1
|
Cai P, Liu S, Tu Y, Shan T. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168648. [PMID: 37992844 DOI: 10.1016/j.scitotenv.2023.168648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Zearalenone (ZEA), a global mycotoxin commonly found in a variety of grain products and animal feed, causes damage to the gastrointestinal tract, immune organs, liver and reproductive system. Many treatments, including physical, chemical and biological methods, have been reported for the degradation of ZEA. Each degradation method has different degradation efficacies and distinct mechanisms. In this article, the global pollution status, hazard and toxicity of ZEA are summarized. We also review the biological detoxification methods and nutritional regulation strategies for alleviating the toxicity of ZEA. Moreover, we discuss the molecular detoxification mechanism of ZEA to help explore more efficient detoxification methods to better reduce the global pollution and hazard of ZEA.
Collapse
Affiliation(s)
- Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Nešić K, Habschied K, Mastanjević K. Modified Mycotoxins and Multitoxin Contamination of Food and Feed as Major Analytical Challenges. Toxins (Basel) 2023; 15:511. [PMID: 37624268 PMCID: PMC10467123 DOI: 10.3390/toxins15080511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Mycotoxins, as natural products of molds, are often unavoidable contaminants of food and feed, to which the increasingly evident climate changes contribute a large part. The consequences are more or less severe and range from economic losses to worrying health problems to a fatal outcome. One of the best preventive approaches is regular monitoring of food and feed for the presence of mycotoxins. However, even under conditions of frequent, comprehensive, and conscientious controls, the desired protection goal may not be achieved. In fact, it often happens that, despite favorable analytical results that do not indicate high mycotoxin contamination, symptoms of their presence occur in practice. The most common reasons for this are the simultaneous presence of several different mycotoxins whose individual content does not exceed the detectable or prescribed values and/or the alteration of the form of the mycotoxin, which renders it impossible to be analytically determined using routine methods. When such contaminated foods enter a living organism, toxic effects occur. This article aims to shed light on the above problems in order to pay more attention to them, work to reduce their impact, and, eventually, overcome them.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Smolućska 11, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
3
|
Ji X, Jin C, Xiao Y, Deng M, Wang W, Lyu W, Chen J, Li R, Li Y, Yang H. Natural Occurrence of Regulated and Emerging Mycotoxins in Wheat Grains and Assessment of the Risks from Dietary Mycotoxins Exposure in China. Toxins (Basel) 2023; 15:389. [PMID: 37368690 DOI: 10.3390/toxins15060389] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat grains are susceptible to contamination with various natural mycotoxins including regulated and emerging mycotoxins. This study surveyed the natural presence of regulated mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN), and emerging mycotoxins such as beauvericin (BEA), enniatins (ENNs such as ENA, ENA1, ENB, ENB1) and Alternaria mycotoxins (i.e., alternariol monomethyl ether (AME), alternariol (AOH), tenuazonic acid (TeA), tentoxin (TEN), and altenuene (ALT)) in wheat grains randomly collected from eight provinces across China in 2021. The results revealed that each wheat grain sample was detected with at least one type of mycotoxin. The detection rates of these mycotoxins ranged from 7.1% to 100%, with the average occurrence level ranging from 1.11 to 921.8 µg/kg. DON and TeA were the predominant mycotoxins with respect to both prevalence and concentration. Approximately 99.7% of samples were found to contain more than one toxin, and the co-occurrence of ten toxins (DON + ZEN + ENA + ENA1 + ENB + ENB1 + AME + AOH + TeA + TEN) was the most frequently detected combination. The dietary exposure to different mycotoxins among Chinese consumers aged 4-70 years was as follows: 0.592-0.992 µg/kg b.w./day for DON, 0.007-0.012 µg/kg b.w./day for ZEN, 0.0003-0.007 µg/kg b.w./day for BEA and ENNs, 0.223-0.373 µg/kg b.w./day for TeA, and 0.025-0.041 µg/kg b.w./day for TEN, which were lower than the health-based guidance values for each mycotoxin, with the corresponding hazard quotient (HQ) being far lower than 1, implying a tolerable health risk for Chinese consumers. However, the estimated dietary exposure to AME and AOH was in the range of 0.003-0.007 µg/kg b.w./day, exceeding the Threshold of Toxicological Concern (TTC) value of 0.0025 µg/kg b.w./day, demonstrating potential dietary risks for Chinese consumers. Therefore, developing practical control and management strategies is essential for controlling mycotoxins contamination in the agricultural systems, thereby ensuring public health.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Canghong Jin
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiapeng Chen
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Rui Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Iwase CHT, Piacentini KC, Silva NCC, Rebellato AP, Rocha LO. Deoxynivalenol and zearalenone in Brazilian barley destined for brewing. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:86-92. [PMID: 36625024 DOI: 10.1080/19393210.2022.2151046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Barley is an important cereal worldwide. However, fungal contamination during pre and postharvest is a recurrent problem for barley production, causing a direct impact on the quality of the grains and their by-products due to spoilage and mycotoxin accumulation. The Fusarium graminearum species complex is the main contaminant during preharvest and some species can produce deoxynivalenol and zearalenone, important mycotoxins that represent a risk to human and animal health. This study evaluated the fungal diversity and the levels of DON and ZEN in barley grains produced in Brazil. The results showed high frequency (60%) of Fusariumcontamination in barley grains. Additionally, mycotoxin levels ranged from 46 to 2074 µg/kg for DON and from 74 to 556 µg/kg for ZEN. Co-occurrence of DON and ZEN was observed in 40% of the samples and 30% of barley samples had DON and ZEN levels higher than the maximum levels established by Brazilian and European legislations. .
Collapse
Affiliation(s)
- Caio H T Iwase
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas, Campinas, Brazil
| | - Karim C Piacentini
- Department of Biotechnology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Nathália C C Silva
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas, Campinas, Brazil
| | - Ana Paula Rebellato
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas, Campinas, Brazil
| | - Liliana O Rocha
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas, Campinas, Brazil
| |
Collapse
|
5
|
Li F, Zhao X, Jiao Y, Duan X, Yu L, Zheng F, Wang X, Wang L, Wang JS, Zhao X, Zhang T, Li W, Zhou J. Exposure assessment of aflatoxins and zearalenone in edible vegetable oils in Shandong, China: health risks posed by mycotoxin immunotoxicity and reproductive toxicity in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3743-3758. [PMID: 35953745 DOI: 10.1007/s11356-022-22385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Human exposure to aflatoxins (AFs) and zearalenone (ZEA) has not been sufficiently investigated. Here, we analyzed the exposure level and health risks posed by AFs (B1, B2, G1, G2) and ZEA through cooking oil consumption in Shandong, China. The individual daily consumption of cooking oil was calculated through 2745 questionnaires during 2017-2019. The average contamination levels of mycotoxins were estimated by examining 60 cooking oil samples. For the peanut oil, AFs ranged from <0.2 to 274 μg/kg, with a positive rate of 66.6% (20/30). Average levels of 36.62 μg/kg AFB1 and 44.43 μg/kg total AFs were found. Over-the-limit level (20 μg/kg) of AFB1 was detected in 8/30 samples. Estimated daily intake (EDI) and margin of exposure (MOE) for age-stratified population groups showed that children are facing highest adverse health risk with AFB1 (MOE 5.88-6.39). The liver cancer incidences attributable to AFB1 exposure are non-negligible as 0.896, 0.825, and 0.767 cases per 100,000 for 6-14 age group, 15-17 age group, and adult labor-intensive workers. Over-the-limit level (60 μg/kg) ZEA contamination was detected in 25/30 corn oil samples with a 50th percentile value of 97.95 μg/kg. Our health risk assessment suggested significant health risks of enterohepatic (inflammation and cancer), reproductive, and endocrine systems posed by AFs and ZEA. However, the health risk of immunotoxicity is unclear because currently animal study data are not available for the immunotoxicity induced after long-term exposure. In general, the health risks posed by mycotoxins are non-negligible and long-term mycotoxin surveillance is necessary.
Collapse
Affiliation(s)
- Fenghua Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China
| | - Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China
| | - Lianlong Yu
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Fengjia Zheng
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Xiaolin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Lin Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Tianliang Zhang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Wei Li
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
| | - Jun Zhou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Room 9307, Wenhuaxi Road 44, Lixia District, Jinan, 250012, China.
| |
Collapse
|
6
|
Shahidi F, Danielski R, Rhein SO, Meisel LA, Fuentes J, Speisky H, Schwember AR, de Camargo AC. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3283. [PMID: 36501323 PMCID: PMC9739071 DOI: 10.3390/plants11233283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Samantha Ottani Rhein
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Lee A. Meisel
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Jocelyn Fuentes
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Hernan Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Andrés R. Schwember
- Departament of Plant Sciences, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | |
Collapse
|
7
|
Li F, Duan X, Zhang L, Jiang D, Zhao X, Meng E, Yi R, Liu C, Li Y, Wang JS, Zhao X, Li W, Zhou J. Mycotoxin surveillance on wheats in Shandong province, China, reveals non-negligible probabilistic health risk of chronic gastrointestinal diseases posed by deoxynivalenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71826-71839. [PMID: 35604603 DOI: 10.1007/s11356-022-20812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Abnormal climate changes have resulted in over-precipitation in many regions. The occurrence and contamination levels of mycotoxins in crops and cereals have been elevated largely. From 2017 to 2019, we did investigation targeting 15 mycotoxins shown in the wheat samples collected from Shandong, a region suffering over-precipitation in China. We found that deoxynivalenol (DON) was the dominant mycotoxin contaminating wheats, with detection rates 304/340 in 2017 (89.41%), 303/330 in 2018 (91.82%), and 303/340 in 2019 (89.12%). The ranges of DON levels were < 4 to 580 μg/kg in 2017, < 4 to 3070 μg/kg in 2018, and < 4 to 1540 μg/kg in 2019. The exposure levels were highly correlated with local precipitation. Male exposure levels were generally higher than female's, with significant difference found in 2017 (1.89-fold, p = 0.023). Rural exposure levels were higher than that of cities but not statistically significant (1.41-fold, p = 0.13). Estimated daily intake (EDI) and margin of exposure (MoE) approaches revealed that 8 prefecture cities have probabilistically extra adverse health effects (vomiting or diarrhea) cases > 100 patients in 100,000 residents attributable to DON exposure. As a prominent wheat-growing area, Dezhou city reached ~ 300/100,000 extra cases while being considered as a major regional contributor to DON contamination. Our study suggests that more effort should be given to the prevention and control of DON contamination in major wheat-growing areas, particularly during heavy precipitation year. The mechanistic association between DON and chronic intestinal disorder/diseases should be further investigated.
Collapse
Affiliation(s)
- Fenghua Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liwen Zhang
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Dafeng Jiang
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - En Meng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ran Yi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yirui Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Wei Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
8
|
Yan J, Lv Y, Ma S. Wheat bran enrichment for flour products: Challenges and Solutions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyao Yan
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yiming Lv
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
9
|
Corrêa ANR, Ferreira CD. Mycotoxins in Grains and Cereals Intended for Human Consumption: Brazilian Legislation, Occurrence Above Maximum Levels and Co-Occurrence. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2098318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Durham AE. Association between forage mycotoxins and liver disease in horses. J Vet Intern Med 2022; 36:1502-1507. [PMID: 35792718 PMCID: PMC9308415 DOI: 10.1111/jvim.16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Outbreaks of liver disease in horses are common but the etiology of most remains unknown. Forage mycotoxins have been suspected to be a cause. Objectives To examine the association between outbreaks of liver disease and the presence of mycotoxins in forage stored on the same premises. Animals Premises were identified where ≥4 horses were contemporaneously affected by liver disease, and a control group was formed from premises where ≥4 horses had been examined and found to have no evidence of liver disease. Methods Forage was collected from 29 case and 12 control premises. The forage was analyzed for mycotoxin content using a liquid chromatography/mass spectrometry method, targeting 54 mycotoxins. The presence and distribution of mycotoxins between case and control samples was compared. Results Mycotoxins were found in 23/29 (79%) case samples and 10/12 (83%) control samples (P > .99; relative risk, 0.93; 95% confidence interval [CI], 0.64‐1.75). Median (interquartile range [IQR]) total mycotoxin concentration was similar in case and control samples (85.8 μg/kg [1.6‐268] vs. 315 μg/kg [6.3‐860]; P = .16). Ten mycotoxins were found exclusively in case premises comprising fumonisin B1, 15‐acetyldeoxynivalenol, deoxynivalenol, zearalenone, aflatoxins B1 and G1, methylergonovine, nivalenol, verruculogen, and wortmannin. The median (IQR) concentration of fumonisin B1 was significantly higher in case versus control samples (0 μg/kg [0‐81.7] vs. 0 μg/kg [0‐0]; P = .04). Conclusions and Clinical Importance Several mycotoxins with known hepatotoxic potential were found, alone or in combination, exclusively at case premises, consistent with the hypothesis that forage‐associated mycotoxicosis may be a cause of outbreaks of liver disease in horses in the United Kingdom.
Collapse
|
11
|
van den Brand AD, Bokkers BGH, te Biesebeek JD, Mengelers MJB. Combined Exposure to Multiple Mycotoxins: An Example of Using a Tiered Approach in a Mixture Risk Assessment. Toxins (Basel) 2022; 14:303. [PMID: 35622550 PMCID: PMC9145316 DOI: 10.3390/toxins14050303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
Humans are exposed to mycotoxins on a regular basis. Exposure to a mixture of mycotoxins may, therefore, result in a combination of adverse effects, or trigger the same effects. This should be accounted for when assessing the combined risk of multiple mycotoxins. Here, we show the outcome of using different approaches in assessing the risks related to the combined exposure to mycotoxins. We performed a tiered approach using assessment groups with a common target organ (kidney, liver and haematologic system), or a common adverse effect (phenomenon) (reduced white blood cell count), to combine the exposure to mycotoxins. The combined exposure was calculated for the individuals in this assessment, using the Monte Carlo Risk Assessment (MCRA) tool. The risk related to this combined exposure was assessed using toxicological reference values, e.g., health based guidance values. We show that estimating the combined risk by adding the single compounds' risk distributions slightly overestimates the combined risk in the 95th percentile, as compared to combining the exposures at an individual level. We also show that relative potency factors can be used to refine the mixture risk assessment, as compared to ratios of toxicological reference values with different effect sizes and assessment factors.
Collapse
Affiliation(s)
- Annick D. van den Brand
- National Institute for Public Health and the Environment (RIVM), 3721 BA Bilthoven, The Netherlands; (B.G.H.B.); (J.D.t.B.); (M.J.B.M.)
| | | | | | | |
Collapse
|
12
|
The effect of technological processes on contamination with B-class trichothecenes and quality of spring wheat products from grain harvested at different times. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:788-802. [PMID: 35323092 DOI: 10.1080/19440049.2022.2036823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of technological processes on deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) concentrations and quality of spring wheat products from grain harvested at different times. In this study, 408 samples were analysed for DON, 3-ADON and 15-ADON contamination by the HPLC method with UV detection. Delays in harvesting due to cool and rainy weather conditions resulted in increased DON, 3-ADON and 15-ADON levels. The highest DON concentrations were determined in bran. Higher DON concentrations in the bran indicate the protective function of the grain hull. On the other hand, the highest levels of minerals have been found in bran and whole grain flours, highlighting the importance of consuming these milling fractions as a mineral source with sustained health benefits. Our results showed that DON is stable at 170 °C, and high DON levels in whole-meal flour and white flour could not be converted or decomposed during baking. The levels of 3-ADON and 15-ADON in whole-meal flour bread and white flour bread were significantly reduced but not completely removed. The levels of DON and its derivatives 3-ADON and 15-ADON were significantly reduced in starch and gluten produced from contaminated whole meal flour; however, the washing process did not completely eliminate these toxic compounds. The concentrations of mycotoxins in starch and gluten remained relatively high. Negative correlation was found in highly contaminated samples between DON and bread baking properties. Also, inverse relationship was found between high mycotoxin concentrations and mineral element content in white flour.
Collapse
|
13
|
Study on Contamination with Some Mycotoxins in Maize and Maize-Derived Foods. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crops can be contaminated by fungi which produce mycotoxins. Many fungal strains are responsible for producing varied mycotoxins. The research carried out so far has described over 400 different mycotoxins. They have chemical and physical properties that significantly differ, and they are produced by several different existing fungi. The intake of mycotoxins through food can be achieved directly, by feeding on contaminated food, or indirectly from foods of animal origin. The mycotoxin contamination of food and food products for certain animals is a phenomenon studied worldwide, in countries in Europe but also in Asia, Africa and America. The purpose of this study is to develop an evaluation of the mycotoxins prevalent in corn and corn-derived products produced in Romania. A total of 38 maize samples and 19 corn-derivative samples were investigated for the presence of mycotoxins specific to these products, such as deoxynivalenol, zearalenone and fumonisins. Fumonisins had the highest presence and zearalenone had the lowest. The limits determined for the three mycotoxins were always in accordance with legal regulations.
Collapse
|
14
|
de Arruda MHM, Schwab EDP, Zchonski FL, da Cruz JDF, Tessmann DJ, Da-Silva PR. Production of type-B trichothecenes by Fusarium meridionale, F. graminearum, and F. austroamericanum in wheat plants and rice medium. Mycotoxin Res 2022; 38:1-11. [PMID: 35001349 DOI: 10.1007/s12550-021-00445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
Food security goes beyond food being available; the food needs to be free of contaminants. Trichothecenes mycotoxins, produced by Fusarium fungus, are. among the most frequently found contaminants of wheat. In this study, we evaluated the production of trichothecenes Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), and nivalenol (NIV) by Fusarium meridionale, F. austroamericanum, and F. graminearum grown in wheat plants and rice medium. Fusarim meridionale was efficient only in the production of NIV (production range (pr) from 1340 to 2864 µg kg-1 in wheat plant), and F. austroamericanum in the production of 3-AcDON (pr from 50 to 192 µg kg-1 in wheat plant, and from 986 to 7045 µg kg-1 in rice medium) and DON (pr from 4076 to 13,701 µg kg-1 in wheat plant, and from 184 to 43,395 µg kg-1 in rice medium). Already, F. graminearum was efficient in the production of 3-AcDON only in rice medium (pr from 81 to 2342 µg kg-1), 15-AcDON in wheat plant (pr from 80 to 295 µg kg-1) and in rice medium (pr from 436 to 8597 µg kg-1), and DON also in wheat plant (pr from 7746 to 12,046 µg kg-1) and in rice medium (pr from 695 to 49,624 µg kg-1). The specificity of F. meridionale in the production of NIV but not the production of DON could generate a food security problem in regions where this species occurs and the amounts of NIV in grains and derivatives are not regulated in the food chain, as in Brazil.
Collapse
Affiliation(s)
| | | | - Felipe Liss Zchonski
- DNA Laboratory, Universidade Estadual Do Centro-Oeste, UNICENTRO, Guarapuava, PR, 85040-167, Brazil
| | | | - Dauri José Tessmann
- Departamento de Agronomia, Universidade Estadual de Maringá, UEM, Maringá, PR, 87020-900, Brazil
| | - Paulo Roberto Da-Silva
- DNA Laboratory, Universidade Estadual Do Centro-Oeste, UNICENTRO, Guarapuava, PR, 85040-167, Brazil.
| |
Collapse
|
15
|
SILVA JVBD, OLIVEIRA CAFD, RAMALHO LNZ. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Fang X, Dong F, Wang S, Wang G, Wu D, Lee YW, Ramzy Mohamed S, Goda AAK, Xu J, Shi J, Liu X. The FaFlbA mutant of Fusarium asiaticum is significantly increased in nivalenol production. J Appl Microbiol 2021; 132:3028-3037. [PMID: 34865297 DOI: 10.1111/jam.15404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Cereals contaminated with type B trichothecene nivalenol (NIV) and its acetylated derivative 4-acetyl-nivalenol (4-AcNIV) are a global mycotoxicological problem threatening the health of humans and livestock. Toxicological studies, quantitative determinations and screening for biodegrading micro-organisms require massive amounts of pure toxins. However, the low yield from fungal cultures and high prices of NIV and 4-AcNIV limit research progress in these areas. This work aimed to select Fusarium asiaticum mutant strains with enhanced production of NIV and 4-AcNIV. METHODS AND RESULTS A total of 62 NIV-producing F. asiaticum strains were isolated and compared regarding their ability to produce NIV. Strain RR108 had the highest yield of NIV among 62 field isolates surveyed and was then genetically modified for higher production. Targeted deletion of the FaFlbA gene, encoding a regulator of G protein signalling protein, resulted in a significant increase in NIV and 4-AcNIV production in the FaFlbA deletion mutant ΔFaFlbA. The expression of three TRI genes involved in the trichothecene biosynthetic pathway was upregulated in ΔFaFlbA. ΔFaFlbA produced the highest amount of NIV and 4-AcNIV when cultured in brown long-grain rice for 21 days, and the yields were 2.07 and 2.84 g kg-1 , respectively. The mutant showed reduced fitness, including reduced conidiation, loss of perithecial development and decreased virulence on wheat heads, which makes it biologically safe for large-scale preparation and purification of NIV and 4-AcNIV. CONCLUSIONS The F. asiaticum mutant strain ΔFaFlbA presented improved production of NIV and 4-AcNIV with reduced fitness and virulence in plants. SIGNIFICANCE AND IMPACT OF THE STUDY Targeted deletion of the FaFlbA gene resulted in increased NIV and 4-AcNIV production. Our results provide a practical approach using genetic modification for large-scale mycotoxin production.
Collapse
Affiliation(s)
- Xin Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt, Giza, Egypt
| | - Amira Abdel-Karim Goda
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt, Giza, Egypt
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Pinheiro M, Iwase CHT, Bertozzi BG, Caramês ETS, Carnielli-Queiroz L, Langaro NC, Furlong EB, Correa B, Rocha LO. Survey of Freshly Harvested Oat Grains from Southern Brazil Reveals High Incidence of Type B Trichothecenes and Associated Fusarium Species. Toxins (Basel) 2021; 13:855. [PMID: 34941693 PMCID: PMC8706650 DOI: 10.3390/toxins13120855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The current study investigated the fungal diversity in freshly harvested oat samples from the two largest production regions in Brazil, Paraná (PR) and Rio Grande do Sul (RS), focusing primarily on the Fusarium genus and the presence of type B trichothecenes. The majority of the isolates belonged to the Fusarium sambucinum species complex, and were identified as F. graminearum sensu stricto (s.s.), F. meridionale, and F. poae. In the RS region, F. poae was the most frequent fungus, while F. graminearum s.s. was the most frequent in the PR region. The F. graminearum s.s. isolates were 15-ADON genotype, while F. meridionale and F. poae were NIV genotype. Mycotoxin analysis revealed that 92% and 100% of the samples from PR and RS were contaminated with type B trichothecenes, respectively. Oat grains from PR were predominantly contaminated with DON, whereas NIV was predominant in oats from RS. Twenty-four percent of the samples were contaminated with DON at levels higher than Brazilian regulations. Co-contamination of DON, its derivatives, and NIV was observed in 84% and 57.7% of the samples from PR and RS, respectively. The results provide new information on Fusarium contamination in Brazilian oats, highlighting the importance of further studies on mycotoxins.
Collapse
Affiliation(s)
- Mariana Pinheiro
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas—UNICAMP, Campinas 13083-862, Brazil; (M.P.); (C.H.T.I.); (B.G.B.); (E.T.S.C.)
| | - Caio H. T. Iwase
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas—UNICAMP, Campinas 13083-862, Brazil; (M.P.); (C.H.T.I.); (B.G.B.); (E.T.S.C.)
| | - Bruno G. Bertozzi
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas—UNICAMP, Campinas 13083-862, Brazil; (M.P.); (C.H.T.I.); (B.G.B.); (E.T.S.C.)
| | - Elem T. S. Caramês
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas—UNICAMP, Campinas 13083-862, Brazil; (M.P.); (C.H.T.I.); (B.G.B.); (E.T.S.C.)
| | - Lorena Carnielli-Queiroz
- Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil; (L.C.-Q.); (B.C.)
| | - Nádia C. Langaro
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99042-800, Brazil;
| | - Eliana B. Furlong
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande 96203-900, Brazil;
| | - Benedito Correa
- Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil; (L.C.-Q.); (B.C.)
| | - Liliana O. Rocha
- Department of Food Science and Nutrition, Food Engineering Faculty, State University of Campinas—UNICAMP, Campinas 13083-862, Brazil; (M.P.); (C.H.T.I.); (B.G.B.); (E.T.S.C.)
| |
Collapse
|
18
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
19
|
Romero ADC, Morais JBDA, Augusto PED, Calori-Domingues MA. Ozonation of agri-food products for reducing mycotoxin contamination: challenges in grains and particulates processing. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:845-851. [PMID: 34388052 DOI: 10.1080/03601234.2021.1962168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study evaluated differences in the efficiency of ozonation process to reduce the natural contamination of two mycotoxins, deoxynivalenol (DON) and zearalenone (ZEN), in wheat grains and particulate products. Three different products were used, each one representing a different structure and mycotoxin distribution: (1) wheat grains, with natural mycotoxin distribution inside and among the grains; (2) homemade pellets, with homogenous mycotoxin distribution; (3) ground homemade pellets, with homogeneous mycotoxin distribution, and smaller particles. The ozonation of naturally contaminated wheat grains did not reduce the concentrations of DON and ZEN. When the variability of contamination among replicates was reduced by the production of homemade pellets showed, the ozonation provides a reduction of 14% of ZEN concentration. Reducing the size of particles by grinding the homemade pellets, a reduction of DON (11%) and ZEN (31%) was observed, which was evidenced by the higher ozone consumption during the process. Therefore, some limitations of ozonation of grains and particulate products, such as particle dimensions and distribution of natural contamination of mycotoxins affect the degradation of DON and ZEN under real conditions. Because of this, further studies to evaluate the effectiveness of ozonation should also be performed in samples naturally contaminated to produce robustness results.
Collapse
Affiliation(s)
- Alessandra de Cássia Romero
- Department of Agri-food Industry, Food and Nutrition (LAN), "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - João Bruno de Almeida Morais
- Department of Agri-food Industry, Food and Nutrition (LAN), "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Pedro Esteves Duarte Augusto
- Department of Agri-food Industry, Food and Nutrition (LAN), "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Maria Antonia Calori-Domingues
- Department of Agri-food Industry, Food and Nutrition (LAN), "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
20
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
21
|
DL-Selenomethionine Alleviates Oxidative Stress Induced by Zearalenone via Nrf2/Keap1 Signaling Pathway in IPEC-J2 Cells. Toxins (Basel) 2021; 13:toxins13080557. [PMID: 34437428 PMCID: PMC8402336 DOI: 10.3390/toxins13080557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) is a kind of nonsteroidal mycotoxin that is considered a risk affecting the safety of human food and livestock feed that causes oxidative damages in mammalian cells. Selenomethionine (SeMet) was indicated to have antioxidant activity and received great interest in investigating the role of SeMet as a therapeutic agent in oxidation. Therefore, the aim of this study was to investigate the hormetic role of DL-SeMet in porcine intestinal epithelial J2 (IPEC-J2) cells against ZEN-induced oxidative stress injury. As a result of this experiment, 30 μg/mL of ZEN was observed with significantly statistical effects in cell viability. Following the dose-dependent manner, 20 μg/mL was chosen for the subsequent experiments. Then, further results in the current study showed that the ZENinduced oxidative stress with subsequent suppression of the expression of antioxidant stress pathway-related genes species. Moreover, SeMet reversed the oxidative damage and cell death of ZEN toxins to some extent, by a Nrf2/Keap1-ARE pathway. The finding of this experiment provided a foundation for further research on the ZEN-caused cell oxidative damage and the cure technology.
Collapse
|
22
|
Kowalska G, Kowalski R. Occurrence of mycotoxins in selected agricultural and commercial products available in eastern Poland. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The objective of this study was the estimation of the content of 13 mycotoxins (diacetoxyscirpenol, T-2 toxin, HT-2 toxin, nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, fusarenone X, aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, ochratoxin A, and zearalenone) in various products from the eastern part of Poland. The content of mycotoxins in the analysed samples was assayed using the extraction method combined with HPLC-MS/MS analysis. We found mycotoxins in 25 of the 92 samples tested (27%). Contamination with mycotoxins was noted most frequently in samples of cereals – 56% – and also in samples of flour and cocoa, in which a content of mycotoxins was noted in 24 and 16% of the samples, respectively. The most frequently identified were the following – deoxynivalenol detected in 18 samples (72%), zearalenone detected in eight samples (32%), toxin HT-2 detected in four samples (16%), ochratoxin A identified in three samples (12%), and toxin T-2 detected in one sample (4%). In one analysed sample of mixed flour and in one analysed sample of wheat and rye flour, the maximum allowable concentration was exceeded in the case of two identified mycotoxins – deoxynivalenol (2,250 μg/kg) and ochratoxin A (15.6 and 17.1 μg/kg).
Collapse
Affiliation(s)
- Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin , 15 Akademicka Street , 20-950 Lublin , Poland
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin , 8 Skromna Street , 20-704 Lublin , Poland
| |
Collapse
|
23
|
Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins (Basel) 2021; 13:toxins13050323. [PMID: 33946240 PMCID: PMC8145492 DOI: 10.3390/toxins13050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.
Collapse
|
24
|
De Rycke E, Foubert A, Dubruel P, Bol'hakov OI, De Saeger S, Beloglazova N. Recent advances in electrochemical monitoring of zearalenone in diverse matrices. Food Chem 2021; 353:129342. [PMID: 33714123 DOI: 10.1016/j.foodchem.2021.129342] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
The current manuscript summarizes different electrochemical sensing systems developed within the last 5 years for the detection of zearalenone (ZEN) in diverse matrices such as food, feed, and biofluids. ZEN is one of the most prevalent non-steroidal mycotoxins that is often found in pre- and post-harvest crops. Crops contamination with ZEN and animal exposure to it via contaminated feed, is a global health and economic concern. The European Union has established various preventive programs to control ZEN contamination, and regulations on the maximum levels of ZEN in food and feed. Electrochemical (bio)sensors are a very promising alternative to sensitive but sophisticated and expensive chromatographic techniques. In the current review, recent developments towards electrochemical sensing of ZEN, sorted by type of transducer, their design, development, and approbation/validation are discussed, and the use of specialized electrochemical instrumentation is highlighted.
Collapse
Affiliation(s)
- Esther De Rycke
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Astrid Foubert
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4-Bis, B-9000 Ghent, Belgium
| | - Oleg I Bol'hakov
- Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, South Africa
| | - Natalia Beloglazova
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; Nanotechnology Education and Research Center, South Ural State University, 454080 Chelyabinsk, Russia.
| |
Collapse
|
25
|
Polak-Śliwińska M, Paszczyk B. Trichothecenes in Food and Feed, Relevance to Human and Animal Health and Methods of Detection: A Systematic Review. Molecules 2021; 26:454. [PMID: 33467103 PMCID: PMC7830705 DOI: 10.3390/molecules26020454] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023] Open
Abstract
Trichothecene mycotoxins are sesquiterpenoid compounds primarily produced by fungi in taxonomical genera such as Fusarium, Myrothecium, Stachybotrys, Trichothecium, and others, under specific climatic conditions on a worldwide basis. Fusarium mold is a major plant pathogen and produces a number of trichothecene mycotoxins including deoxynivalenol (or vomitoxin), nivalenol, diacetoxyscirpenol, and T-2 toxin, HT-2 toxin. Monogastrics are sensitive to vomitoxin, while poultry and ruminants appear to be less sensitive to some trichothecenes through microbial metabolism of trichothecenes in the gastrointestinal tract. Trichothecene mycotoxins occur worldwide however both total concentrations and the particular mix of toxins present vary with environmental conditions. Proper agricultural practices such as avoiding late harvests, removing overwintered stubble from fields, and avoiding a corn/wheat rotation that favors Fusarium growth in residue can reduce trichothecene contamination of grains. Due to the vague nature of toxic effects attributed to low concentrations of trichothecenes, a solid link between low level exposure and a specific trichothecene is difficult to establish. Multiple factors, such as nutrition, management, and environmental conditions impact animal health and need to be evaluated with the knowledge of the mycotoxin and concentrations known to cause adverse health effects. Future research evaluating the impact of low-level exposure on livestock may clarify the potential impact on immunity. Trichothecenes are rapidly excreted from animals, and residues in edible tissues, milk, or eggs are likely negligible. In chronic exposures to trichothecenes, once the contaminated feed is removed and exposure stopped, animals generally have an excellent prognosis for recovery. This review shows the occurrence of trichothecenes in food and feed in 2011-2020 and their toxic effects and provides a summary of the discussions on the potential public health concerns specifically related to trichothecenes residues in foods associated with the exposure of farm animals to mycotoxin-contaminated feeds and impact to human health. Moreover, the article discusses the methods of their detection.
Collapse
Affiliation(s)
- Magdalena Polak-Śliwińska
- Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland;
| | | |
Collapse
|
26
|
Malekinejad H, Fink-Gremmels J. Mycotoxicoses in veterinary medicine: Aspergillosis and penicilliosis. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:97-103. [PMID: 32782737 PMCID: PMC7413002 DOI: 10.30466/vrf.2020.112820.2686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Indexed: 11/20/2022]
Abstract
Molds and mycotoxins are contaminants of animal feed causing spoilage and clinical intoxication. Animal exposure to mycotoxins reflects diet composition with major differences occurring between animals kept predominantly of pastures, i.e. ruminants and horses, and those consuming formulated feed like pigs and poultry. Mixed feeds are composed of several ingredients, often sourced from different continents. Subsequently, practitioners may confront endemic diseases and signs of toxin exposure related to toxins imported accidentally with contaminated feed materials from other countries and continents. Mycotoxins comprise more than 300 to 400 different chemicals causing a variety of clinical symptoms. Mycotoxin exposure causes major economic losses due to reduced performance, impaired feed conversion and fertility, and increased susceptibility to environmental stress and infectious diseases. In acute cases, clinical symptoms following mycotoxin ingestion are often non-specific, hindering an immediate diagnosis. Furthermore, most mold species produce more than one toxin, and feed commodities are regularly contaminated with various mold species resulting in complex mixtures of toxins in formulated feeds. The effects of these different toxins may be additive, depending on the level and time of exposure, and the intensity of the clinical symptoms based on age, health, and nutritional status of the exposed animal(s). Threshold levels of toxicity are difficult to define and discrepancies between analytical data and clinical symptoms are common in daily practice. This review aims to provide an overview of Aspergillus and Penicillium toxins that are frequently found in feed commodities and discusses their effects on animal health and productivity.
Collapse
Affiliation(s)
- Hassan Malekinejad
- Department of Pharmacology and Toxicology , School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Johanna Fink-Gremmels
- Department of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
28
|
Djekic I, Udovicki B, Kljusurić J, Papageorgiou M, Jovanovic J, Giotsas C, Djugum J, Tomic N, Rajkovic A. Exposure assessment of adult consumers in Serbia, Greece and Croatia to deoxynivalenol and zearalenone through consumption of major wheat-based products. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2019.2452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The main objective of this research was to perform an exposure assessment of mycotoxin intake through consumption of wheat-based products in Serbia, Croatia, and Greece by estimating deoxynivalenol (DON) and zearalenone (ZEA) exposure from wheat. Food consumption survey of wheat-based products has been performed during 2017 in the three countries with at least 1000 interviewees per country. Values for the concentration of DON and ZEA were extracted from available research published in this decade. Finally, a Monte Carlo analysis of 100,000 simulations was performed to estimate the intake of DON and ZEA from consumption of wheat-based products. Results revealed that the estimated daily wheat-borne intake of DON of the adult population in Croatia was 0.121 μg/kg bw/day, followed by Greece with 0.181 μg/kg bw/day and Serbia with 0.262 μg/kg bw/day. This shows that 0.25% of Croatian, 1.19% of Greek and 3.96% of Serbian adult population is exposed to higher daily dietary intakes of DON than recommended. Estimated daily wheat-borne intake of ZEA was 0.017 μg/kg bw/day in Greece, 0.026 μg/kg bw/day in Croatia and 0.050 μg/kg bw/day in Serbia. Higher intake of ZEA is associated with 0.62% of the Greek population, followed by 0.95% Croatian and 2.25% of Serbian citizens. This type of research is helpful to assess accurately the risk by DON/ZEA intake associated with the consumption of wheat-based products by consumers in these three countries. Distributions of potential mycotoxin intakes were highly right-skewed.
Collapse
Affiliation(s)
- I. Djekic
- Department of Food Safety and Quality Management, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Republic of Serbia
| | - B. Udovicki
- Department of Food Safety and Quality Management, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Republic of Serbia
| | - J.G. Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10000 Zagreb, Croatia
| | - M. Papageorgiou
- Food Technology Alexander Technological Educational Institute of Thessaloniki, POB 141, Thessaloniki 574 00, Greece
| | - J. Jovanovic
- Food Technology Alexander Technological Educational Institute of Thessaloniki, POB 141, Thessaloniki 574 00, Greece
| | - C. Giotsas
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, A, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Djugum
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10000 Zagreb, Croatia
- Ministry of Agriculture, Ulica grada Vukovara 78, Zagreb, Croatia
| | - N. Tomic
- Department of Food Safety and Quality Management, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Republic of Serbia
| | - A. Rajkovic
- Department of Food Safety and Quality Management, University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Republic of Serbia
- Food Technology Alexander Technological Educational Institute of Thessaloniki, POB 141, Thessaloniki 574 00, Greece
| |
Collapse
|
29
|
Chen C, Turna NS, Wu F. Risk assessment of dietary deoxynivalenol exposure in wheat products worldwide: Are new codex DON guidelines adequately protective? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Prevalent Mycotoxins in Animal Feed: Occurrence and Analytical Methods. Toxins (Basel) 2019; 11:toxins11050290. [PMID: 31121952 PMCID: PMC6563184 DOI: 10.3390/toxins11050290] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Today, we have been witnessing a steady tendency in the increase of global demand for maize, wheat, soybeans, and their products due to the steady growth and strengthening of the livestock industry. Thus, animal feed safety has gradually become more important, with mycotoxins representing one of the most significant hazards. Mycotoxins comprise different classes of secondary metabolites of molds. With regard to animal feed, aflatoxins, fumonisins, ochratoxins, trichothecenes, and zearalenone are the more prevalent ones. In this review, several constraints posed by these contaminants at economical and commercial levels will be discussed, along with the legislation established in the European Union to restrict mycotoxins levels in animal feed. In addition, the occurrence of legislated mycotoxins in raw materials and their by-products for the feeds of interest, as well as in the feeds, will be reviewed. Finally, an overview of the different sample pretreatment and detection techniques reported for mycotoxin analysis will be presented, the main weaknesses of current methods will be highlighted.
Collapse
|
31
|
Serviento AM, Brossard L, Renaudeau D. An acute challenge with a deoxynivalenol-contaminated diet has short- and long-term effects on performance and feeding behavior in finishing pigs. J Anim Sci 2019; 96:5209-5221. [PMID: 30423126 DOI: 10.1093/jas/sky378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various fungi and are known to contaminate animal feed ingredients especially cereals. One of the most common mycotoxins in swine diets is deoxynivalenol (DON) which is known to decrease growth performance. The objective of the present study was to evaluate the effects of single or repeated short-term DON challenges on growth performance, and feeding behavior in finishing pigs. A total of 160 pigs were distributed to four experimental groups in two successive replicates with each pig individually measured for live BW and individually fed using an electronic feeding station. The pigs in control group CC were fed with a standard finisher diet during the whole duration of the experimental period. Groups DC, CD, and DD were given the DON-contaminated diet (3.02 mg DON/kg feed) for 7 d at 113 d, at 134 d, and at 113 and 134 d of age, respectively. The DON-contaminated diet was formulated with a naturally contaminated corn. During challenge periods, ADFI was decreased by 26% to 32% (P < 0.05) and ADG by 40% to 60% (P < 0.05). The drop in ADFI during DON challenges was associated with changes in the feeding behavior: when compared to the nonchallenged pigs, pigs fed with DON-contaminated diet had lower number of meals per day (9.6 versus 8.2 meals per day on average; P < 0.05) and slower feeding rate (42.0 g/min versus 39.9 g/min on average; P < 0.05). For the whole trial period, pigs submitted to the DON challenge at the end of the experiment (i.e., first time for CD group and second time for DD group) had a lower (P < 0.05) ADFI (2.67 and 2.59 kg/d, respectively) when compared to the control CC group of pigs (2.87 kg/d). An intermediate value was reported for the DC groups (2.79 kg/d). All challenged groups, i.e., DC, CD, and DD pigs, had lower (P < 0.05) overall ADG (970, 940, and 900 g/day, respectively) than CC (1,050 g/day) for the whole trial period. Pigs challenged early in the trial, i.e., DC and DD groups, had a higher (P < 0.05) FCR than CC group (3.00 and 3.06 versus 2.80, respectively) while group CD showed intermediate results (2.92). This study demonstrates that the severity of DON toxicity in pig performance can be related to the age of exposure (113 or 134 d) and the number of exposures to the toxin (one or two). Exposure to DON also resulted to long-term effects because challenged pigs showed limited ability to recover after the DON-induced reduction of feed intake.
Collapse
|
32
|
Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 2019; 60:1346-1374. [DOI: 10.1080/10408398.2019.1571479] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Sonal Srivastava
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Jayant Dewangan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Aman Divakar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR-CDRI), Lucknow, Uttar Pradesh, India
| |
Collapse
|
33
|
Xu W, Han X, Li F. Co-occurrence of multi-mycotoxins in wheat grains harvested in Anhui province, China. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Bioimprinting for multiplex luminescent detection of deoxynivalenol and zearalenone. Talanta 2019; 192:169-174. [DOI: 10.1016/j.talanta.2018.09.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022]
|
35
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
36
|
Multiwalled Carbon Nanotube for One-Step Cleanup of 21 Mycotoxins in Corn and Wheat Prior to Ultraperformance Liquid Chromatography⁻Tandem Mass Spectrometry Analysis. Toxins (Basel) 2018; 10:toxins10100409. [PMID: 30308981 PMCID: PMC6215200 DOI: 10.3390/toxins10100409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
One-step solid-phase extraction (SPE) using a multiwalled carbon nanotube (MWCNT) for simultaneous analysis of 21 mycotoxins, including nine trichothecenes, zearalenone (ZEN) and its derivatives, four aflatoxins, and two ochratoxins, in corn and wheat was developed. Several key parameters affecting the performance of the one-step SPE procedure—types of MWCNT, combinations with five sorbents (octadecylsilyl (C18), hydrophilic–lipophilic balance (HLB), mixed-mode cationic exchange (MCX), silica gel, and amino-propyl (NH2)), and filling amounts of the MWCNTs—were thoroughly investigated. The combination of 20 mg carboxylic MWCNT and 200 mg C18 was proven to be the most effective, allowing the quantification of all analyzed mycotoxins in corn and wheat. Under the optimized cleanup procedure prior to ultraperformance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) analysis, the method was validated by analyzing samples spiked at the limit of quantification (LOQ), two-times LOQ, and 10-times LOQ. Satisfactory linearity (r2 ≥ 0.9910), high sensitivity (LOQ in different ranges of 0.5–25 μg L−1), good recovery (75.6–110.3%), and acceptable precision (relative standard deviation (RSD), 0.3–10.7%) were obtained. The applicability of the method was further confirmed using raw samples of corn and wheat. In conclusion, the established method was rapid, simple and reliable for simultaneous analysis of 21 mycotoxins in corn and wheat.
Collapse
|
37
|
Vulić A, Lešić T, Kudumija N, Mikuš T, Pleadin J. Resorcylic Acid Lactones in Urine Samples of Croatian Farm Animals. J Anal Toxicol 2018; 43:126-133. [DOI: 10.1093/jat/bky069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 09/11/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- A Vulić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska 143, Zagreb, Croatia
| | - T Lešić
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska 143, Zagreb, Croatia
| | - N Kudumija
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska 143, Zagreb, Croatia
| | - T Mikuš
- Animal Welfare Unit, Croatian Veterinary Institute, Savska 143, Zagreb, Croatia
| | - J Pleadin
- Laboratory for Analytical Chemistry, Croatian Veterinary Institute, Savska 143, Zagreb, Croatia
| |
Collapse
|
38
|
Zhao Y, Guan X, Zong Y, Hua X, Xing F, Wang Y, Wang F, Liu Y. Deoxynivalenol in wheat from the Northwestern region in China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2018; 11:281-285. [PMID: 30091682 DOI: 10.1080/19393210.2018.1503340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Because of global warming and changes in farming systems, Fusarium head blight has gradually spread towards high-latitude regions such as Northwestern China. A survey was conducted to assess the prevalence and concentration of deoxynivalenol (DON) in wheat harvested during 2013 from the Shaanxi, Ningxia, Gansu, and Xinjiang provinces in China. DON concentration in 181 wheat samples was analysed by high-performance liquid chromatography combined with ultraviolet detection. Of the wheat samples, 82.9% were contaminated with DON, with a mean DON concentration of 500 μg/kg. According to the Chinese standard limits for DON, 10% of the positive samples were above the maximum limit of 1000 μg/kg. Regions with higher humidity showed higher levels of DON in the wheat samples. These results show the necessity of raising awareness of DON contamination in people from Northwestern China to protect their health from the risk of exposure to DON.
Collapse
Affiliation(s)
- Yueju Zhao
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Xuanli Guan
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Ying Zong
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Xiaotong Hua
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Fuguo Xing
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Yan Wang
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Fengzhong Wang
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| | - Yang Liu
- a Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences /Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture , Beijing , P. R. China
| |
Collapse
|
39
|
Ul Hassan Z, Al Thani R, A. Atia F, Al Meer S, Migheli Q, Jaoua S. Co-occurrence of mycotoxins in commercial formula milk and cereal-based baby food on the Qatar market. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2018; 11:191-197. [DOI: 10.1080/19393210.2018.1437785] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zahoor Ul Hassan
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Roda Al Thani
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Fathy A. Atia
- Central Laboratories Unit, Qatar University, Doha, Qatar
| | - Saeed Al Meer
- Central Laboratories Unit, Qatar University, Doha, Qatar
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Samir Jaoua
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
40
|
Zhang K, Flannery BM, Oles CJ, Adeuya A. Mycotoxins in infant/toddler foods and breakfast cereals in the US retail market. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2018; 11:183-190. [DOI: 10.1080/19393210.2018.1451397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kai Zhang
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, US Food and Drug Administration, College Park, MD, USA
| | - Brenna M. Flannery
- Center for Food Safety and Applied Nutrition, Office of Analytics and Outreach, US Food and Drug Administration, College Park, MD, USA
| | - Carolyn J. Oles
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, US Food and Drug Administration, College Park, MD, USA
| | - Anthony Adeuya
- Center for Food Safety and Applied Nutrition, Office of Food Safety, US Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
41
|
Santos Alexandre AP, Vela-Paredes RS, Santos AS, Costa NS, Canniatti-Brazaca SG, Calori-Domingues MA, Augusto PED. Ozone treatment to reduce deoxynivalenol (DON) and zearalenone (ZEN) contamination in wheat bran and its impact on nutritional quality. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1189-1199. [DOI: 10.1080/19440049.2018.1432899] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Allana Patrícia Santos Alexandre
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| | - Rafael Segundo Vela-Paredes
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| | - Amanda Silva Santos
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| | - Naiara Silva Costa
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| | - Solange Guidolin Canniatti-Brazaca
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| | - Maria Antonia Calori-Domingues
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| | - Pedro Esteves Duarte Augusto
- Department of Agri-Food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba/SP, Brazil
| |
Collapse
|
42
|
Natural Occurrence of Nivalenol, Deoxynivalenol, and Deoxynivalenol-3-Glucoside in Polish Winter Wheat. Toxins (Basel) 2018; 10:toxins10020081. [PMID: 29438296 PMCID: PMC5848182 DOI: 10.3390/toxins10020081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/15/2022] Open
Abstract
The presence of mycotoxins in cereal grain is a very important food safety factor. The occurrence of “masked” mycotoxins has been intensively investigated in recent years. In this study, the occurrence of nivalenol, deoxynivalenol-3-glucoside, and deoxynivalenol in 92 samples of winter wheat from Polish cultivars was determined. The frequency of the occurrence of deoxynivalenol and nivalenol in the samples was 83% and 70%, respectively. The average content of the analytes was: for deoxynivalenol 140.2 µg/kg (10.5–1265.4 µg/kg), for nivalenol 35.0 µg/kg (5.1–372.5 µg/kg). Deoxynivalenol-3-glucoside, the formation of which is connected with the biotransformation pathway in plants, was present in 27% of tested wheat samples; its average content was 41.9 µg/kg (15.8–137.5 µg/kg). The relative content of deoxynivalenol-3-glucoside (DON-3G) compared to deoxynivalenol (DON) in positive samples was 4–37%. Despite the high frequency of occurrence of these mycotoxins, the quality of wheat from the 2016 season was good. The maximum content of DON, as defined in EU regulations (1250 µg/kg), was exceeded in only one sample. Nevertheless, the presence of a glycosidic derivative of deoxynivalenol can increase the risk to food safety, as it can be hydrolyzed by intestinal microflora.
Collapse
|
43
|
Silva MV, Pante GC, Romoli JCZ, de Souza APM, Rocha GHOD, Ferreira FD, Feijó ALR, Moscardi SMP, de Paula KR, Bando E, Nerilo SB, Machinski M. Occurrence and risk assessment of population exposed to deoxynivalenol in foods derived from wheat flour in Brazil. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:546-554. [PMID: 29210608 DOI: 10.1080/19440049.2017.1411613] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is the most important of the trichothecenes in terms of amounts and occurrence in wheat. This compound was shown to be associated with a glomerulonephropathy involving an increase of immunoglobulin A in humans. This study assessed the occurrence of DON in wheat flour and the exposure of Brazilian teenagers, adults and elderly to this mycotoxin due to intake of wheat flour-based products. DON extraction in wheat flour was carried out by solid phase extraction and the quantification was performed by ultra-high proficiency liquid chromatography with diode-array detection. A total of 77.9% of all samples were positive for DON, with concentrations ranging from 73.50 to 2794.63 µg kg-1. The intake was calculated for the average and 90th percentile of the contamination levels of DON in foods based-wheat for teenagers, adults and elderly in Brazil, and compared with the provisional maximum tolerable daily intakes (PMTDI). Females of all age groups were exposed to DON at higher levels when compared to males in regard of consumption of breads and pastas. Teenagers were the main consumers of foods derived from wheat flour, with maximum probable daily intakes of 1.28 and 1.20 µg kg-1 b.w. day-1 for females and males, respectively. This population is at an increased risk of exposure to DON due to consumption of wheat flour-based foods in Brazil.
Collapse
Affiliation(s)
- Milena Veronezi Silva
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| | - Giseli Cristina Pante
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| | | | | | - Gustavo Henrique Oliveira da Rocha
- b Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, Laboratory of Experimental Toxicology , University of São Paulo , São Paulo , Brazil
| | - Flavio Dias Ferreira
- c Academic Department of Food , Technological Federal University of Parana , Medianeira , Brazil
| | | | | | - Karina Ruaro de Paula
- e State Department of Health of Parana (SESA-PR) , Food Sanitary Surveillance , Paraná State Government, Curitiba , Brazil
| | - Erika Bando
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| | | | - Miguel Machinski
- a Department of Health Basic Sciences , Laboratory of Toxicology, State University of Maringá , Maringá , Brazil
| |
Collapse
|
44
|
Huang D, Cui L, Guo P, Xue X, Wu Q, Hussain HI, Wang X, Yuan Z. Nitric oxide mediates apoptosis and mitochondrial dysfunction and plays a role in growth hormone deficiency by nivalenol in GH3 cells. Sci Rep 2017; 7:17079. [PMID: 29213091 PMCID: PMC5719085 DOI: 10.1038/s41598-017-16908-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Nivalenol (NIV), a type B trichothecenes commonly found in cereal crops, can cause growth impairment in animals. However, limited information about its mechanisms is available. Trichothecenes have been characterized as an inhibitor of protein synthesis and induce apoptosis in cells. Oxidative stress is considered an underlying mechanism. However, whether NIV can induce oxidative stress and apoptosis in rat pituitary cells line GH3 is unclear. The present study showed that NIV significantly reduced the viability of cells and caused oxidative stress in GH3 cells. Further experiments showed that nitric oxide (NO), but not ROS, mediated NIV-induced oxidative stress. Additionally, NIV induced caspase-dependent apoptosis, decrease in mitochondrial membrane potential and mitochondrial ultrastructural changes. However, NIV-induced caspase activation, mitochondrial damage and apoptosis were partially alleviated by Z-VAD-FMK or NO scavenger hemoglobin. Finally, NIV changed the expression of growth-associated genes and pro-inflammatory cytokines. NIV also reduced the GH secretion in GH3 cells, which was reversed by hemoglobin. Taken together, these results suggested that NIV induced apoptosis in caspase-dependent mitochondrial pathway in GH3 cells, which might be an underlying mechanism of NIV-induced GH deficiency. Importantly, NO played a critical role in the induction of oxidative stress, apoptosis and GH deficiency in NIV-treated GH3 cells.
Collapse
Affiliation(s)
- Deyu Huang
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China
| | - Luqing Cui
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Pu Guo
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xijuan Xue
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Hafiz Iftikhar Hussain
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China
| | - Xu Wang
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| | - Zonghui Yuan
- The Key Laboratory for the Detection of Veterinary Drug Residues, Ministry of Agriculture, Wuhan, P.R. China. .,Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, Wuhan, P.R. China.
| |
Collapse
|
45
|
Pleadin J, Frece J, Lešić T, Zadravec M, Vahčić N, Malenica Staver M, Markov K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2017; 10:268-274. [PMID: 28635371 DOI: 10.1080/19393210.2017.1345991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the occurrence of deoxynivalenol (DON) and zearalenone (ZEN) in unprocessed cereals and soybean sampled in 2014 and 2015 from different fields located in Croatian regions. A total of 306 samples were analysed for DON and 415 samples for ZEN concentrations using quantitative ELISA methods. In 2014, DON and ZEN were determined in all samples in the mean concentrations of 1,461 ± 2,265 µg/kg and 656 ± 853 µg/kg, respectively, while in 2015 these means were 2,687 ± 2,731 µg/kg and 1,140 ± 1,630 µg/kg, respectively. The cultivation year significantly (p < 0.05) influenced mycotoxin concentrations, whereas the influence of cultivation region was seen with ZEN for all cereals except soybean, and not seen with DON at all. A higher contamination determined during 2015 could be explained by high to extreme humidity evidenced in the period of cereals' growth and harvesting.
Collapse
Affiliation(s)
- Jelka Pleadin
- a Laboratory for Analytical Chemistry , Croatian Veterinary Institute Zagreb , Zagreb , Croatia
| | - Jadranka Frece
- b Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - Tina Lešić
- a Laboratory for Analytical Chemistry , Croatian Veterinary Institute Zagreb , Zagreb , Croatia
| | - Manuela Zadravec
- c Laboratory for Feed Microbiology , Croatian Veterinary Institute Zagreb , Zagreb , Croatia
| | - Nada Vahčić
- b Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | | | - Ksenija Markov
- b Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
46
|
Jiang D, Chen J, Li F, Li W, Yu L, Zheng F, Wang X. Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong province of China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 11:43-48. [PMID: 29125057 DOI: 10.1080/19393210.2017.1402824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, 100 commercial breads and biscuits were investigated for the occurrence of deoxynivalenol (DON) and its acetylated derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON). The target mycotoxins were determined by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). DON was determined in 95% of the test samples with a mean value of 153.3 µg/kg. Compared with DON, 3-Ac-DON and 15-Ac-DON were far less frequently detected, with mean values of 1.14 and 0.37 µg/kg, respectively. The estimated daily intakes of the sum of DON and its derivatives in breads and biscuits were 0.0059 and 0.0313 µg/kg bw/day, respectively, which was within the group provisional tolerable daily intake of 1.0 µg/kg bw/day set by the Joint FAO/WHO Expert Committee on Food Additives. In the future, systematic monitoring programmes of DON and its derivatives in relevant foodstuffs are still necessary for food safety and human health.
Collapse
Affiliation(s)
- Dafeng Jiang
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Jindong Chen
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Fenghua Li
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Wei Li
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Lianlong Yu
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Fengjia Zheng
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Xiaolin Wang
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| |
Collapse
|
47
|
Belluco B, de Camargo AC, da Gloria EM, Dias CTDS, Button DC, Calori-Domingues MA. Deoxynivalenol in wheat milling fractions: A critical evaluation regarding ongoing and new legislation limits. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Alexandre APS, Castanha N, Calori-Domingues MA, Augusto PED. Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:516-524. [PMID: 28541097 DOI: 10.1080/03601234.2017.1303325] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the reduction on the levels of the mycotoxin deoxynivalenol (DON) in whole wheat flour (WWF) with different moisture levels, on the wet milling effluent through ozone (O3) processing, as well as the impact of ozonation on the rheological properties of flour. The results have shown that the reduction of DON was improved with increasing moisture and exposure time of WWF and wet milling effluent to ozone. The maximum reduction was about 80%, proving that ozonation is an effective and promising technology in reducing mycotoxins in different products. However, the process altered the rheological profile of WWF. Therefore, further studies are needed to better understand the process.
Collapse
Affiliation(s)
- Allana P S Alexandre
- a Department of Agri-food Industry , Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP) , Piracicaba / SP , Brazil
| | - Nanci Castanha
- a Department of Agri-food Industry , Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP) , Piracicaba / SP , Brazil
| | - Maria A Calori-Domingues
- a Department of Agri-food Industry , Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP) , Piracicaba / SP , Brazil
| | - Pedro E D Augusto
- a Department of Agri-food Industry , Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP) , Piracicaba / SP , Brazil
| |
Collapse
|
49
|
de Camargo AC, Regitano-d’Arce MAB, Shahidi F. Phenolic Profile of Peanut By-products: Antioxidant Potential and Inhibition of Alpha-Glucosidase and Lipase Activities. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2996-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Shahidi F, de Camargo AC. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int J Mol Sci 2016; 17:E1745. [PMID: 27775605 PMCID: PMC5085773 DOI: 10.3390/ijms17101745] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
Edible oils are the major natural dietary sources of tocopherols and tocotrienols, collectively known as tocols. Plant foods with low lipid content usually have negligible quantities of tocols. However, seeds and other plant food processing by-products may serve as alternative sources of edible oils with considerable contents of tocopherols and tocotrienols. Tocopherols are among the most important lipid-soluble antioxidants in food as well as in human and animal tissues. Tocopherols are found in lipid-rich regions of cells (e.g., mitochondrial membranes), fat depots, and lipoproteins such as low-density lipoprotein cholesterol. Their health benefits may also be explained by regulation of gene expression, signal transduction, and modulation of cell functions. Potential health benefits of tocols include prevention of certain types of cancer, heart disease, and other chronic ailments. Although deficiencies of tocopherol are uncommon, a continuous intake from common and novel dietary sources of tocopherols and tocotrienols is advantageous. Thus, this contribution will focus on the relevant literature on common and emerging edible oils as a source of tocols. Potential application and health effects as well as the impact of new cultivars as sources of edible oils and their processing discards are presented. Future trends and drawbacks are also briefly covered.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil.
| |
Collapse
|