptors expression at atypical locations.
Collapse
Affiliation(s)
- Siddhant Kalra
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Manisha Bajoria
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Tripti Mishra
- Pathfinder Research and Training Foundation, Greater Noida, India
| | - Sidrah Maryam
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India.,Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India, India.,Centre for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi, India.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India, India
| |
Collapse
|
26
|
Bryche B, St Albin A, Murri S, Lacôte S, Pulido C, Ar Gouilh M, Lesellier S, Servat A, Wasniewski M, Picard-Meyer E, Monchatre-Leroy E, Volmer R, Rampin O, Le Goffic R, Marianneau P, Meunier N. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun 2020; 89:579-586. [PMID: 32629042 PMCID: PMC7332942 DOI: 10.1016/j.bbi.2020.06.032] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Anosmia is one of the most prevalent symptoms of SARS-CoV-2 infection during the COVID-19 pandemic. However, the cellular mechanism behind the sudden loss of smell has not yet been investigated. The initial step of odour detection takes place in the pseudostratified olfactory epithelium (OE) mainly composed of olfactory sensory neurons surrounded by supporting cells known as sustentacular cells. The olfactory neurons project their axons to the olfactory bulb in the central nervous system offering a potential pathway for pathogens to enter the central nervous system by bypassing the blood brain barrier. In the present study, we explored the impact of SARS-CoV-2 infection on the olfactory system in golden Syrian hamsters. We observed massive damage of the OE as early as 2 days post nasal instillation of SARS-CoV-2, resulting in a major loss of cilia necessary for odour detection. These damages were associated with infection of a large proportion of sustentacular cells but not of olfactory neurons, and we did not detect any presence of the virus in the olfactory bulbs. We observed massive infiltration of immune cells in the OE and lamina propria of infected animals, which may contribute to the desquamation of the OE. The OE was partially restored 14 days post infection. Anosmia observed in COVID-19 patient is therefore likely to be linked to a massive and fast desquamation of the OE following sustentacular cells infection with SARS-CoV-2 and subsequent recruitment of immune cells in the OE and lamina propria.
Collapse
Affiliation(s)
- Bertrand Bryche
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Audrey St Albin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Severine Murri
- Laboratoire de Lyon, ANSES, Unité virologie, Lyon, France
| | - Sandra Lacôte
- Laboratoire de Lyon, ANSES, Unité virologie, Lyon, France
| | - Coralie Pulido
- Laboratoire de Lyon, ANSES, Plateforme d'expérimentation animale, Lyon, France
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne, UNICAEN-UNIROUEN, Université de Caen Normandie, 14 000 Caen, France; Service de Virologie, CHU de Caen, Caen, France
| | | | | | | | | | | | - Romain Volmer
- Université de Toulouse, ENVT, INRA, UMR 1225, Toulouse, France
| | - Olivier Rampin
- Université Paris Saclay, INRAE, AgroParisTech, PNCA, 78350 Jouy-en-Josas, France
| | - Ronan Le Goffic
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | | | - Nicolas Meunier
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France.
| |
Collapse
|
27
|
Dibattista M, Pifferi S, Menini A, Reisert J. Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System? Front Neurosci 2020; 14:440. [PMID: 32508565 PMCID: PMC7248389 DOI: 10.3389/fnins.2020.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
The sense of smell has been shown to deteriorate in patients with some neurodegenerative disorders. In Parkinson's disease (PD) and Alzheimer's disease (AD), decreased ability to smell is associated with early disease stages. Thus, olfactory neurons in the nose and olfactory bulb (OB) may provide a window into brain physiology and pathophysiology to address the pathogenesis of neurodegenerative diseases. Because nasal olfactory receptor neurons regenerate throughout life, the olfactory system offers a broad variety of cellular mechanisms that could be altered in AD, including odorant receptor expression, neurogenesis and neurodegeneration in the olfactory epithelium, axonal targeting to the OB, and synaptogenesis and neurogenesis in the OB. This review focuses on pathophysiological changes in the periphery of the olfactory system during the progression of AD in mice, highlighting how the olfactory epithelium and the OB are particularly sensitive to changes in proteins and enzymes involved in AD pathogenesis. Evidence reviewed here in the context of the emergence of other typical pathological changes in AD suggests that olfactory impairments could be used to understand the molecular mechanisms involved in the early phases of the pathology.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari A. Moro, Bari, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | |
Collapse
|
28
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
29
|
Meunier N, Raynaud A, Le Bourhis M, Grébert D, Dewaele A, Acquistapace A, Bombail V. The olfactory mucosa, first actor of olfactory detection, is sensitive to glucocorticoid hormone. Eur J Neurosci 2019; 51:1403-1418. [PMID: 31465599 DOI: 10.1111/ejn.14564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023]
Abstract
The olfactory mucosa (OM) is the primary site of odorant detection, and its axonal projections relay information to brain structures for signal processing. We have previously observed that olfactory function can be affected during a prolonged stress challenge in Wistar rats. The stress response is a neuroendocrine retro-controlled loop allowing pleiotropic adaptive tissue alterations, which are partly mediated through the release of glucocorticoid hormones. We hypothesised that, as part of their wide-ranging pleiotropic effects, glucocorticoids might affect the first step of olfactory detection. To study this, we used a number of approaches ranging from the molecular detection and functional characterisation of glucocorticoid receptors (GRs) in OM cells, to the study of GR acute activation in vivo at the molecular, electrophysiological and behavioural levels. In contrast to previous reports, where GR was reported to be exclusive in olfactory sensory neurones, we located functional GR expression mostly in olfactory ensheathing cells. Dexamethasone (2 mg/kg) was injected intraperitoneally to activate GR in vivo, and this led to functional odorant electrophysiological response (electro-olfactogram) and OM gene expression changes. In a habituation/cross-habituation test of olfactory sensitivity, we observed that DEX-treated rats exhibited higher responsiveness to a complex odorant mixture. These findings support the idea that olfactory perception is altered in stressed animals, as glucocorticoids might enhance odour detection, starting at the first step of detection.
Collapse
Affiliation(s)
- Nicolas Meunier
- NBO, INRA, Université Paris-Saclay, Jouy-en-Josas, France.,NBO, UVSQ, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Denise Grébert
- NBO, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
30
|
Friedrich SR, Lovell PV, Kaser TM, Mello CV. Exploring the molecular basis of neuronal excitability in a vocal learner. BMC Genomics 2019; 20:629. [PMID: 31375088 PMCID: PMC6679542 DOI: 10.1186/s12864-019-5871-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains understudied. We have focused our efforts on examining voltage-gated ion channels to gain insight into electrophysiological and functional features of vocal nuclei. A previous investigation of potassium channel genes in zebra finches (Taeniopygia guttata) revealed evolutionary modifications unique to songbirds, as well as transcriptional specializations in the song system [Lovell PV, Carleton JB, Mello CV. BMC Genomics 14:470 2013]. Here, we expand this approach to sodium, calcium, and chloride channels along with their modulatory subunits using comparative genomics and gene expression analysis encompassing microarrays and in situ hybridization. RESULTS We found 23 sodium, 38 calcium, and 33 chloride channel genes (HGNC-based classification) in the zebra finch genome, several of which were previously unannotated. We determined 15 genes are missing relative to mammals, including several genes (CLCAs, BEST2) linked to olfactory transduction. The majority of sodium and calcium but few chloride channels showed differential expression in the song system, among them SCN8A and CACNA1E in the direct motor pathway, and CACNG4 and RYR2 in the anterior forebrain pathway. In several cases, we noted a seemingly coordinated pattern across multiple nuclei (SCN1B, SCN3B, SCN4B, CACNB4) or sparse expression (SCN1A, CACNG5, CACNA1B). CONCLUSION The gene families examined are highly conserved between avian and mammalian lineages. Several cases of differential expression likely support high-frequency and burst firing in specific song nuclei, whereas cases of sparse patterns of expression may contribute to the unique electrophysiological signatures of distinct cell populations. These observations lay the groundwork for manipulations to determine how ion channels contribute to the neuronal excitability properties of vocal learning systems.
Collapse
Affiliation(s)
- Samantha R. Friedrich
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Peter V. Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Taylor M. Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR USA
| |
Collapse
|
31
|
Henriques T, Agostinelli E, Hernandez-Clavijo A, Maurya DK, Rock JR, Harfe BD, Menini A, Pifferi S. TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium. J Gen Physiol 2019; 151:954-966. [PMID: 31048412 PMCID: PMC6605691 DOI: 10.1085/jgp.201812310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system.
Collapse
Affiliation(s)
- Tiago Henriques
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | - Emilio Agostinelli
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | | | | | - Jason R Rock
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, MA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL
| | - Anna Menini
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
32
|
Salzer I, Boehm S. Calcium-activated chloride channels: Potential targets for antinociceptive therapy. Int J Biochem Cell Biol 2019; 111:37-41. [PMID: 31005634 DOI: 10.1016/j.biocel.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023]
Abstract
The molecular identity of calcium-activated chloride channels (CaCCs) was clarified only some ten years ago when it was linked to the family of "transmembrane proteins of unknown function 16″ (TMEM16). Since then, numerous studies have been conducted both to define their role in physiology and identify their biophysical functions. For the latter, the ultrastructural description of mouse TMEM16 A was a breakthrough. CaCCs were functionally described in a number of different tissues including first-order sensory neurons. The activating rise in intracellular calcium concentration can be caused by an influx of calcium through other calcium permeable ion channels. Calcium release from intracellular stores, mediated by G-protein coupled receptors, also leads to CaCC activation. Prominent inflammatory mediators like bradykinin or serotonin stimulate CaCCs via such a mechanism. The (patho) physiological function of these ion channels renders them promising targets for antinociceptive treatment.
Collapse
Affiliation(s)
- Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria.
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, 1090, Vienna, Austria
| |
Collapse
|
33
|
Suction Pipette Technique: An Electrophysiological Tool to Study Olfactory Receptor-Dependent Signal Transduction. Methods Mol Biol 2019. [PMID: 29884943 DOI: 10.1007/978-1-4939-8609-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The first step to perceive molecules in the air as odors is their detection by the olfactory receptors (ORs) present in the cilia of the olfactory sensory neurons (OSNs) in the nasal cavity. The binding of the odorant molecule to the OR triggers a series of biochemical events that lead to the opening of ion channels, creating at first a generator potential that, if the latter reaches threshold, leads to action potential firing. New insights into olfactory transduction introduced new key players and highlighted the necessity to study OSN physiology in an OR-dependent fashion.The necessity of revisiting transduction mechanisms with consideration of the OR that an OSN expresses requires recording methods of odorant responses at single cell levels. A very effective method to do so is the Suction Pipette Technique, which allows the simultaneous recording of the slow receptor current that originates at the cilia and fast action potentials fired by the cell body. This method can be used in combination with gene targeting and editing techniques to fully address important aspects of the olfactory physiology.
Collapse
|
34
|
Ca 2+-activated Cl - current ensures robust and reliable signal amplification in vertebrate olfactory receptor neurons. Proc Natl Acad Sci U S A 2018; 116:1053-1058. [PMID: 30598447 DOI: 10.1073/pnas.1816371116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activation of most primary sensory neurons results in transduction currents that are carried by cations. One notable exception is the vertebrate olfactory receptor neuron (ORN), where the transduction current is carried largely by the anion [Formula: see text] However, it remains unclear why ORNs use an anionic current for signal amplification. We have sought to provide clarification on this topic by studying the so far neglected dynamics of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] in the small space of olfactory cilia during an odorant response. Using computational modeling and simulations we compared the outcomes of signal amplification based on either [Formula: see text] or [Formula: see text] currents. We found that amplification produced by [Formula: see text] influx instead of a [Formula: see text] efflux is problematic for several reasons: First, the [Formula: see text] current amplitude varies greatly, depending on mucosal ion concentration changes. Second, a [Formula: see text] current leads to a large increase in the ciliary [Formula: see text] concentration during an odorant response. This increase inhibits and even reverses [Formula: see text] clearance by [Formula: see text] exchange, which is essential for response termination. Finally, a [Formula: see text] current increases the ciliary osmotic pressure, which could cause swelling to damage the cilia. By contrast, a transduction pathway based on [Formula: see text] efflux circumvents these problems and renders the odorant response robust and reliable.
Collapse
|
35
|
Endothelin impacts on olfactory processing in rats. Behav Brain Res 2018; 362:1-6. [PMID: 30597250 DOI: 10.1016/j.bbr.2018.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023]
Abstract
In the olfactory epithelium, olfactory sensitive neurons and their axons are surrounded by glia-like cells called sustentacular cells, which maintain both the structural and ionic integrity of the olfactory mucosa. We have previously found that endothelin-1 (ET-1) can uncouple sustentacular cell gap junctions in vitro similarly as carbenoxolone, a known gap junction uncoupling agent. The role of gap junctions in odorant transduction remains controversial and we explored here if ET-1 naturally produced by the olfactory mucosa could impact odorant detection. Using calcium imaging on olfactory mucosa explant, we first confirmed that ET-1 uncouples gap junctions in an olfactory mucosa preparation preserving the tissue integrity. We next measured the olfactory epithelium responses to odorant stimulation using electro-olfactogram recordings. While the amplitude of the response was not modified by application of ET-1 and carbenoxolone, its repolarizing phase was slower after both treatments. We finally examined the behavioral performances of rat pups in an orientation test based on maternal odor recognition after intranasal instillations of ET-1 or carbenoxolone. While rat pups performances were decreased after ET-1 treatment, it was unchanged after carbenoxolone treatment. Overall, our results indicate that ET-1 modulates olfactory responses at least partly through gap junction uncoupling.
Collapse
|
36
|
Münch J, Billig G, Hübner CA, Leinders-Zufall T, Zufall F, Jentsch TJ. Ca 2+-activated Cl - currents in the murine vomeronasal organ enhance neuronal spiking but are dispensable for male-male aggression. J Biol Chem 2018; 293:10392-10403. [PMID: 29769308 DOI: 10.1074/jbc.ra118.003153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/06/2018] [Indexed: 01/11/2023] Open
Abstract
Ca2+-activated Cl- currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight. In the VNO, Ca2+-activated Cl- channels (CaCCs) are thought to amplify the initial pheromone-evoked receptor potential by mediating a depolarizing Cl- efflux. Here, we confirmed the co-localization of the Ca2+-activated Cl- channels anoctamin 1 (Ano1, also called TMEM16A) and Ano2 (TMEM16B) in microvilli of apically and basally located vomeronasal sensory neurons (VSNs) and their absence in supporting cells of the VNO. Both channels were expressed as functional isoforms capable of giving rise to Ca2+-activated Cl- currents. Although these currents persisted in the VNOs of mice lacking Ano2, they were undetectable in olfactory neuron-specific Ano1 knockout mice irrespective of the presence of Ano2 The loss of Ca2+-activated Cl- currents resulted in diminished spontaneous and drastically reduced pheromone-evoked spiking of VSNs. Although this indicated an important role of anoctamin channels in VNO signal amplification, the lack of this amplification did not alter VNO-dependent male-male territorial aggression in olfactory Ano1/Ano2 double knockout mice. We conclude that Ano1 mediates the bulk of Ca2+-activated Cl- currents in the VNO and that Ano2 plays only a minor role. Furthermore, vomeronasal signal amplification by CaCCs appears to be dispensable for the detection of male-specific pheromones and for near-normal aggressive behavior in mice.
Collapse
Affiliation(s)
- Jonas Münch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.,the Graduate Program, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gwendolyn Billig
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany
| | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Trese Leinders-Zufall
- the Center for Integrative Physiology and Molecular Medicine, Saarland University, D-66421 Homburg, Germany, and
| | - Frank Zufall
- the Center for Integrative Physiology and Molecular Medicine, Saarland University, D-66421 Homburg, Germany, and
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany, .,the Max-Delbrück-Centrum für Molekulare Medizin, D-13125 Berlin, Germany.,the NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, D-10117 Berlin, Germany
| |
Collapse
|
37
|
Ca 2+-activated Cl current predominates in threshold response of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 2018; 115:5570-5575. [PMID: 29735665 DOI: 10.1073/pnas.1803443115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In mammalian olfactory transduction, odorants activate a cAMP-mediated signaling pathway that leads to the opening of cyclic nucleotide-gated (CNG), nonselective cation channels and depolarization. The Ca2+ influx through open CNG channels triggers an inward current through Ca2+-activated Cl channels (ANO2), which is expected to produce signal amplification. However, a study on an Ano2-/- mouse line reported no elevation in the behavioral threshold of odorant detection compared with wild type (WT). Subsequent studies by others on the same Ano2-/- line, nonetheless, found subtle defects in olfactory behavior and some abnormal axonal projections from the olfactory receptor neurons (ORNs) to the olfactory bulb. As such, the question regarding signal amplification by the Cl current in WT mouse remains unsettled. Recently, with suction-pipette recording, we have successfully separated in frog ORNs the CNG and Cl currents during olfactory transduction and found the Cl current to predominate in the response down to the threshold of action-potential signaling to the brain. For better comparison with the mouse data by others, we have now carried out similar current-separation experiments on mouse ORNs. We found that the Cl current clearly also predominated in the mouse olfactory response at signaling threshold, accounting for ∼80% of the response. In the absence of the Cl current, we expect the threshold stimulus to increase by approximately sevenfold.
Collapse
|
38
|
Neureither F, Stowasser N, Frings S, Möhrlen F. Tracking of unfamiliar odors is facilitated by signal amplification through anoctamin 2 chloride channels in mouse olfactory receptor neurons. Physiol Rep 2018; 5:5/15/e13373. [PMID: 28784854 PMCID: PMC5555898 DOI: 10.14814/phy2.13373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Many animals follow odor trails to find food, nesting sites, or mates, and they require only faint olfactory cues to do so. The performance of a tracking dog, for instance, poses the question on how the animal is able to distinguish a target odor from the complex chemical background around the trail. Current concepts of odor perception suggest that animals memorize each odor as an olfactory object, a percept that enables fast recognition of the odor and the interpretation of its valence. An open question still is how this learning process operates efficiently at the low odor concentrations that typically prevail when animals inspect an odor trail. To understand olfactory processing under these conditions, we studied the role of an amplification mechanism that boosts signal transduction at low stimulus intensities, a process mediated by calcium‐gated anoctamin 2 chloride channels. Genetically altered Ano2−/− mice, which lack these channels, display an impaired cue‐tracking behavior at low odor concentrations when challenged with an unfamiliar, but not with a familiar, odor. Moreover, recordings from the olfactory epithelium revealed that odor coding lacks sensitivity and temporal resolution in anoctamin 2‐deficient mice. Our results demonstrate that the detection of an unfamiliar, weak odor, as well as its memorization as an olfactory object, require signal amplification in olfactory receptor neurons. This process may contribute to the phenomenal tracking abilities of animals that follow odor trails.
Collapse
Affiliation(s)
- Franziska Neureither
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Nadine Stowasser
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
39
|
Abstract
Olfactory sensory neurons are bipolar cells with a single thin dendrite that ends in a protuberance, the knob, from which several thin cilia emerge. The cilia are the site of olfactory transduction since they contain the molecular machinery necessary to initiate the olfactory response.The patch clamp technique is a powerful tool to investigate ion channels and receptor mediated currents in neurons. In this chapter, we describe the preparation of dissociated olfactory neurons and their use in patch clamp experiments for the functional characterization of their ionic conductances.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council, Genoa, Italy.
| |
Collapse
|
40
|
Dibattista M, Lobasso S, Stramaglia S, Corcelli A. Assessing olfactory functions in patients with Barth syndrome. PLoS One 2017; 12:e0187619. [PMID: 29099864 PMCID: PMC5669470 DOI: 10.1371/journal.pone.0187619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/23/2017] [Indexed: 01/29/2023] Open
Abstract
Barth syndrome is a rare X-linked disease affecting less than 200 individuals worldwide. Several comorbidities have been associated with the pathology and, among those, cardiac myopathy and neutropenia are the most life threatening. The appropriate nutritive support is important to sustain the everyday life of Barth syndrome patients given the chronic fatigue they experience. Since they often prefer salty and fried food, and avoid vegetables and fruits, their eating habit and food preferences do not always provide the proper amount of vitamins and amino acids. It has been indeed reported that Barth syndrome patients have altered taste sensitivity. As olfaction also contributes to food consumption and flavor perception, we decided to investigate their olfactory abilities using the "Sniffin' sticks' extended test". We found no significant difference in any of the tested olfactory abilities between the group of Barth syndrome patients and the healthy controls. In summary, altered food preference of Barth boys could not be easily explained with an altered olfactory perception.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Sebastiano Stramaglia
- Department of Physics, University of Bari Aldo Moro, Bari, Italy
- INFN, Sezione di Bari, Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- IPCF-CNR Sezione di Bari, Bari, Italy
- * E-mail:
| |
Collapse
|