1
|
Qin Y, Zhou H, Yang Y, Guo T, Zhou Y, Zhang Y, Ma L. Metabolome and Its Mechanism Profiling in the Synergistic Toxic Effects Induced by Co-Exposure of Tenuazonic Acid and Patulin in Caco-2 Cells. Toxins (Basel) 2024; 16:319. [PMID: 39057959 PMCID: PMC11281550 DOI: 10.3390/toxins16070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tenuazonic acid (TeA), usually found in cereals, fruits, vegetables, oil crops, and their products, was classified as one of the highest public health problems by EFSA as early as 2011, but it has still not been regulated by legislation due to the limited toxicological profile. Moreover, it has been reported that the coexistence of TeA and patulin (PAT) has been found in certain agricultural products; however, there are no available data about the combined toxicity. Considering that the gastrointestinal tract is the physiological barrier of the body, it would be the first target site at which exogenous substances interact with the body. Thus, we assessed the combined toxicity (cell viability, ROS, CAT, and ATP) in Caco-2 cells using mathematical modeling (Chou-Talalay) and explored mechanisms using non-targeted metabolomics and molecular biology methods. It revealed that the co-exposure of TeA + PAT (12.5 μg/mL + 0.5 μg/mL) can induce enhanced toxic effects and more severe oxidative stress. Mechanistically, the lipid and amino acid metabolisms and PI3K/AKT/FOXO signaling pathways were mainly involved in the TeA + PAT-induced synergistic toxic effects. Our study not only enriches the scientific basis for the development of regulatory policies but also provides potential targets and treatment options for alleviating toxicities.
Collapse
Affiliation(s)
- Yuxian Qin
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yulian Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.Q.); (H.Z.); (Y.Y.); (T.G.); (Y.Z.); (Y.Z.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, China
| |
Collapse
|
2
|
Wang P, Wang H, Wang X, Li Y, Sun J, Wang X, Zhang G. Mycotoxins in grains (products), Gansu province, China and risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:101-109. [PMID: 38234288 DOI: 10.1080/19393210.2023.2300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to estimate the dietary exposure towards mycotoxins of residents in Gansu province, China, from 2014-2020 through surveillance data on mycotoxins in grains and grain products. Fumonisin B1 (FB1), Deoxynivalenol (DON), 3- and 15-Acetyl-deoxynivalenol (3-ADON and 15-ADON), Tentoxin (TEN), Tenuazonic acid (TeA) and Zearalenone (ZEN) in 863 grains and grain products were detected by HPLC-MS and UPLC-MS. DON was the most detected mycotoxin of all samples. For women, the average dietary exposure to DON was 1.49 μg/kg bw/day, with 55.8% of the individuals eating dried noodles exceeding tolerable daily intake. The hazard quotient values were 1.24-12.60, so greater than 1 for DON at the average, 90th percentile, 95th percentile, and maximum levels: 44.6% of the HQ values for men and 45.7% for women were greater than 1.
Collapse
Affiliation(s)
- Ping Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Haixia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Xin Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Yongjun Li
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Jianyun Sun
- Gansu Provincial Centre for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Gexiang Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
3
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Lan F, Jiang F, Zang H, Wang Z. Saturated brine dissolution and liquid-liquid extraction combined with UPLC-MS/MS for the detection of typical Alternaria toxins in pear paste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6861-6870. [PMID: 37288717 DOI: 10.1002/jsfa.12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Alternaria can infest pears to produce metabolites, which can contaminate pears and their processed products. Pear paste, one of the most important pear-based products, is popular among Chinese consumers especially for its cough relieving and phlegm removal properties. Although people are concerned about the risk of Alternaria toxins in many agro-foods and their products, little is known about the toxins in pear paste. RESULTS A method was developed for the determination of tenuazonic acid, alternariol, alternariol menomethyl ether, altenuene and tentoxin in pear paste by ultra-performance liquid chromatography tandem mass spectrometry with saturated sodium sulphate dissolution and acidified acetonitrile extraction. The mean recoveries of the five toxins were 75.3-113.8% with relative standard deviations of 2.8-12.2% at spiked levels of 1.0-100 μg kg-1 . Alternaria toxins were detected in 53 out of 76 samples, with a detection rate of 71.4%. Tenuazonic acid (67.1%), alternariol (35.5%), tentoxin (23.7%) and alternariol monomethyl ether (7.9%) were detected in all samples at concentrations of < limit of quantification (LOQ)-105.0 μg kg-1 , < LOQ-32.1 μg kg-1 , < LOQ-74.2 μg kg-1 and < LOQ-15.1 μg kg-1 , respectively. Altenuene was never found in pear paste samples. Tenuazonic acid, alternariol, tentoxin and alternariol menomethyl ether should be focused on due to their toxicity and detection rates. CONCLUSION To the best of our knowledge, this is the first report on the detection method and residue levels of Alternaria toxins in pear paste. The proposed method and research data can provide technical support for the Chinese government to continuously monitor and control Alternaria toxins in pear paste, especially tenuazonic acid. It can also provide a useful reference for related researchers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Lan
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Fudong Jiang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Hongwei Zang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| | - Zhixin Wang
- Yantai Key Laboratory of Quality Safety and Nutrition of Characteristic Fruits, Quality Inspection Center, Yantai Academy of Agricultural Sciences in Shandong Province, Yantai, P. R. China
| |
Collapse
|
5
|
Mihalache OA, De Boevre M, Dellafiora L, De Saeger S, Moretti A, Pinson-Gadais L, Ponts N, Richard-Forget F, Susca A, Dall’Asta C. The Occurrence of Non-Regulated Mycotoxins in Foods: A Systematic Review. Toxins (Basel) 2023; 15:583. [PMID: 37756008 PMCID: PMC10534703 DOI: 10.3390/toxins15090583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this systematic review is to provide an update on the occurrence and co-occurrence of selected non-regulated mycotoxins and provide an overview of current regulations. Fifteen non-regulated mycotoxins were found in 19 food categories worldwide. On top of that, 38 different combinations of non-regulated mycotoxins were found, with mixtures varying from binary combinations up to 12 mycotoxins. Taking into consideration the amount of evidence regarding the prevalence and co-occurrence of non-regulated mycotoxins, future steps should be taken considering continuous monitoring, scientific exchange, and generation of high-quality data. To enhance data quality, guidelines outlining the minimum quality criteria for both occurrence data and metadata are needed. By doing so, we can effectively address concerns related to the toxicity of non-regulated mycotoxins. Furthermore, obtaining more data concerning the co-occurrence of both regulated and non-regulated mycotoxins could aid in supporting multiple chemical risk assessment methodologies. Implementing these steps could bolster food safety measures, promote evidence-based regulations, and ultimately safeguard public health from the potential adverse effects of non-regulated mycotoxins.
Collapse
Affiliation(s)
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.A.M.); (L.D.)
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Antonio Moretti
- ISPA-CNR—Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (A.M.); (A.S.)
| | - Laetitia Pinson-Gadais
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Florence Richard-Forget
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Antonia Susca
- ISPA-CNR—Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (A.M.); (A.S.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.A.M.); (L.D.)
| |
Collapse
|
6
|
Mao X, Chen W, Wu H, Shao Y, Zhu Y, Guo Q, Li Y, Xia L. Alternaria Mycotoxins Analysis and Exposure Investigation in Ruminant Feeds. Toxins (Basel) 2023; 15:495. [PMID: 37624252 PMCID: PMC10467096 DOI: 10.3390/toxins15080495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Alternaria mycotoxins are a class of important, agriculture-related hazardous materials, and their contamination in ruminant feeds and products might bring severe toxic effects to animals and even human beings. To control these hazardous compounds, a reliable and sensitive LC-MS/MS (liquid chromatography-tandem mass spectrometry) method was established for simultaneous determination of six target Alternaria mycotoxins in ruminant feeds, including ALT (Altenuene), AME (Alternariol Monomethyl Ether), AOH (Alternariol), ATX-Ι (Altertoxins I), TeA (Tenuazonic Acid), and TEN (Tentoxin). This developed analytical method was used for the determination of the presence of these substances in cattle and sheep feeds in Xinjiang Province, China. The results revealed that Alternaria mycotoxins are ubiquitously detected in feed samples. Especially, AME, AOH, TeA, and TEN are the most frequently found mycotoxins with a positive rate over 40% and a concentration range of 4~551 µg/kg. The proposed method could be applied for exposure investigation of Alternaria mycotoxins in ruminant feeds and for the reduction in the health risk to animals and even consumers.
Collapse
Affiliation(s)
- Xin Mao
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Wanzhao Chen
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Huimin Wu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Ying Shao
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Ya’ning Zhu
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Lining Xia
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| |
Collapse
|
7
|
Moya-Cavas T, Navarro-Villoslada F, Lucas Urraca J, Antonio Serrano L, Orellana G, Cruz Moreno-Bondi M. Simultaneous determination of zearalenone and alternariol mycotoxins in oil samples using mixed molecularly imprinted polymer beads. Food Chem 2023; 412:135538. [PMID: 36738530 DOI: 10.1016/j.foodchem.2023.135538] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
This work reports the optimization of a method using Molecularly Imprinted Polymers (MIPs) for the simultaneous determination of zearalenone and alternariol mycotoxins. The method was optimized using a chemometric approach where in the optimized conditions, the cartridges with a mixture (50:50, w/w) of both MIPs, were loaded with 30 mL of sample, washed with 2 mL of ACN/water (20/80, v/v) and eluted with 2.5 mL of trifluoroacetic acid/MeOH (3/97, v/v). The extracts were analyzed by HPLC coupled to a fluorescence detector (FLD). The optimized method has been applied and validated to the analysis of the mycotoxins in maize, sunflower and olive oils samples with a limit of detection of 5 and 2 µg kg-1, respectively. Recoveries were in the range of 94 % to 108 % (RSD < 6 %) for zearalenone and 92 % to 113 % (RSD < 5 %) for alternariol. The results were confirmed by HPLC-MS/MS.
Collapse
Affiliation(s)
- Tamara Moya-Cavas
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - Fernando Navarro-Villoslada
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain.
| | - Javier Lucas Urraca
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain.
| | - Luis Antonio Serrano
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| | - María Cruz Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias, 2, 28040 Madrid, Spain
| |
Collapse
|
8
|
Alternaria toxins in tomato products from the Argentinean market. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Evaluation of Alternaria toxins in fruits, vegetables and their derivatives marketed in China using a QuEChERS method coupled with ultra-high performance liquid chromatography-tandem mass spectrometry: Analytical methods and occurrence. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Woo SY, Lee SY, Jeong TK, Park SM, Auh JH, Shin HS, Chun HS. Natural Occurrence of Alternaria Toxins in Agricultural Products and Processed Foods Marketed in South Korea by LC-MS/MS. Toxins (Basel) 2022; 14:toxins14120824. [PMID: 36548721 PMCID: PMC9786207 DOI: 10.3390/toxins14120824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alternaria mycotoxins including alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxin-I (ATX-I), tentoxin (TEN), and tenuazonic acid (TeA), are ubiquitous contaminants in agricultural products. A method for the simultaneous determination of these six toxins by ultrahigh performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) with solid phase extraction (SPE) was validated in rice, sesame, tomato, and apple juice matrices. The performance of the method was evaluated in terms of linearity (R2 > 0.999), the limit of detection (0.04-1.67 μg/kg), the limit of quantification (0.12-5.06 μg/kg), recovery (80.0-114.7%), and precision (<17.7%). The validated method was applied to monitor 152 marketed food samples in South Korea, as well as to investigate the co-occurrence and correlation between Alternaria toxins. The mean occurrence levels were 2.77 μg/kg for AOH, 4.36 μg/kg for AME, 0.14 μg/kg for ALT, 0.11 μg/kg for ATX-I, 0.43 μg/kg for TEN, and 104.56 μg/kg for TeA. Mean and extreme (95th percentile) daily dietary exposures of South Koreans to Alternaria toxins were estimated to be 22.93 ng/kg b.w./day and 86.07 ng/kg b.w./day, respectively.
Collapse
Affiliation(s)
- So Young Woo
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Yoo Lee
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Kyun Jeong
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su Mi Park
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Joong Hyuck Auh
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
- Correspondence:
| |
Collapse
|
11
|
Ji X, Xiao Y, Lyu W, Li M, Wang W, Tang B, Wang X, Yang H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins (Basel) 2022; 14:toxins14080509. [PMID: 35893751 PMCID: PMC9330788 DOI: 10.3390/toxins14080509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Deoxynivalenol (DON) and emerging Alternaria toxins often co-occur in cereal-based products, but the current risk assessment is commonly conducted for only one type of mycotoxin at a time. Compared to adults, infants and young children are more susceptible to mycotoxins through food consumption, especially with cereal-based food products which are the main source of exposure. This study aimed to perform a probabilistic risk assessment of combined exposure to DON and three major Alternaria toxins, namely including alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) through consumption of cereal-based foods for Chinese infants and young children. A total of 872 cereal-based food products were randomly collected and tested for the occurrence of DON and three major Alternaria toxins. The results on mycotoxin occurrence showed the DON, TeA, AOH, and AME was detected in 56.4%, 47.5%, 7.5%, and 5.7% of the samples, respectively. Co-contamination of various mycotoxins was observed in 39.9% of the analyzed samples. A preliminary cumulative risk assessment using the models of hazard index (HI) and combined margin of exposure (MoET) was performed on DON and Alternaria toxins that were present in cereal-based food products for infants and young children in China for the first time. The results showed that only 0.2% and 1.5%, respectively, of individuals exceeded the corresponding reference value for DON and TeA, indicating a low health risk. However, in the case of AME and AOH, the proportion of individuals exceeding the reference value was 24.1% and 33.5%, respectively, indicating the potential health risks. In the cumulative risk assessment of AME and AOH, both HI and MoET values indicated a more serious risk than that related to individual exposure. Further research is necessary to reduce the uncertainties that are associated with the toxicities of the Alternaria toxins and cumulative risk assessment methods.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Minglu Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
- Correspondence: (X.W.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
- Correspondence: (X.W.); (H.Y.)
| |
Collapse
|
12
|
Alternaria mycotoxins in food commodities marketed through e-commerce stores in China: Occurrence and risk assessment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|