1
|
Joubert MBV, Ingaramo PI, Collins P, D'Alessandro ME. Astaxanthin improves lipotoxicity, lipid peroxidation and oxidative stress in kidney of sucrose-rich diet-fed rats. J Nutr Biochem 2025; 135:109779. [PMID: 39374743 DOI: 10.1016/j.jnutbio.2024.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Metabolic Syndrome (MS) is a cluster of metabolic risk factors, characterized by abdominal obesity, dyslipidemia, hypertension, insulin resistance, among others. The purpose of the study was to evaluate the astaxanthin (AXT) effects extracted from freshwater crab (Dilocarcinus pagei) at the Paraná Basin on lipotoxicity, lipid peroxidation and oxidative stress in the kidney of rats fed with a sucrose-rich diet (SRD). We hypothesized that daily administration of AXT prevents kidney damage by reducing lipotoxicity, lipid peroxidation, and reactive oxygen species (ROS), and by improving antioxidant enzyme defenses and crosstalk between NrF2 and NF-ĸB transcription factors. Male Wistar rats were fed a reference diet (RD), RD+AXT, SRD and SRD+AXT (AXT daily oral dose: [10 mg/kg body weight]) for 90 days. Systolic and diastolic blood pressure, biochemical assays in serum and urine were evaluated. Renal cortex samples were taken for histological analysis, determination of triglyceride content, ROS, thiobarbituric acid reactive substances (TBARS), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) enzyme activities and glutathione content (GSH). 4-HNE, NrF2, and NF-ĸB p65 expression were analyzed by immunohistochemistry. We demonstrated that daily oral supplementation of AXT to animals fed a SRD reduced systolic and diastolic blood pressure, histological renal damage, lipid accumulation, ROS and lipid peroxidation, and increased CAT and GPx activities. NrF2 protein expression in renal cortex was increased, whilst NF-ĸB p65 was reduced. AXT extracted from freshwater crabs (Dilocarcinus pagei) may be promising nutritional strategy for the prevention of renal alterations present in this model.
Collapse
Affiliation(s)
- Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Paola Inés Ingaramo
- Departamento de Fisiopatología Ambiental, Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Cs. Biológicas. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Pablo Collins
- Departamento de Acuicultura, Instituto Nacional de Limnología (INALI), Universidad Nacional del Litoral- Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
2
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2025; 8:67-91. [PMID: 39690876 PMCID: PMC11798751 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
| | - Samer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of PharmacyDhuleMaharashtraIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| |
Collapse
|
3
|
Sarker M, Chowdhury N, Bristy AT, Emran T, Karim R, Ahmed R, Shaki MM, Sharkar SM, Sayedur Rahman GM, Reza HM. Astaxanthin protects fludrocortisone acetate-induced cardiac injury by attenuating oxidative stress, fibrosis, and inflammation through TGF-β/Smad signaling pathway. Biomed Pharmacother 2024; 181:117703. [PMID: 39586138 DOI: 10.1016/j.biopha.2024.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Hypertensive rats serve as a good experimental model for studying the pathophysiology of cardiac hypertrophy and remodeling leading to heart failure. In this study, we aimed to analyze the effect of astaxanthin and possible mechanisms involved in alleviating oxidative stress, fibrosis and inflammation that triggers cardiac remodeling using male uninephrectomized Long Evans rats. Cardiac hypertrophy and hypertension were induced in rats termed as 'FCA-Salt rats' by an oral administration of fludrocortisone acetate (FCA) and 1 % NaCl in drinking water. Biochemical assays showed that FCA-Salt rats exhibited an upregulation of oxidative stress markers AOPP, MDA and downregulation of NO in heart and kidney, which was reversed by astaxanthin treatment. Astaxanthin further regularized the reduced activities of antioxidant enzymes GSH, SOD and CAT in these tissues. ELISA revealed that astaxanthin significantly reduced the inflammatory response by reducing the elevated levels of IL-1β, IL-17a, and TNF-α and pro-fibrotic marker TGF-β1 in plasma. Real-time qPCR depicted an upregulation of TNF-α, IL-1β, IL-6, IL-17A as well as signaling molecules TGF-β1, Smad2 and Smad3 in heart of FCA-Salt rats, which was reduced significantly by astaxanthin. Sirius red staining showed that the cardiac and renal fibrosis was significantly improved by astaxanthin treatment. Together, our results suggest that astaxanthin treatment is beneficial in protecting cardio-renal damage in hypertension through TGF-β/Smad signaling pathway, hence, this molecule may be considered for the maintenance of cardio-renal health.
Collapse
Affiliation(s)
- Manoneeta Sarker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nowreen Chowdhury
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Anika Tabassum Bristy
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tushar Emran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Reatul Karim
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rezwana Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Mostaid Shaki
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharkar
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh.
| |
Collapse
|
4
|
Giurranna E, Nencini F, Bettiol A, Borghi S, Argento FR, Emmi G, Silvestri E, Taddei N, Fiorillo C, Becatti M. Dietary Antioxidants and Natural Compounds in Preventing Thrombosis and Cardiovascular Disease. Int J Mol Sci 2024; 25:11457. [PMID: 39519009 PMCID: PMC11546393 DOI: 10.3390/ijms252111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Reactive oxygen species (ROS) contribute to endothelial dysfunction, platelet activation, and coagulation abnormalities, promoting thrombus formation. Given the growing interest in non-pharmacological approaches to modulate oxidative stress, we examine the potential of various dietary interventions and antioxidant supplementation in reducing oxidative damage and preventing thrombotic events. Key dietary patterns, such as the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and ketogenic diets, as well as antioxidant-rich supplements like curcumin, selenium, and polyphenols, demonstrate promising effects in improving oxidative stress markers, lipid profiles, and inflammatory responses. This review highlights recent advances in the field, drawing from in vitro, ex vivo, and clinical studies, and underscores the importance of integrating dietary strategies into preventive and therapeutic approaches for managing thrombosis and cardiovascular health. Further research is needed to better understand long-term effects and personalize these interventions for optimizing patient outcomes.
Collapse
Affiliation(s)
- Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Francesca Nencini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Alessandra Bettiol
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Giacomo Emmi
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy; (E.G.); (F.N.); (A.B.); (S.B.); (F.R.A.); (N.T.)
| |
Collapse
|
5
|
Pena E, El Alam S, Gonzalez C, Cortés I, Aguilera D, Flores K, Arriaza K. Astaxanthin Supplementation Effects in Right Ventricle of Rats Exposed to Chronic Intermittent Hypobaric Hypoxia. Antioxidants (Basel) 2024; 13:1269. [PMID: 39456521 PMCID: PMC11504862 DOI: 10.3390/antiox13101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In Chile, individuals are commonly exposed to high altitude due to the work shift system, involving days of exposure to high altitude followed by days at sea level over the long term, which can result in chronic intermittent hypobaric hypoxia (CIHH). CIHH can cause high-altitude pulmonary hypertension (HAPH), the principal manifestation of which is right ventricular hypertrophy (RVH), in some cases leading to heart failure and eventually death. Studies have shown the contribution of oxidative stress and inflammation to RVH development. Recently, it was determined that the pigment astaxanthin has high antioxidant capacity and strong anti-inflammatory and cardioprotective effects. Therefore, the aim of this study was to determine the effects of astaxanthin on RVH development in rats subjected to CIHH. METHODS Thirty two male Wistar rats were randomly assigned to the following groups (n = 8 per group): the normoxia with vehicle (NX), normoxia with astaxanthin (NX + AS), chronic intermittent hypobaric hypoxia with vehicle (CIHH), and chronic intermittent hypobaric hypoxia with astaxanthin (CIHH + AS) groups. CIHH was simulated by 2 days in a hypobaric chamber followed by 2 days at sea level for 29 days. RESULTS Exposure to CIHH induced RVH and increased lipid peroxidation (MDA), Nox2 expression, and SOD activity, however, it decreased pro-IL-1β expression. Astaxanthin restored oxidative stress markers (Nox2 and MDA), increased GPx activity, and decreased RVH compared to CIHH. CONCLUSION Astaxanthin alleviates RVH and reduces Nox2 and MDA levels while increasing GPx activity in rats subjected to CIHH. These findings provide new insights of astaxanthin as a new nutraceutical against high-altitude effects.
Collapse
Affiliation(s)
- Eduardo Pena
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.G.); (D.A.); (K.F.); (K.A.)
| | - Samia El Alam
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.G.); (D.A.); (K.F.); (K.A.)
| | - Constanza Gonzalez
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.G.); (D.A.); (K.F.); (K.A.)
| | - Isaac Cortés
- Science Faculty, Arturo Prat University, Iquique 1100000, Chile;
| | - Diego Aguilera
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.G.); (D.A.); (K.F.); (K.A.)
| | - Karen Flores
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.G.); (D.A.); (K.F.); (K.A.)
| | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1100000, Chile; (S.E.A.); (C.G.); (D.A.); (K.F.); (K.A.)
| |
Collapse
|
6
|
Sun X, Gu Y, Liu X, Korla PK, Hao J. Neferine Pretreatment Attenuates Isoproterenol-Induced Cardiac Injury Through Modulation of Oxidative Stress, Inflammation, and Apoptosis in Rats. Appl Biochem Biotechnol 2024; 196:7404-7428. [PMID: 38526658 DOI: 10.1007/s12010-024-04917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Heart attacks, also known as myocardial infarctions (MIs), are one of the main reasons people die from cardiovascular diseases (CVDs) worldwide. Neferine, an alkaloid derived from Nelumbo nucifera seeds, has garnered interest due to its purported medicinal effects. In the current research, we induced MI in rats using the β-adrenergic agonist isoproterenol to investigate whether neferine can improve cardiac dysfunction. The rats were separated into four groups: control, isoproterenol (ISO), and two treatment groups received neferine at doses of 10 or 20 mg/kg once daily for 28 days. On days 27 and 28, the groups undergoing treatment were administered with an ISO injection. Results showed that pretreatment with neferine strongly protected against changes in lipid profiles and cardiac functional markers in ISO-administered rats. Neferine attenuated histopathologic changes, collagen deposition, and myocardial fibrosis in rats administered ISO. Neferine pretreatment significantly inhibited the oxidative stress, inflammatory, and apoptotic markers in the heart of ISO-injected rats. This was achieved through Nrf2/Keap1/ARE signaling stimulation, TLR4/NF-κB/MAPK-mediated signaling inhibition, and activation of the intrinsic apoptotic pathway. Using CB-Dock-2, researchers determined that neferine has a high binding affinity with protein receptors that are pivotal in several biological processes. In conclusion, the study provides strong evidence that pretreatment with neferine protects rats from ISO-induced heart damage.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Cardiovascular Medicine Department, Xi'an Gaoxin Hospital, Xi'an, 710000, China
| | - Yongwen Gu
- Cardiovascular Medicine Department, Suzhou Yongding Hospital, Suzhou, 215200, China
| | - Xinghua Liu
- Cardiovascular Medicine Department, Putuo Center Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Praveen Kumar Korla
- Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Junjun Hao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
7
|
Mahmoud DSE, Kamel MA, El-Sayed IET, Binsuwaidan R, Elmongy EI, Razzaq MK, Abd Eldaim MA, Ahmed ESAM, Shaker SA. Astaxanthin ameliorated isoproterenol induced myocardial infarction via improving the mitochondrial function and antioxidant activity in rats. J Biochem Mol Toxicol 2024; 38:e23804. [PMID: 39132813 DOI: 10.1002/jbt.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.
Collapse
Affiliation(s)
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohand Kareem Razzaq
- Department of Biochemistry, College of Medicine, University of Sumer, Thi-Qar, Iraq
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt
| | | | - Sara A Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Chisty TTE, Sarif S, Jahan I, Ismail IN, Chowdhury FI, Siddiqua S, Yasmin T, Islam MN, Khan F, Subhan N, Alam MA. Protective effects of l-carnitine on isoprenaline -induced heart and kidney dysfunctions: Modulation of inflammation and oxidative stress-related gene expression in rats. Heliyon 2024; 10:e25057. [PMID: 38322874 PMCID: PMC10845729 DOI: 10.1016/j.heliyon.2024.e25057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The aim of this study was to evaluate the effect of l-carnitine (L-CAR) treatment on isoprenaline (ISO) administered kidney and heart impairment in male Long Evans rats. Four groups of rats were engaged in this study such as control, ISO, control + L-CAR, and ISO + L-CAR, where n = 6 in each group. The rats were also provided with chow food and water ad libitum. At the end of the study, all rats were sacrificed, and blood and tissue samples were collected for bio-chemical analysis. Oxidative stress parameters and antioxidant enzyme activities were determined in plasma and tissues. Antioxidant and inflammatory genes expression were analyzed in the kidney cortex, and histopathological studies of kidney tissues were performed. This study showed that creatinine and uric acid in plasma were significantly increased in ISO-administered rats. l-carnitine treatment lowered the uric acid and creatinine level. ISO-administered rats showed increased lipid peroxidation and declined levels of antioxidant enzymes activities in kidneys and heart. l-carnitine treatment restored antioxidant enzymes activities and protect against oxidative stress in kidney and heart. This effect is correlated with the restoration of Nrf-2-HO-1 genes expression followed by increased SOD and catalase genes expression in the kidney. l-carnitine treatment also prevented the TNF-α, IL-6, and NF-кB expression in kidneys of ISO administered rats. Histopathology staining showed that l-carnitine treatment prevented kidney damage and collagen deposition in ISO administered rats. The result of this study exhibited that l-carnitine treatment reduced oxidative stress and increased antioxidant enzyme activities by enhancing antioxidant genes expression in ISO administered rats.
Collapse
Affiliation(s)
| | - Sumaia Sarif
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Ishrat Jahan
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | | | | | | | - Tahmina Yasmin
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Md Nurul Islam
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Bangladesh
| |
Collapse
|
9
|
Lorestani F, Movahedian A, Mohammadalipour A, Hashemnia M, Aarabi MH. Astaxanthin prevents nephrotoxicity through Nrf2/HO-1 pathway. Can J Physiol Pharmacol 2024; 102:128-136. [PMID: 37683291 DOI: 10.1139/cjpp-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Renal toxicity is one of the side effects of methotrexate (MTX). Therefore, this study explored the use of astaxanthin (AST), as a natural carotenoid, against MTX-induced nephrotoxicity emphasizing the changes in oxidative stress and the expression of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1). During the 10 days of the experiment, male Wistar rats in different groups received MTX (10 mg/kg) on days 6, 8, and 10 and three doses of AST (25, 50, and 75 mg/kg) during the entire course. Renal failure caused by MTX was observed in significant histopathological changes and a significant increase in serum levels of creatinine, urea, and uric acid (p < 0.05). Oxidative change induced by MTX injection was also observed by remarkably increasing the tissue level of malondialdehyde (MDA) and decreasing the activity of superoxide dismutase (SOD) and catalase (p < 0.001). AST decreases the adverse effects of MTX by upregulating the expression of Nrf2/HO-1 genes (p < 0.01) and decreasing the tissue level of MDA (p < 0.01). Also, AST significantly reduced the amount of creatinine, urea, and uric acid in the serum and improved the activity of SOD and catalase in the kidney tissue (p < 0.05). Thus, AST may protect the kidney against oxidative stress caused by MTX.
Collapse
Affiliation(s)
- Faezeh Lorestani
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hossein Aarabi
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Alhusaini AM, Alshehri SM, Sarawi WS, Alghibiwi HK, Alturaif SA, Al khbiah RA, Alali SM, Alsaif SM, Alsultan EN, Hasan IH. Implication of MAPK, Lipocalin-2, and Fas in the protective action of liposomal resveratrol against isoproterenol-induced kidney injury. Saudi Pharm J 2024; 32:101907. [PMID: 38178854 PMCID: PMC10764257 DOI: 10.1016/j.jsps.2023.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background and Objective Isoproterenol (ISO) is a non-selective β-adrenergic receptor agonist. It can be used to treat bradycardia and cardiogenic shock. Despite its usefulness, the overstimulation of β-receptors by ISO can cause "cardiorenal syndrome," a term used to describe heart and kidney damage. Resveratrol (RES), a natural polyphenol, has marked anti-inflammatory and antioxidant activities. The present work was designed to study the protective efficacy of liposomal resveratrol (L-RES) against ISO-induced kidney injury. Materials and Methods The kidney injury was induced in rats by administering ISO (50 mg/kg, s.c.) twice a week for 2 weeks. RES and L-RES were administered at a dose (20 mg/kg/ day, p.o.) along with ISO for 2 weeks. Inflammatory and apoptotic biomarkers were analyzed, which were validated using histochemical analysis. Results ISO caused renal dysfunction, which manifested as elevated urea, creatinine and uric acid, besides cystatin c and MAPK protein overexpression. In addition, ISO induced gene expression of Fas and lipocalin-2 and provoked genomic DNA fragmentation in renal tissues as compared with the control group. Histological examination confirmed morphological alterations of the kidney tissues obtained from the ISO group. Concurrent treatment of either RES or L-RES with ISO significantly ameliorated kidney damage as demonstrated by the improvement of all measured parameters with the best results for L-RES. The histopathological findings were correlated with the above biochemical parameters. Conclusion L-RES could be a promising approach for the prevention of kidney injury induced by ISO, most likely via the downregulation of MAPK, cystatin c, Fas, and lipocalin-2.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Samiyah M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Sumayya A. Alturaif
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Reema A. Al khbiah
- Pharm D Program, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Shog M. Alali
- Pharm D Program, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Shaikha M. Alsaif
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Ebtesam N. Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
11
|
Aziz MM, El-Sheikh MM, Mohamed MA, Abdelrahman SS, Mekkawy MH. The senomorphic impact of astaxanthin on irradiated rat spleen: STING, TLR4 and mTOR contributed pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241297342. [PMID: 39475763 PMCID: PMC11528771 DOI: 10.1177/03946320241297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Exposure of spleen tissues to ionizing radiation during radiotherapy can induce cellular stress and immune-dysfunction leading to cellular senescence. INTRODUCTION The process of a cancerous development is facilitated by the accumulation of senescent cells. This justifies the incorporation of anti-senescent medications during splenic irradiation (SI). METHODS In this study senescence was induced in the spleen of male albino rats by radiation exposure (5Gy-single whole body gamma-irradiation) then after 2 weeks, oral astaxanthin regimen was started once daily in a dose of 25 mg/kg for 7 consecutive days. Concurrent control groups were carried out. RESULTS the present data reflected that irradiation provoked an increase in the oxidative stress biomarkers (nitric oxide, lipid peroxidation and total reactive oxygen species levels)and the inflammatory biomarkers (Myeloperoxidase and interleukin-6). In addition irradiation led to the over expression of stimulator of interferon genes (cGAS-STING), mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) along with the lactate dehydrogenase (LDH), cyclin-dependent kinase inhibitor 1 (p21) cyclin-dependent kinase inhibitor 2A (p16) increment with elevation of tumor suppressor protein (p53) level. However, reduced glutathione contents and catalase activity were reduced post irradiation in spleen tissues, all these changes reflecting induction of cellular senescence. Astaxanthin treatment showed an improvement in the antioxidant/oxidative stress balance, inflammatory biomarkers, histopathological examination and immunohistochemical expressions of the tested proteins in the irradiated rats. CONCLUSION the current findings offer a new insight into the senomorphic effect of astaxanthin following radiation-induced spleen senescence via STING, mTOR, and TLR4 signalling pathways.
Collapse
Affiliation(s)
- Maha M Aziz
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa A Mohamed
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
12
|
Zhang K, Zhuo H, Guo J, Wang W, Dai R. Astaxanthin Alleviates the Process of Cardiac Hypertrophy by Targeting the METTL3/Circ_0078450/MiR-338-3p/GATA4 Pathway. Int Heart J 2024; 65:119-127. [PMID: 38296564 DOI: 10.1536/ihj.23-423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Astaxanthin (ASX) is a natural antioxidant with preventive and therapeutic effects on various human diseases. However, the role of ASX in cardiac hypertrophy and its underlying molecular mechanisms remain unclear.Cardiomyocytes (AC16) were used with angiotensin-II (Ang-II) to mimic the cardiac hypertrophy cell model. The protein levels of hypertrophy genes, GATA4, and methyltransferase-like 3 (METTL3) were determined by western blot analysis. Cell size was assessed using immunofluorescence staining. The expression of circ_0078450, miR-338-3p, and GATA4 were analyzed by quantitative real-time PCR. Also, the interaction between miR-338-3p and circ_0078450 or GATA4 was confirmed by dual-luciferase reporter and RIP assays, and the regulation of METTL3 on circ_0078450 was verified by MeRIP and RIP assays.ASX reduced the hypertrophy gene protein expression and cell size in Ang-II-induced AC16 cells. Circ_0078450 was promoted under Ang-II treatment, and ASX reduced circ_0078450 expression in Ang-II-induced AC16 cells. Circ_0078450 could sponge miR-338-3p to positively regulate GATA4 expression, and GATA4 overexpression overturned the suppressive effect of circ_0078450 knockdown on Ang-II-induced cardiomyocyte hypertrophy. Also, the inhibitory effect of ASX on Ang-II-induced cardiomyocyte hypertrophy could be reversed by circ_0078450 or GATA4 overexpression. In addition, METTL3 mediated the m6A methylation of circ_0078450 to enhance circ_0078450 expression. Moreover, METTL3 knockdown suppressed Ang-II-induced cardiomyocyte hypertrophy by inhibiting circ_0078450 expression.Our data showed that ASX repressed cardiac hypertrophy by regulating the METTL3/circ_0078450/miR-338-3p/GATA4 axis.
Collapse
Affiliation(s)
- Kelian Zhang
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| | - Huilin Zhuo
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| | - Jingyi Guo
- Department of Ultrasound, Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus)
| | - Wei Wang
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| | - Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital Affiliated to Fujian Medical University
| |
Collapse
|
13
|
Yousuf R, Verma PK, Sharma P, Sood S, Bhatti MA, Bhat ZF. Neuroprotective effect of quercetin and Zingiber officinale on sodium arsenate-induced neurotoxicity in rats. Food Sci Nutr 2023; 11:2964-2973. [PMID: 37324922 PMCID: PMC10261772 DOI: 10.1002/fsn3.3278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 09/20/2024] Open
Abstract
The study was aimed at determining the ameliorative potential of quercetin and Zingiber officinale (ZO) against sodium arsenate-induced neurotoxicity in male Wistar rats. Thirty adult animals were randomly allocated to five groups (n = 6). Group I served as control, groups II and IV were treated with ZO [300 mg/kg, PO (per os)/day], and group V animals were administered quercetin (50 mg/kg, PO/day) for 18 days. Groups III, IV, and V were injected with sodium arsenate (20 mg/kg, intraperitoneally/day) for 4 days starting from day 15. The administration of sodium arsenate resulted in a significant decrease in total antioxidant status, total thiols, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and aryl esterase in brain tissue of the animals compared with the control group. In addition, a significant increase was observed in malondialdehyde, advanced oxidation protein product and plasma nitric oxide levels, indicating oxidative stress-mediated neuronal damage. However, these arsenic-induced alterations were significantly reversed by quercetin or ZO in the treatment groups, indicating their ameliorative potential. These positive effects were further confirmed by histopathological examination of brain tissue revealing the suppression of severe neuronal injury, spongiosis and gliosis in the samples pretreated with quercetin and ZO. Our results suggest that inclusion of ZO and quercetin-rich foods in the diet can help in preventing the neurotoxic effects in areas with elevated levels of arsenic in food chain and ground water.
Collapse
Affiliation(s)
- Rasia Yousuf
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal HusbandrySKUAST‐JJammuIndia
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal HusbandrySKUAST‐JJammuIndia
| | - Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal HusbandrySKUAST‐JJammuIndia
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal HusbandrySKUAST‐JJammuIndia
| | - Muhammad A. Bhatti
- Faculty of Landscape and Society International Environment and Development Studies, NoragricNorwegian University of Life Sciences (NMBU)Public university, ÅsNorway
| | - Zuhaib F. Bhat
- Division of Livestock Products TechnologySKUAST‐JJammuIndia
| |
Collapse
|
14
|
Astaxanthin: A promising therapeutic agent for organ fibrosis. Pharmacol Res 2023; 188:106657. [PMID: 36682437 DOI: 10.1016/j.phrs.2023.106657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the end-stage pathological manifestation of many chronic diseases. Infiltration of inflammatory cells and activation of myofibroblasts are the most prominent features of fibrosis, with excessive deposition of extracellular matrix (ECM) in tissues leading to organ tissue damage, which eventually progresses to organ failure and leads to high mortality rates. At present, a large number of studies have been conducted on tissue fibrosis, and the pathological mechanism of fibrosis development has generally been recognized. However, the prevention and treatment of fibrosis is still an unsolved problem, and a shortage of drugs that can be used in the clinic persists. Astaxanthin (ASTX), a carotenoid, is widely known for its strong antioxidant capacity. ASTX also has other biological properties, such as anti-inflammatory, antiaging and anticancer properties. Recently, many papers have reported that ASTX inhibits the occurrence and development of fibrosis by regulating signaling molecular pathways, such as transforming growth factor-β/small mother against decapentaplegic protein (TGF-β1/Smad), sirtuin 1 (SIRT1), nuclear factor kappa-B (NF-κB), microRNA, nuclear factor-E2-related factor 2/antioxidant response element (Nrf 2/ARE) and reactive oxygen species (ROS) pathways. By targeting these molecular signaling pathways, ASTX may become a potential drug for the treatment of fibrotic diseases. In this review, we summarize the therapeutic effects of ASTX on organ fibrosis and its underlying mechanisms of action. By reviewing the results from in vitro and in vivo studies, we analyzed the therapeutic prospects of ASTX for various fibrotic diseases and provided insights into and strategies for exploring new drugs for the treatment of fibrosis.
Collapse
|
15
|
Ibrahim D, Abozied N, Abdel Maboud S, Alzamami A, Alturki NA, Jaremko M, Alanazi MK, Alhuthali HM, Seddek A. Therapeutic potential of bone marrow mesenchymal stem cells in cyclophosphamide-induced infertility. Front Pharmacol 2023; 14:1122175. [PMID: 37033609 PMCID: PMC10073512 DOI: 10.3389/fphar.2023.1122175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a deadly disease characterized by abnormal cell proliferation. Chemotherapy is one technique of cancer treatment. Cyclophosphamide (CYP) is the most powerful chemotherapy medication, yet it has serious adverse effects. It is an antimitotic medicine that regulates cell proliferation and primarily targets quickly dividing cells, and it has been related to varying levels of infertility in humans. In the current study, we assessed the biochemical, histological, and microscopic evaluations of testicular damage following cyclophosphamide administration. Further, we have explored the potential protective impact of mesenchymal stem cell (MSCs) transplantation. The biochemical results revealed that administration of cyclophosphamide increased serum concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), while it decreased serum concentrations of free testosterone hormone (TH), testicular follicle-stimulating hormone, luteinizing hormone, and free testosterone hormone concentrations, testicular total antioxidant capacity (TAC), and testicular activity of superoxide dismutase (SOD) enzyme. The histology and sperm examinations revealed that cyclophosphamide induced destruction to the architectures of several tissues in the testes, which drastically reduced the Johnsen score as well as the spermatogenesis process. Surprisingly, transplantation of mesenchymal stem cell after cyclophosphamide administration altered the deterioration effect of cyclophosphamide injury on the testicular tissues, as demonstrated by biochemical and histological analysis. Our results indicated alleviation of serum and testicular sex hormones, as well as testicular oxidative stress markers (total antioxidant capacity and superoxide dismutase activity), and nearly restored the normal appearance of the testicular tissues, Johnsen score, and spermatogenesis process. In conclusion, our work emphasizes the protective pharmacological use of mesenchymal stem cell to mitigate the effects of cyclophosphamide on testicular tissues that impair the spermatogenesis process following chemotherapy. These findings indicate that transferring mesenchymal stem cell to chemotherapy patients could significantly improve spermatogenesis.
Collapse
Affiliation(s)
- Dalia Ibrahim
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- *Correspondence: Dalia Ibrahim,
| | - Nadia Abozied
- The Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samar Abdel Maboud
- The Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maram Khalil Alanazi
- Pharm.D, Scientific Office and Regulatory Affair Department, Dallah Pharma Company, Riyadh, Saudi Arabia
| | - Hayaa M. Alhuthali
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asmaa Seddek
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
16
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Varghese R, George Priya Doss C, Kumar RS, Almansour AI, Arumugam N, Efferth T, Ramamoorthy S. Cardioprotective effects of phytopigments via multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153859. [PMID: 34856476 DOI: 10.1016/j.phymed.2021.153859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the deadliest non-communicable diseases, and millions of dollars are spent every year to combat CVDs. Unfortunately, the multifactorial etiology of CVDs complicates the development of efficient therapeutics. Interestingly, phytopigments show significant pleiotropic cardioprotective effects both in vitro and in vivo. PURPOSE This review gives an overview of the cardioprotective effects of phytopigments based on in vitro and in vivo studies as well as clinical trials. METHODS A literature-based survey was performed to collect the available data on cardioprotective activities of phytopigments via electronic search engines such as PubMed, Google Scholar, and Scopus. RESULTS Different classes of phytopigments such as carotenoids, xanthophylls, flavonoids, anthocyanins, anthraquinones alleviate major CVDs (e.g., cardiac hypertrophy, atherosclerosis, hypertension, cardiotoxicities) via acting on signaling pathways related to AMPK, NF-κB, NRF2, PPARs, AKT, TLRs, MAPK, JAK/STAT, NLRP3, TNF-α, and RA. CONCLUSION Phytopigments represent promising candidates to develop novel and effective CVD therapeutics. More randomized, placebo-controlled clinical studies are recommended to establish the clinical efficacy of phytopigments.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Ryu B, Kim YS, Jeon YJ. Seaweeds and Their Natural Products for Preventing Cardiovascular Associated Dysfunction. Mar Drugs 2021; 19:md19090507. [PMID: 34564168 PMCID: PMC8470597 DOI: 10.3390/md19090507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD), which involves the onset and exacerbation of various conditions including dyslipidemia, activation of the renin-angiotensin system, vascular endothelial cell damage, and oxidative stress, is a leading cause of high mortality rates and accounts for one-third of deaths worldwide. Accordingly, as dietary changes in daily life are thought to greatly reduce the prevalence of CVD, numerous studies have been conducted to examine the potential use of foods and their bioactive components for preventing and treating CVD. In particular, seaweeds contain unique bioactive metabolites that are not found in terrestrial plants because of the harsh environment in which they survive, leading to in vitro and in vivo studies of their prevention and treatment effects. This review summarizes studies that focused on the beneficial effects of seaweeds and their natural products targeting markers involved in a cascade of mechanisms related to CVD pathogenesis. The purpose of this review is to describe the potential of seaweeds and their natural products for preventing and treating CVD based on in vivo and in vitro studies. This review provides a basis for future research in the field of marine drugs.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (Y.-J.J.); Tel.: +82-64-754-3475 (B.R. & Y.-J.J.)
| | - Young-Sang Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (Y.-J.J.); Tel.: +82-64-754-3475 (B.R. & Y.-J.J.)
| |
Collapse
|
19
|
Gangalla R, Gattu S, Palaniappan S, Ahamed M, Macha B, Thampu RK, Fais A, Cincotti A, Gatto G, Dama M, Kumar A. Structural Characterisation and Assessment of the Novel Bacillus amyloliquefaciens RK3 Exopolysaccharide on the Improvement of Cognitive Function in Alzheimer's Disease Mice. Polymers (Basel) 2021; 13:polym13172842. [PMID: 34502882 PMCID: PMC8434388 DOI: 10.3390/polym13172842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
In this study Bacillus amyloliquefaciens RK3 was isolated from a sugar mill effluent-contaminated soil and utilised to generate a potential polysaccharide with anti-Alzheimer's activity. Traditional and molecular methods were used to validate the strain. The polysaccharide produced by B. amyloliquefaciens RK3 was purified, and the yield was estimated to be 10.35 gL-1. Following purification, the polysaccharide was structurally and chemically analysed. The structural analysis revealed the polysaccharide consists of α-d-mannopyranose (α-d-Manp) and β-d-galactopyranose (β-d-Galp) monosaccharide units connected through glycosidic linkages (i.e., β-d-Galp(1→6)β-d-Galp (1→6)β-d-Galp(1→2)β-d-Galp(1→2)[β-d-Galp(1→6)]β-d-Galp(1→2)α-d-Manp(1→6)α-d-Manp (1→6)α-d-Manp(1→6)α-d-Manp(1→6)α-d-Manp). The scanning electron microscopy and energy-dispersive X-ray spectroscopy imaging of polysaccharides emphasise their compactness and branching in the usual tubular heteropolysaccharide structure. The purified exopolysaccharide significantly impacted the plaques formed by the amyloid proteins during Alzheimer's disease. Further, the results also highlighted the potential applicability of exopolysaccharide in various industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Ravi Gangalla
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
| | - Sampath Gattu
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India;
| | - Sivasankar Palaniappan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, India
- Correspondence: (S.P.); (R.K.T.)
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Baswaraju Macha
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, Kakatiya University, Warangal 506009, India;
| | - Raja Komuraiah Thampu
- Department of Microbiology, Kakatiya University, Warangal 506009, India;
- Correspondence: (S.P.); (R.K.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Alberto Cincotti
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| | - Murali Dama
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy; (G.G.); (A.K.)
| |
Collapse
|
20
|
Flacourtia indica fruit extract modulated antioxidant gene expression, prevented oxidative stress and ameliorated kidney dysfunction in isoprenaline administered rats. Biochem Biophys Rep 2021; 26:101012. [PMID: 34041370 PMCID: PMC8142055 DOI: 10.1016/j.bbrep.2021.101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the effect of Flacourtia indica fruit extract against isoprenaline (ISO) induced renal damage in rats. This investigation showed that ISO administration in rats increased the level oxidative stress biomarkers such as malondialdehyde (MDA), nitric oxide (NO), advanced protein oxidation product (APOP) in kidneys followed by a decrease in antioxidant enzymes functions. Flacourtia indica fruit extract, which is rich in strong antioxidants, also reduced the MDA, NO and APOP level in kidney of ISO administered rats. Inflammation and necrosis was also visible in kidney section of ISO administered rats which was significantly prevented by atenolol and Flacourtia indica fruit extract. Moreover, atenolol and Flacourtia indica fruit extract also modulated the genes expressions related to inflammation and oxidative stress in kidneys. The beneficial effects could be attributed to the presence of a number of phenolic antioxidants. This study suggests that Flacourtia indica fruit extract may prevent kidney dysfunction in ISO administered rats, probably by preventing oxidative stress and inflammation.
Collapse
|
21
|
Heng N, Gao S, Chen Y, Wang L, Li Z, Guo Y, Sheng X, Wang X, Xing K, Xiao L, Ni H, Qi X. Dietary supplementation with natural astaxanthin from Haematococcus pluvialis improves antioxidant enzyme activity, free radical scavenging ability, and gene expression of antioxidant enzymes in laying hens. Poult Sci 2021; 100:101045. [PMID: 33752070 PMCID: PMC8005829 DOI: 10.1016/j.psj.2021.101045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 10/28/2022] Open
Abstract
The objective of this study was to evaluate the effects of natural astaxanthin (ASTA) from Haematococcus pluvialis on production performance, egg quality, antioxidant enzyme activity, free radical scavenging ability, and gene expression of antioxidant enzymes in laying hens. Nongda No. 3 laying hens (n = 450) were randomly allocated to 1 of 5 dietary treatments. Each treatment had 6 replicates of 15 hens each. All birds were assigned to a corn-soybean meal-based diet containing 0, 20, 40, 80, or 160 mg/kg ASTA for 4 wk. With increasing dietary ASTA, no significant effects were observed on egg weight, feed consumption, feed efficiency, laying rate, Haugh unit, or eggshell strength. Yolk color darkened linearly with increasing dose of ASTA (P < 0.05). Glutathione peroxidase activity was improved in the kidney with dietary ASTA at levels of 40 mg/kg. Total superoxide dismutase (SOD) was significantly increased in the liver, kidney, and plasma with dietary ASTA supplementation at 40 mg/kg. With increasing dietary ASTA, the scavenging abilities of hydroxyl radicals and superoxide anions were linearly increased (P < 0.05), and the malondialdehyde content decreased linearly (P < 0.05). Compared with the control group, mRNA expression of Cu-Zn SOD (SOD1), Mn SOD (SOD2), and nuclear factor E2-related factor 2 (NRF2) in the liver and kidney was significantly increased in the 40 mg/kg ASTA group (P < 0.05). The level of GPX4 mRNA in the liver and kidney was significantly increased with ASTA supplementation at 40 and 80 mg/kg (P < 0.05). The results demonstrate that dietary ASTA improves free radical scavenging ability and antioxidant enzyme activity, which may be related in part to the upregulated mRNA expression of genes encoding antioxidant enzymes and NRF2.
Collapse
Affiliation(s)
- Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Feed Analysis Lab, Beijing Institute of Feed Control, Beijing 100012, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
22
|
Lin Z, Li F, Zhang Y, Tan X, Luo P, Liu H. Analysis of astaxanthin molecular targets based on network pharmacological strategies. J Food Biochem 2021; 45:e13717. [PMID: 33844306 DOI: 10.1111/jfbc.13717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
In order to further explore the potential pharmacological activity of astaxanthin (AST), network pharmacological approaches were employed in this work to systematically investigate its affinity targets, perturbed signaling pathways, and related disease applications. First, potential targets were captured based on AST chemical structure information. Enrichment analysis was then performed using bioinformatics tools to predict the biological processes and diseases in which AST targets are involved. The results suggest that AST is involved in steroid hormone metabolism, and the regulation of glucocorticoids may be one of the potential mechanisms of its known therapeutic effects on depression and insulin resistance. Molecular docking experiments confirmed that AST can form stable binding to several key nodes (SRD5A2, STS, AKR1C2, HSD11B1, and CYP17A1) in steroid hormone biosynthesis. More importantly, the molecular targets of AST were the most significantly associated with endometriosis. Functionally, grouped analysis of key therapeutic nodes was carried out by establishing the interaction network between drug targets and disease targets. While exerting inflammatory effects, the regulation of estrogen and other semiochemicals by targeting steroid metabolism may be the biological basis for the potential treatment of endometriosis with AST. This work provides a theoretical basis for further exploring the pharmacological mechanisms of AST and development of new therapeutic applications. PRACTICAL APPLICATIONS: In this study, systematic pharmacological methods were used to identify the potential therapeutic effects and associated mechanisms of astaxanthin, providing a bioinformatics basis for further exploration of astaxanthin's new pharmacological properties in foods.
Collapse
Affiliation(s)
- Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Fangping Li
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Yu Zhang
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiaohui Tan
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Ping Luo
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
23
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
24
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
Teodoro JS, Machado IF, Castela AC, Rolo AP, Palmeira CM. Mitochondria as a target for safety and toxicity evaluation of nutraceuticals. NUTRACEUTICALS 2021:463-483. [DOI: 10.1016/b978-0-12-821038-3.00030-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Zhang XJ, Cui ZH, Zhao YX, He TT, Wang L, Liang XW. Ferulic Acid Ameliorates Isoproterenol-Induced Heart Failure by Decreasing Oxidative Stress and Inhibiting Cardiocyte Apoptosis via Activating Nrf2 Signaling Pathway in Rats. Biol Pharm Bull 2021; 44:396-403. [PMID: 33642547 DOI: 10.1248/bpb.b20-00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferulic acid (FA) has potential therapeutic effects in multiple diseases including cardiovascular diseases. However, the effect and molecular basis of FA in heart failure (HF) has not been thoroughly elucidated. Herein, we investigated the roles and mechanisms of FA in HF in isoproterenol (ISO)-induced HF rat model. Results found that FA ameliorated cardiac dysfunction, alleviated oxidative stress, reduced cell/myocardium injury-related enzyme plasma level, inhibited cardiocyte apoptosis in ISO-induced HF rat models. Moreover, FA reduced the co-localization of Keap1 and nuclear factor-E2-related factor 2 (Nrf2) in heart tissues of ISO-induced HF rats, and FA alleviated the inhibitory effects of ISO on expressions of p-Nrf2, heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate quinone dehydrogenase 1 (NQO1). Additionally, Nrf2 signaling pathway inhibitor ML385 showed adverse effects. FA weakened the effects of ML385 in ISO-induced HF rat models. Collectively, FA ameliorated HF by decreasing oxidative stress and inhibiting cardiocyte apoptosis via activating Nrf2 pathway in ISO-induced HF rats. Our data elucidated the underling molecular mechanism and provided a novel insight into the cardioprotective function of FA, thus suggested the therapeutic potential of FA in HF treatment.
Collapse
Affiliation(s)
- Xi-Juan Zhang
- Department of Geriatrics, First Affiliated Hospital of Soochow University
| | - Zhong-Hua Cui
- Department of Geriatrics, Hulunbuir People's Hospital
| | - Yan-Xin Zhao
- Department of Geriatrics, Hulunbuir People's Hospital
| | - Ting-Ting He
- Department of Cardiology, Hulunbuir People's Hospital
| | - Ling Wang
- Department of General Medicine, First Affiliated Hospital of Soochow University
| | - Xiu-Wen Liang
- Department of Cardiology, Hulunbuir People's Hospital
| |
Collapse
|
27
|
Polyphenolics in ramontchi protect cardiac tissues via suppressing isoprenaline-induced oxidative stress and inflammatory responses in Long-Evans rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Qu X, Zhang Z, Hu W, Lou M, Zhai B, Mei S, Hu Z, Zhang L, Liu D, Liu Z, Chen J, Wang Y. Attenuation of the Na/K‑ATPase/Src/ROS amplification signaling pathway by astaxanthin ameliorates myocardial cell oxidative stress injury. Mol Med Rep 2020; 22:5125-5134. [PMID: 33173978 PMCID: PMC7646965 DOI: 10.3892/mmr.2020.11613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022] Open
Abstract
The 3S, 3′S-ASTaxanthin (3S, 3′S-AST) isomer has strong antioxidant activity; however, its protective roles and potential mechanisms against oxidative stress damage in cardiomyocytes have not been investigated. Na+/K+-ATPase (NKA)/Src signal activation has an important role in increasing reactive oxygen species (ROS) production. The aim of the present study was to investigate the protective effects and mechanism of 3S, 3′S-AST on hydrogen peroxide (H2O2)-induced oxidative stress injury in H9c2 myocardial cells. The protective effects of 3S, 3′S-AST on H2O2-induced H9c2 cell injury was observed by measuring lactate dehydrogenase and creatine kinase myocardial band content, cell viability and nuclear morphology. The antioxidant effect was investigated by analyzing ROS accumulation and malondialdehyde, glutathione (GSH) peroxidase, GSH and glutathione reductase activity levels. The protein expression levels of Bax, Bcl-2, caspase-3 and cleaved caspase-3 were analyzed using western blotting to determine cardiomyocyte apoptosis. Western blot analysis of the phosphorylation levels of Src and Erk1/2 were also performed to elucidate the molecular mechanism involved. The results showed that 3S, 3′S-AST reduced the release of LDH and promoted cell viability, and attenuated ROS accumulation and cell apoptosis induced by H2O2. Furthermore, 3S, 3′S-AST also restored apoptosis-related Bax and Bcl-2 protein expression levels in H2O2-treated H9c2 cells. The phosphorylation levels of Src and Erk1/2 were significantly higher in the H2O2 treatment group, whereas 3S, 3′S-AST pretreatment significantly decreased the levels of phosphorylated (p)-Src and p-ERK1/2. The results provided evidence that 3S, 3′S-AST exhibited a cardioprotective effect against oxidative stress injury by attenuating NKA/Src/Erk1/2-modulated ROS amplification.
Collapse
Affiliation(s)
- Xuefeng Qu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhouyi Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Wenli Hu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Minhan Lou
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Bingzhong Zhai
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Song Mei
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhihang Hu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Lijing Zhang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Dongying Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhen Liu
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Jianguo Chen
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| | - Yin Wang
- Zhejiang Academy of Medical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
29
|
Özbeyli D, Gürler EB, Buzcu H, Çilingir-Kaya ÖT, Çam ME, Yüksel M. Astaxanthin alleviates oxidative damage in acute pancreatitis via direct antioxidant mechanisms. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:706-712. [PMID: 33169708 DOI: 10.5152/tjg.2020.19520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Astaxanthin (ATX) is a naturally occurring carotenoid and a potent antioxidant. Various anti-inflammatory effects of ATX have been examined. We aimed to investigate the protective effect of ATX and its mechanism in a cerulein-induced acute pancreatitis rat model. MATERIALS AND METHODS The rats were randomized into 2 main groups as control (C) and acute pancreatitis group (AP). AP group was subsequently divided into subgroups as AP+vehicle (AP), AP+ATX, and ATX+peroxisome proliferator-activated receptor-alpha antagonist GW6471 (ATX+GW) groups. To induce AP, the rats were administered cerulein (50 µg/kg, intraperitonally [ip]) at 1 hour intervals, whereas the C group received saline. The AP group was treated with vehicle olive oil, ATX 40 mg/kg/orally, or GW6471 and ATX (GW1 mg/kg/ip; ATX; 40 mg/kg/peroral). Treatments were administered after the 1st cerulein injection. At the 7th hour after the final injection, the rats were killed and the pancreatic tissue was used for the determination of malondialdehyde (MDA), glutathione (GSH), and myeloperoxidase (MPO) activities and luminol-lucigenin chemiluminescence levels. Serum amylase, lipase, and histopathological analyses were performed. RESULTS Elevated serum lipase and amylase levels in the vehicle-treated AP group (p<0.01) decreased in the ATX and ATX+GW groups (p<0.05). In the AP groups, GSH was reduced and MDA, MPO, luminol, and lucigenin levels were increased (p<0.05-0.001). ATX reversed these changes (p<0.05-0.001). The vehicle-treated group revealed significant severe cytoplasmic degeneration and vacuolization, whereas ATX ameliorated these destructions. GW6471 did not abolish the positive effects of ATX biochemically or histologically. CONCLUSION ATX has a potent protective effect on AP via its radical scavenging and antioxidant properties. Therefore, we believe that ATX may have therapeutic potential.
Collapse
Affiliation(s)
- Dilek Özbeyli
- Department of Medical Pathological Techniques, Marmara University, Vocational School of Health Services, İstanbul, Turkey
| | - Esra Bihter Gürler
- Department of Physiology, Atlas University School of Medicine, İstanbul, Turkey
| | - Hülya Buzcu
- Department of Physiology, Marmara University School of Medicine, İstanbul, Turkey
| | | | - Muhammet Emin Çam
- Department of Pharmacology, Marmara University School of Pharmacy, İstanbul, Turkey; University College London, Department of Mechanical Engineering,Torrington Place, London, UK
| | - Meral Yüksel
- Department of Medical Laboratory Techniques, Marmara University Vocational School of Health Services, İstanbul, Turkey
| |
Collapse
|
30
|
Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol 2020; 145:111714. [DOI: 10.1016/j.fct.2020.111714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
|
31
|
Oleic Acid Prevents Isoprenaline-Induced Cardiac Injury: Effects on Cellular Oxidative Stress, Inflammation and Histopathological Alterations. Cardiovasc Toxicol 2020; 20:28-48. [PMID: 31154622 DOI: 10.1007/s12012-019-09531-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study was designed to assess the cardio-protective role of oleic acid in myocardial injury (MI) induced by intra-peritoneal injection of isoprenaline (ISO) in rats for 2 consecutive days. Oleic acid (OA) was administered orally (@ 5 mg/kg b.wt and 10 mg/kg b.wt) for 21 days before inducing MI. Pre-exposure to OA at higher dose significantly improved the HW/BW ratio, myocardial infarct size, lipid profiles (total cholesterol, HDL-C) and cardiac injury biomarkers (LDH, CK-MB, cardiac troponin-I, MMP-9), thus suggesting its cardio-protective role. The ameliorative potential of the higher dose of OA was further substantiated by its ability to reduce the cardiac oxidative stress as evidenced by significant decrease in lipid peroxidation coupled with increase in superoxide dismutase activity and reduced glutathione level. Significant decrease in heart rate as well as increase in RR and QT intervals in oleic acid pre-exposed rats were also observed. OA pre-treatment also reduced the histopathological alterations seen in myocardial injury group rats. The mRNA expression of cardiac UCP-2 gene, a regulator of reactive oxygen species (ROS) generation, was significantly increased in oleic acid pre-exposure group compared to the ISO-induced myocardial injury group. Thus increase in expression of UCP-2 gene in cardiac tissue seems to be one of the protective measures against myocardial injury. Based on the above findings, it may be inferred that oleic acid possesses promising cardio-protective potential against myocardial injury due to its anti-oxidative property and ability to modulate cardiac metabolic processes.
Collapse
|
32
|
Satti HH, Khaleel EF, Badi RM, Elrefaie AO, Mostafa DG. Subacute administration of Astaxanthin inhibits vitamin K-dependent clotting factors in rats. J Food Biochem 2020; 44:e13407. [PMID: 32725659 DOI: 10.1111/jfbc.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
This study investigated the effect of Astaxanthin (ASTX) on levels and activities of the clotting factors in control rats. Untreated or ASTX-treated rats (10 mg/kg, dissolved in DMSO) were used in this study. ASTX treatment was conducted for 10 days daily. ASTX significantly decreased the platelet count and prolonged values of prothrombin and activated partial thromboplastin time (PT and aPTT, respectively). Besides, it significantly reduced serum levels of vitamin K and the plasma activities and hepatic expression of vitamin K-dependent factors (FII, FVII, FIX, and FX) without altering the activities or levels of all other clotting factors nor plasma levels of fibrinogen or von Willebrand Factor. These effects were associated with a reduction in serum and fecal levels of cholesterol and triglycerides and lower serum levels of LDL-c. In conclusion, ASTX exerts an in vivo hypocoagulant effects mediated by the inhibition of vitamin K-dependent factors. PRACTICAL APPLICATIONS: The findings presented here are the first that show the ability of Astaxanthin (ASTX) to inhibit coagulation in rats by suppressing the circulatory levels of Vitamin K and decrease the synthesis and release of all Vitamin-K dependent factor (FII, FVII, FIX, and FX). Since some synthetic anti-coagulants had side effects, these findings may illustrate ASTX as a natural anti-coagulant with fewer side effects that require further investigation in more clinical trials. Besides, awareness should be established for those individuals with some bleeding disorders who are being treated with ASTX for other beneficial effects.
Collapse
Affiliation(s)
- Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Amany O Elrefaie
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- National Liver Institute, Department of Pathology, Menoufyia University, Menoufyia, Egypt
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
33
|
Hasan R, Lasker S, Hasan A, Zerin F, Zamila M, Parvez F, Rahman MM, Khan F, Subhan N, Alam MA. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK-Akt-eNOS pathway in the isoprenaline-induced oxidative stress model. Sci Rep 2020; 10:14659. [PMID: 32887916 PMCID: PMC7474058 DOI: 10.1038/s41598-020-71599-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a leading cause of chronic kidney disease, and the high prevalence of sympathetic nervous system (SNS) hyperactivity in diabetic patients makes them further susceptible to SNS-mediated oxidative stress and accelerated kidney damage. Here, we investigated if canagliflozin can reverse isoprenaline (ISO)-induced renal oxidative damage in rats, a model that mimics SNS overstimulation-induced organ injuries in humans. We found that ISO administration elevates renal oxidative stress markers including malondialdehyde (MDA), advanced protein oxidation product (APOP), myeloperoxidase (MPO) and nitric oxide (NO), while depleting levels of endogenous antioxidants such as catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH). Strikingly, canagliflozin treatment of ISO-treated rats not only prevents elevation of oxidative stress markers but also rescues levels of depleted antioxidants. Our results also show that canagliflozin stimulates antioxidant/anti-inflammatory signaling pathways involving AMP-activated protein kinase (AMPK), Akt and eNOS, and inhibits iNOS and NADPH oxidase isoform 4 (NOX4), all of which are associated with oxidative stress and inflammation. Further, canagliflozin prevents ISO-induced apoptosis of kidney cells by inhibiting Bax protein upregulation and caspase-3 activation. Histological examination of kidney sections reveal that canagliflozin attenuates ISO-mediated increases in inflammatory cell infiltration, collagen deposition and fibrosis. Finally, consistent with these findings, canagliflozin treatment improves kidney function in ISO-treated rats, suggesting that the antioxidant effects may be clinically translatable.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, 30341, USA.
| | - Shoumen Lasker
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Ahasanul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, 30341, USA
| | - Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, 30341, USA
| | - Mushfera Zamila
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Faisal Parvez
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Mizanur Rahman
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Ferdous Khan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Nusrat Subhan
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
34
|
Deniz I. Scaling-up of Haematococcus pluvialis production in stirred tank photobioreactor. BIORESOURCE TECHNOLOGY 2020; 310:123434. [PMID: 32344237 DOI: 10.1016/j.biortech.2020.123434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to evaluate three most common scale-up criteria for Haematococcus pluvialis production from cultivation bottles to 2 and 10 L of stirred tank PBRs. Constant volumetric power input (P/V) was found to be the most suitable criterion for H. pluvialis production. Total carotenoid amount per biomass concentration in 2 L and 10 L stirred tank PBRs were determined to be 4.57 mg/g and 4.77 mg/g, respectively. Antioxidant activity of total carotenoids extracted from H. pluvialis was also higher at constant P/V criterion where 46.91% inhibition rate with a total phenolic content of 11.76 mg gallic acid/L was achieved. Obtained results could be used to expand the bioproduction of H. pluvialis and its extracts in commercial scale.
Collapse
Affiliation(s)
- Irem Deniz
- Manisa Celal Bayar University, Faculty of Engineering, Department of Bioengineering, 45119 Manisa, Turkey.
| |
Collapse
|
35
|
Satti HH, Khaleel EF, Badi RM, Elrefaie AO, Mostafa DG. Antiplatelet activity of astaxanthin in control- and high cholesterol-fed rats mediated by down-regulation of P2Y 12, inhibition of NF-κB, and increasing intracellular levels of cAMP. Platelets 2020; 32:469-478. [PMID: 32379559 DOI: 10.1080/09537104.2020.1756237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study evaluated the antiplatelet effect of the plant carotenoid, astaxanthin (ASTX) in rats fed either control or high cholesterol plus cholic acid diet (HCCD) and possible underlying mechanisms. Adult male Wistar rats were divided into four groups (n = 8/each), namely, control (fed normal diet), control + ASTX (10 mg/kg/day), HCCD-fed rats, and HCCD + ASTX-treated rats. Diets and treatments were orally administered daily for 30 days. In both control and HCCD-fed rats, ASTX significantly increased fecal levels of triglycerides and cholesterol, reduced platelet count, prolonged bleeding time, and inhibited platelet aggregation. It also reduced platelet levels of reactive oxygen species (ROS) and Bcl-2; thromboxane B2 (TXB2) release; and the expression of P2Y12, P-selectin, and CD36 receptors. Moreover, the activity NF-κB p65 and Akt was inhibited. Concomitantly, it increased the protein levels of cleaved caspase-3 and vasodilator-stimulated phosphoprotein (p-VASP) as well as intracellular levels of cAMP. However, in HCCD-fed rats, the effects of ASTX were associated with reduced serum levels of ox-LDL-c and fasting plasma glucose levels. In conclusion, antiplatelet effects of ASTX involve ROS scavenging, inhibiting NF-κB activity, down-regulating P2Y12 expression, and increasing intracellular levels of cAMP that are attributed to its antioxidant, hypolipidemic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pathology, University of Khartoum, Khartoum, Sudan
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Amany O Elrefaie
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,National Liver Institute, Department of Pathology, Menoufyia University, Menoufyia, Egypt
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
36
|
Astaxanthin Prevents Mitochondrial Impairment Induced by Isoproterenol in Isolated Rat Heart Mitochondria. Antioxidants (Basel) 2020; 9:antiox9030262. [PMID: 32210012 PMCID: PMC7139515 DOI: 10.3390/antiox9030262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are considered to be a power station of the cell. It is known that they play a major role in both normal and pathological heart function. Alterations in mitochondrial bioenergetics are one of the main causes of the origin and progression of heart failure since they have an inhibitory effect on the activity of respiratory complexes in the inner mitochondrial membrane. Astaxanthin (AST) is a xanthophyll carotenoid of mainly marine origin. It has both lipophilic and hydrophilic properties and may prevent mitochondrial dysfunction by permeating the cell membrane and co-localizing within mitochondria. The carotenoid suppresses oxidative stress-induced mitochondrial dysfunction and the development of diseases. In the present study, it was found that the preliminary oral administration of AST upregulated the activity of respiratory chain complexes and ATP synthase and the level of their main subunits, thereby improving the respiration of rat heart mitochondria (RHM) in the heart injured by isoproterenol (ISO). AST decreased the level of cyclophilin D (CyP-D) and increased the level of adenine nucleotide translocase (ANT) in this condition. It was concluded that AST could be considered as a potential mitochondrial-targeted agent in the therapy of pathological conditions associated with oxidative damage and mitochondrial dysfunction. AST, as a dietary supplement, has a potential in the prevention of cardiovascular diseases.
Collapse
|
37
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
38
|
Jiang W, Zhao H, Zhang L, Wu B, Zha Z. Maintenance of mitochondrial function by astaxanthin protects against bisphenol A-induced kidney toxicity in rats. Biomed Pharmacother 2019; 121:109629. [PMID: 31733573 DOI: 10.1016/j.biopha.2019.109629] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), a global environmental pollutant, has been reported to have the potential to induced organs toxicity. This study explored the potential benefits of astaxanthin (ATX), a natural antioxidant, against BPA toxicity in the kidney, and explored whether mitochondria are involved in this condition. Male Wistar rats were fed with a vehicle, BPA, BPA plus ATX, ATX and were evaluated after five weeks. ATX treatment significantly reversed BPA-induced changes in body weight, kidney/body weight, and renal function related markers. When treated simultaneously with ATX, the imbalance of the oxidative-antioxidant status caused by BPA was also alleviated. The high expression of BPA-induced pro-inflammatory cytokines were inhibited by ATX treatment. ATX treatment also lessened the effects of BPA-induced caspase-3, -8, -9 and -10 gene expression and enzyme activity. The benefits of ATX were associated with enhanced mitochondrial function, which led to increased mitochondrial-encoded gene expression, mitochondrial copy number, and increased mitochondrial respiratory chain complex enzyme activity. Our results demonstrate the efficacy of ATX in protecting BPA-induced kidney damage, in part by regulating oxidative imbalance and improving mitochondrial function. Collectively, these findings provide a new perspective for the rational use of ATX in the treatment of BPA-induced kidney disease.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Urology, Taizhou People's Hospital, Taizhou 225300, Jiangsu Province, China.
| | - Hu Zhao
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Lijin Zhang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Bin Wu
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| | - Zhenlei Zha
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, Jiang-yin 214400, Jiangsu Province, China.
| |
Collapse
|
39
|
Murai T, Kawasumi K, Tominaga K, Okada Y, Kobayashi M, Arai T. Effects of astaxanthin supplementation in healthy and obese dogs. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:29-35. [PMID: 30859086 PMCID: PMC6385744 DOI: 10.2147/vmrr.s186202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Since astaxanthin (ASX) has potent anti-oxidative effects with inhibitory action of lipid peroxidation and singlet oxygen quenching activity, it is widely used as a functional food for keeping good health in human. Obesity is a risk factor for various metabolic disorders. It is characterized by low-grade chronic inflammation based on oxidative stress by excessively produced ROS. From the point of preventive medicine, natural compounds have been proposed as potential therapeutic agents in the prevention of metabolic disorder in companion animals. The purpose of this study is to evaluate the effects of ASX supplementation in healthy and obese dogs. Materials and methods Ten healthy beagle dogs and 5 clinically obese dogs were used in this study. The healthy beagle dogs were randomly divided into 2 groups as follows: control and test groups. The test group dogs received ASX supplementation mixed with the food for 6 weeks. Five clinically obese dogs received ASX supplementation for 8 weeks. Metabolites, hormones and enzymes were measured before and after ASX supplementation. Results In the healthy dog groups, after 6 weeks, plasma triglyceride (TG) and malondialdehyde concentrations and lactate dehydrogenase (LDH) values significantly decreased in the test group. There was no significant difference in the control group. In clinically obese dogs, plasma TG concentration decreased after 8 weeks of ASX supplementation. Plasma alanine aminotransferase and LDH values clearly decreased in all 5 dogs and 4 dogs out of 5 dogs, respectively. Conclusion ASX supplementation (0.3 mg/kg body weight/day) for 6 weeks in healthy dogs and 8 weeks in obese dogs induced the elevation of antioxidant function and of liver function by ameliorating lipid metabolism.
Collapse
Affiliation(s)
- Tae Murai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan,
| | - Koh Kawasumi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan,
| | - Kumi Tominaga
- Research and Development Division, AstaReal Co. Ltd., Minato-ku, Tokyo 105-0011, Japan
| | - Yuki Okada
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan,
| | - Motoo Kobayashi
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan,
| | - Toshiro Arai
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan,
| |
Collapse
|
40
|
Berbamine protects the heart from isoproterenol induced myocardial infarction by modulating eNOS and iNOS expressions in rats. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
41
|
Iqbal R, Akhtar MS, Hassan MQ, Jairajpuri Z, Akhtar M, Najmi AK. Pitavastatin ameliorates myocardial damage by preventing inflammation and collagen deposition via reduced free radical generation in isoproterenol-induced cardiomyopathy. Clin Exp Hypertens 2018; 41:434-443. [PMID: 30192645 DOI: 10.1080/10641963.2018.1501059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Pitavastatin inhibits 3 hydroxy 3 methyl glutaryl coenzyme A (HMGCoA) reductase enzyme, preventing cholesterol synthesis along with elevating high density apolipoprotein A1 (Apo-A1). The present study was designed to evaluate cardioprotective potential of pitavastatin at 1 mg/kg/day and 3 mg/kg/day dose for 14 days in low dose isoproterenol (ISO) (5 mg/kg/day for 7 consecutive days) induced myocardial damage. ISO administration induced significant reduction in endogenous antioxidant enzymes like reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and raised thiobarbituric acid reactive substances (TBARS) indicating activated lipid peroxidation. Along with this, a significant increase in level of cardiac injury biomarkers vie, creatine kinase (CK-MB), lactate dehydrogenase (LDH), aspartate amino transferase (AST), tumor necrosis factor (TNF-α) and transforming growth factor (TGF-β) as well as brain natriuretic peptide (BNP). Histological examination also revealed marked myocardial tissue damage in ISO treated rats. However, pretreatment with pitavastatin (3 mg/kg/day) significantly maintained nearly normal levels of cardiac biomarkers and oxidant antioxidant status as well as lipid peroxidation in ISO induced MI rats. Cardiac histological assessment and infarct size assessment also showed marked reduction in myocardial architecture alteration including infarct size as well as collagen deposition by pitavastatin that strongly supported biochemical findings. These observations strongly corroborate that pitavastatin prevents myocardial damages via up regulation of endogenous oxidants along with its hypocholesterolemic activity.
Collapse
Affiliation(s)
- Ramsha Iqbal
- a Department of Pharmacology, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Md Sayeed Akhtar
- b Department of Clinical Pharmacy , Ambo University , Ambo , Ethiopia
| | - Md Quamrul Hassan
- c Department of Ilmul Advia-Pharmacology , Faculty of Unani Medicine, Aligarh Muslim University , Aligarh , India
| | - Zeeba Jairajpuri
- d Department of Pathology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard , New Delhi , India
| | - Mohd Akhtar
- a Department of Pharmacology, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Abul Kalam Najmi
- a Department of Pharmacology, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| |
Collapse
|
42
|
Kim SH, Kim H. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction-A Mini-Review. Nutrients 2018; 10:nu10091137. [PMID: 30134611 PMCID: PMC6165470 DOI: 10.3390/nu10091137] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various human diseases as well as to the aging process. Mitochondria, as the center of cellular metabolism and major regulators of redox balance, play a critical role in disease development and progression. Mitochondrial dysfunction involving structural and metabolic impairment is prominent in oxidative stress-related diseases. Increased oxidative stress can damage mitochondria, and subsequent mitochondrial dysfunction generates excesses of mitochondrial reactive oxygen species that cause cellular damage. Mitochondrial dysfunction also activates the mitochondrial apoptotic pathway, resulting in cellular death. Astaxanthin, a red-colored xanthophyll carotenoid, exerts an anti-oxidative and anti-inflammatory effect on various cell lines. In this manner astaxanthin maintains mitochondrial integrity under various pathological conditions. In this review, the inhibitory effects of astaxanthin on oxidative stress-induced mitochondrial dysfunction and related disease development are discussed.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
43
|
Sphingomyelin phosphodiesterase 1 (SMPD1) mediates the attenuation of myocardial infarction-induced cardiac fibrosis by astaxanthin. Biochem Biophys Res Commun 2018; 503:637-643. [PMID: 29906461 DOI: 10.1016/j.bbrc.2018.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Uncontrolled cardiac fibrosis following myocardial infarction (MI) is a critical pathological change leading to heart failure. Current pharmacotherapies are limited by unsatisfactory efficacy and undesired systemic side effects. Astaxanthin (ASX) is a natural carotenoid with strong antioxidant and anti-inflammatory activities. The effects of ASX on MI-induced cardiac fibrosis and the underlying mechanisms remain largely unknown. In this study, after the establishment of MI model, mice were administrated with ASX (200 mg/kg⋅d) for 4 weeks. We found that ASX treatment attenuated cardiac fibrosis and improved heart function following MI, as evidenced by reduced collagen I/III ratio, hydroxyproline content and left ventricular end diastolic pressure (LVEDP). Lipidomic analysis revealed the overaccumulation of myocardial ceramides in mice with cardiac fibrosis, which was normalized by ASX treatment. Molecular docking analysis showed that ASX produced a tight fit in the pocket of sphingomyelin phosphodiesterase 1 (SMPD1), a key enzyme in the production of ceramides. Western blot analysis confirmed the significant inhibition of SMPD1 expression by ASX. Furthermore, MI-induced overexpression of transforming growth factor β1 (TGF-β1) and phosphorylated SMAD2/3 were attenuated by ASX administration. SMPD1 knockout (KO) abrogated the beneficial effect of ASX. Taken together, our results suggest that the cardioprotective effects of ASX are mediated by SMPD1 through the indirection inhibition of TGF- β1/SMAD signaling cascade.
Collapse
|
44
|
Mert H, Yılmaz H, Irak K, Yıldırım S, Mert N. Investigation of the Protective Effect of Kefir against Isoproterenol Induced Myocardial Infarction in Rats. Korean J Food Sci Anim Resour 2018; 38:259-272. [PMID: 29805276 PMCID: PMC5960824 DOI: 10.5851/kosfa.2018.38.2.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
This study aims to investigate the protective effects of kefir against myocardial infarction induced by isoproterenol (ISO). The rats were randomly divided into 4 groups, each group consisting of 8 rats. The control group, the kefir group (5 mL/kg/d kefir administered to rats as intra-gastric gavage for 60 d), the ISO group (100 mg/kg ISO was administered to rats, s.c. on 61. and 62. d), and kefir+ISO group (5 mL/kg/d kefir was administered to rats intra gastric gavage for 60 days prior to ISO, 100 mg/kg in two doses on day 61 and 62). 12 h after the last ISO dose, all rats were decapitated and their blood samples were collected. Cardiac tissue was reserved for histopathological examination. creatine kinase (CK), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), triglycerides, total cholesterol,very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL) and glucose were measured by autoanalyzer, whole blood malondialdehyde (MDA), glutathione (GSH) and plasma advanced oxidation protein products (AOPP) levels were measured spectrophotometrically. It was determined that in the group of kefir+ISO, the levels of AST (p<0.001), CK (p<0.001), LDH (p<0.001), MDA (p<0.001) and AOPP (p<0.001) were decreased, while the GSH (p<0.05) increased, compared to ISO group. There were no significant changes in lipid profile and glucose levels between these two groups. In conclusion, by examining cardiac enzymes and histopathological changes in cardiac tissue, it can be concluded that the administration of kefir in myocardial infarction induced by ISO can protect the heart with its antioxidant characteristic and minimize the toxic damage created by ISO.
Collapse
Affiliation(s)
- Handan Mert
- Department of Biochemistry, Yuzuncu Yil University, Faculty of Veterinary Medicine, Van 65090, Turkey
| | - Hikmet Yılmaz
- Department of Biochemistry, Yuzuncu Yil University, Faculty of Veterinary Medicine, Van 65090, Turkey
| | - Kıvanç Irak
- Department of Biochemistry, Siirt University, Faculty of Veterinary Medicine, Siirt, 56100, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Ataturk University, Faculty of Veterinary Medicine, Erzurum, 25030, Turkey
| | - Nihat Mert
- Department of Biochemistry, Yuzuncu Yil University, Faculty of Veterinary Medicine, Van 65090, Turkey
| |
Collapse
|
45
|
Panda S, Kar A, Biswas S. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury. Sci Rep 2017; 7:16146. [PMID: 29170391 PMCID: PMC5701045 DOI: 10.1038/s41598-017-16075-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
An iridoid glycoside, agnucastoside C (ACC) was isolated from the leaves of Moringa oliefera and its cardio protective potential was investigated in adult rats by examining the effects of this test compound, ACC at 30 mg/kg for 14 days in isoproterenol (100 mg/kg)-induced myocardial injury. Isoproterenol (ISO) administration induced the myocardial injury as evidenced by the altered ECG pattern with ST-segment elevation and an increase in the levels of cardiac injury markers including troponin-I, creatine kinase-MB, alanine transaminase, aspartate transaminase, lactate dehydrogenase; inflammatory markers, interleukine-6 and tumor necrosis factor. In this group, there was also an increase in cardiac lipid peroxidation and a decrease in cellular antioxidants. However, pretreatment with ACC maintained the normal ECG pattern and nearly normal levels of all the cardiac markers in ISO-induced animals. Electron microscopic and histological studies also showed marked reduction in ISO-induced cardiac damages including infarct size by ACC. Analysis by 2-DE revealed the involvement of 19 different cardiac proteins, associated with energy metabolism, oxidative stress and maintenance of cytoskeleton. The expression of those proteins were altered by ISO, but maintained in ACC pretreated rats. Our findings reveal the potential of isolated ACC in the prevention of myocardial damage.
Collapse
Affiliation(s)
- Sunanda Panda
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, Indore, India.
| | - Sagarika Biswas
- Department of Genomics & Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|