1
|
Rathore K, Upadhyay D, Verma N, Gupta AK, Matheshwaran S, Sharma S, Verma V. Asymmetric Janus Nanofibrous Agar-Based Wound Dressing Infused with Enhanced Antioxidant and Antibacterial Properties. ACS APPLIED BIO MATERIALS 2024; 7:7608-7623. [PMID: 39482271 DOI: 10.1021/acsabm.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In the present study, we have developed an agar-based asymmetric Janus nanofibrous wound dressing comprising a support and an electrospun layer with antibacterial and antioxidant properties, respectively, to facilitate healing effectively. The support layer containing agar and silver nitrate was fabricated by using solvent casting for sustained release, combating the dose-dependent cytotoxicity of silver nanoparticles, where nanoparticles were synthesized using a one-pot reduction method. The electrospun layer, fabricated with a mixture of agar and polycaprolactone infused with gallic acid, was electrospun over the support layer to impart antioxidant properties. Characterizations using UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy validated the synthesis of nanoparticles in 10-20 nm diameter and the asymmetric Janus dressing. The developed Janus nanofibrous structure exhibited 98% porosity, excellent fluid-handling properties, a moisture permeability of 1200 g/m2/day, and a water absorption of ∼250%. Moreover, the time-kill assay confirmed potent bacteriostatic effect against Gram-positive and Gram-negative bacteria, and sustained release of silver nanoparticles followed the Korsmeyer-Peppas model. With over 90% free radical scavenging efficacy, 37% degradation in 7 days, and less than 2% hemolysis, the dressings demonstrated exceptional antioxidant, biodegradable, and hemocompatible properties. The biocompatibility assessment further confirmed its cytocompatible efficacy, with more than 79% wound closure in the wound scratch assay. Most importantly, in vivo studies demonstrated the efficacy of the developed Janus dressing, promoting over 97% healing within 12 days of injury with higher epithelial formation. Overall, the in vitro and in vivo assessment of the developed Janus dressing confirmed its potential to function as a versatile and effective material for wound care applications.
Collapse
Affiliation(s)
- Kalpana Rathore
- Department of Materials Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144401 Punjab, India
| | - Dheeraj Upadhyay
- School of Pharmaceutical Sciences (Formerly University of Pharmacy), Chhatrapati Shahu Ji Maharaj University, Kanpur 208024 Uttar Pradesh, India
| | - Noopur Verma
- School of Pharmaceutical Sciences (Formerly University of Pharmacy), Chhatrapati Shahu Ji Maharaj University, Kanpur 208024 Uttar Pradesh, India
| | - Ajay Kumar Gupta
- School of Pharmaceutical Sciences (Formerly University of Pharmacy), Chhatrapati Shahu Ji Maharaj University, Kanpur 208024 Uttar Pradesh, India
| | - Saravanan Matheshwaran
- Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144401 Punjab, India
| | - Vivek Verma
- Department of Materials Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- Centre for Environmental Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208018 Uttar Pradesh, India
| |
Collapse
|
2
|
Alaghawani NA, Alkhatib H, Elmancy L, Daou A. Harmonizing Innovations: An In-Depth Comparative Review on the Formulation, Applications, and Future Perspectives of Aerogels and Hydrogels in Pharmaceutical Sciences. Gels 2024; 10:663. [PMID: 39451316 PMCID: PMC11507152 DOI: 10.3390/gels10100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Gels, specifically hydrogels and aerogels, have emerged as versatile materials with profound implications in pharmaceutical sciences. This comprehensive review looks into detail at hydrogels and aerogels, providing a general introduction to gels as a foundation. The paper is then divided into distinct sections for hydrogels and aerogels, each delving into their unique formulations, advantages, disadvantages, and applications. In the realm of hydrogels, we scrutinize the intricacies of formulation, highlighting the versatile advantages they offer. Conversely, potential limitations are explored, paving the way for a detailed discussion on their applications, with a specific focus on their role in antimicrobial applications. Shifting focus to aerogels, a thorough overview is presented, followed by a detailed explanation of the complex formulation process involving sol-gel chemistry; aging; solvent exchange; and drying techniques, including freeze drying, supercritical drying, and ambient-pressure drying (APD). The intricacies of drug loading and release from aerogels are addressed, providing insights into their pharmaceutical potential. The advantages and disadvantages of aerogels are examined, accompanied by an exploration of their applications, with a specific emphasis on antimicrobial uses. The review culminates in a comparative analysis, juxtaposing the advantages and disadvantages of hydrogels and aerogels. Furthermore, the current research and development trends in the applications of these gels in pharmaceutical sciences are discussed, providing a holistic view of their potential and impact. This review serves as a comprehensive guide for researchers, practitioners, and enthusiasts, seeking a deeper understanding of the distinctive attributes and applications of hydrogels and aerogels in the ever-evolving research concerning pharmaceutical sciences.
Collapse
Affiliation(s)
| | | | | | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.A.); (H.A.); (L.E.)
| |
Collapse
|
3
|
Bashiri Z, Hosseini SJ, Salem M, Koruji M. In vivo and in vitro sperm production: an overview of the challenges and advances in male fertility restoration. Clin Exp Reprod Med 2024; 51:171-180. [PMID: 38525520 PMCID: PMC11372308 DOI: 10.5653/cerm.2023.06569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 03/26/2024] Open
Abstract
Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Seyed Jamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu S, Wu J, Zhao X, Yu M, Taniguchi M, Bao H, Kang K. Recent Progress of Induced Spermatogenesis In Vitro. Int J Mol Sci 2024; 25:8524. [PMID: 39126092 PMCID: PMC11313507 DOI: 10.3390/ijms25158524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Sperm, a crucial gamete for reproduction in sexual reproduction, is generated through the proliferation, differentiation, and morphological transformations of spermatogonial stem cells within the specialized microenvironment of the testes. Replicating this environment artificially presents challenges. However, interdisciplinary advancements in physics, materials science, and cell engineering have facilitated the utilization of innovative materials, technologies, and structures for inducing in vitro sperm production. This article offers a comprehensive overview of research progress on inducing in vitro sperm production by categorizing techniques into two major systems based on matrix-based and non-matrix-based approaches, respectively. Detailed discussions are provided for both types of technology systems through comparisons of their similarities and differences, as well as research advancements. The aim is to provide researchers in this field with a comprehensive panoramic view while presenting our own perspectives and prospects.
Collapse
Affiliation(s)
- Siqi Liu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Jiang Wu
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masayasu Taniguchi
- Department of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Huimingda Bao
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| | - Kai Kang
- College of Coastal Agriculture Science, Guangdong Ocean University, Zhanjiang 524088, China; (S.L.); (J.W.)
| |
Collapse
|
5
|
Rahbar M, Asadpour R, Mazaheri Z. The effect of epididymosomes on the development of frozen-thawed mouse spermatogonial stem cells after culture in a decellularized testicular scaffold and transplantation into azoospermic mice. J Assist Reprod Genet 2024; 41:2079-2098. [PMID: 38839698 PMCID: PMC11339233 DOI: 10.1007/s10815-024-03157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study examined SSC proliferation on an epididymosome-enriched decellularized testicular matrix (DTM) hydrogel and spermatogenesis induction in azoospermic mice. METHODS Epididymosomes were extracted and characterized using SEM and western blotting. After cryopreservation, thawed SSCs were cultured in a hydrogel-based three-dimensional (3D) culture containing 10 ng/mL GDNF or 20 µg/mL epididymosomes. SSCs were assessed using the MTT assay, flow cytometry, and qRT-PCR after two weeks of culture. The isolated SSCs were microinjected into the efferent ducts of busulfan-treated mice. DiI-labeled SSCs were followed, and cell homing was assessed after two weeks. After 8 weeks, the testes were evaluated using morphometric studies and immunohistochemistry. RESULTS The expression of PLZF, TGF-β, and miR-10b did not increase statistically significantly in the 3D + GDNF and 3D + epididymosome groups compared to the 3D group. Among the groups, the GDNF-treated group exhibited the highest expression of miR-21 (*P < 0.05). Caspase-3 expression was lower in the epididymosome-treated group than in the other groups (***P < 0.001). Compared to the 3D and negative control groups, the 3D + epididymosomes and 3D + GDNF groups showed an increase in spermatogenic cells. Immunohistochemical results confirmed the growth and differentiation of spermatogonial cells into spermatids in the treatment groups. CONCLUSION The DTM hydrogel containing 20 µg/mL epididymosomes or 10 ng/mL GDNF is a novel and safe culture system that can support SSC proliferation in vitro to obtain adequate SSCs for transplantation success. It could be a novel therapeutic agent that could recover deregulated SSCs in azoospermic patients.
Collapse
Affiliation(s)
- Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
6
|
Mecca R, Tang S, Jones C, Coward K. The limitations of testicular organoids: are they truly as promising as we believe? Reprod Fertil Dev 2024; 36:RD23216. [PMID: 38935835 DOI: 10.1071/rd23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Organoid systems have revolutionised various facets of biological research by offering a three-dimensional (3D), physiologically relevant in vitro model to study complex organ systems. Over recent years, testicular organoids have been publicised as promising platforms for reproductive studies, disease modelling, drug screening, and fertility preservation. However, the full potential of these systems has yet to be realised due to inherent limitations. This paper offers a comprehensive analysis of the current challenges associated with testicular organoid models. Firstly, we address the inability of current organoid systems to fully replicate the intricate spatial organisation and cellular diversity of the in vivo testis. Secondly, we scrutinise the fidelity of germ cell maturation within the organoids, highlighting incomplete spermatogenesis and epigenetic inconsistencies. Thirdly, we consider the technical challenges faced during organoid culture, including nutrient diffusion limits, lack of vasculature, and the need for specialised growth factors. Finally, we discuss the ethical considerations surrounding the use of organoids for human reproduction research. Addressing these limitations in combination with integrating complementary approaches, will be essential if we are to advance our understanding of testicular biology and develop novel strategies for addressing reproductive health issues in males.
Collapse
Affiliation(s)
- R Mecca
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - S Tang
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - C Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Asgari F, Asgari H, Najafi M, Hajiaghalou S, Pirhajati-Mahabadi V, Mohammadi A, Gholipourmalekabadi M, Koruji M. In vitro proliferation and differentiation of mouse spermatogonial stem cells in decellularized human placenta matrix. J Biomed Mater Res B Appl Biomater 2024; 112:e35414. [PMID: 38733611 DOI: 10.1002/jbm.b.35414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 05/13/2024]
Abstract
Utilizing natural scaffold production derived from extracellular matrix components presents a promising strategy for advancing in vitro spermatogenesis. In this study, we employed decellularized human placental tissue as a scaffold, upon which neonatal mouse spermatogonial cells (SCs) were cultured three-dimensional (3D) configuration. To assess cellular proliferation, we examined the expression of key markers (Id4 and Gfrα1) at both 1 and 14 days into the culture. Our quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed a notable increase in Gfrα1 gene expression, with the 3D culture group exhibiting the highest levels. Furthermore, the relative frequency of Gfrα1-positive cells significantly rose from 38.1% in isolated SCs to 46.13% and 76.93% in the two-dimensional (2D) and 3D culture systems, respectively. Moving forward to days 14 and 35 of the culture period, we evaluated the expression of differentiating markers (Sycp3, acrosin, and Protamine 1). Sycp3 and Prm1 gene expression levels were upregulated in both 2D and 3D cultures, with the 3D group displaying the highest expression. Additionally, acrosin gene expression increased notably within the 3D culture. Notably, at the 35-day mark, the percentage of Prm1-positive cells in the 3D group (36.4%) significantly surpassed that in the 2D group (10.96%). This study suggests that the utilization of placental scaffolds holds significant promise as a bio-scaffold for enhancing mouse in vitro spermatogenesis.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Avicenna Infertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Amirhossein Mohammadi
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Bashiri Z, Gholipourmalekabadi M, Khadivi F, Salem M, Afzali A, Cham TC, Koruji M. In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell Tissue Res 2023; 394:393-421. [PMID: 37721632 DOI: 10.1007/s00441-023-03824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Afzali
- Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| |
Collapse
|
9
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
10
|
Moeinzadeh A, Ashtari B, Garcia H, Koruji M, Velazquez CA, Bagher Z, Barati M, Shabani R, Davachi SM. The Effect of Chitosan/Alginate/Graphene Oxide Nanocomposites on Proliferation of Mouse Spermatogonial Stem Cells. J Funct Biomater 2023; 14:556. [PMID: 38132810 PMCID: PMC10744091 DOI: 10.3390/jfb14120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.
Collapse
Affiliation(s)
- Alaa Moeinzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|
11
|
Wu J, Kang K, Liu S, Ma Y, Yu M, Zhao X. Recent Progress of In Vitro 3D Culture of Male Germ Stem Cells. J Funct Biomater 2023; 14:543. [PMID: 37998112 PMCID: PMC10672244 DOI: 10.3390/jfb14110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro. This paper provides a review on recent progress in 3D culture techniques for SSCs in vitro; we summarize the microenvironment of SSCs and spermatocyte development, with a focus on scaffold-based culture methods and 3D printing cell culture techniques for SSCs. Additionally, decellularized testicular matrix (DTM) and other biological substrates are utilized through various combinations and approaches to construct an in vitro culture microenvironment suitable for SSC growth. Finally, we present some perspectives on current research trends and potential opportunities within three areas: the 3D printing niche environment, alternative options to DTM utilization, and advancement of the in vitro SSC culture technology system.
Collapse
Affiliation(s)
- Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Siqi Liu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Yaodan Ma
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
12
|
Salem M, Khadivi F, Javanbakht P, Mojaverrostami S, Abbasi M, Feizollahi N, Abbasi Y, Heidarian E, Rezaei Yazdi F. Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Res Ther 2023; 14:262. [PMID: 37735437 PMCID: PMC10512562 DOI: 10.1186/s13287-023-03466-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
The loss of germ cells and spermatogenic failure in non-obstructive azoospermia are believed to be the main causes of male infertility. Laboratory studies have used in vitro testicular models and different 3-dimensional (3D) culture systems for preservation, proliferation and differentiation of spermatogonial stem cells (SSCs) in recent decades. The establishment of testis-like structures would facilitate the study of drug and toxicity screening, pathological mechanisms and in vitro differentiation of SSCs which resulted in possible treatment of male infertility. The different culture systems using cellular aggregation with self-assembling capability, the use of different natural and synthetic biomaterials and various methods for scaffold fabrication provided a suitable 3D niche for testicular cells development. Recently, 3D culture models have noticeably used in research for their architectural and functional similarities to native microenvironment. In this review article, we briefly investigated the recent 3D culture systems that provided a suitable platform for male fertility preservation through organ culture of testis fragments, proliferation and differentiation of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farnaz Khadivi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Yasaman Abbasi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Heidarian
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
13
|
Kaliaraj GS, Shanmugam DK, Dasan A, Mosas KKA. Hydrogels-A Promising Materials for 3D Printing Technology. Gels 2023; 9:gels9030260. [PMID: 36975708 PMCID: PMC10048566 DOI: 10.3390/gels9030260] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels are a promising material for a variety of applications after appropriate functional and structural design, which alters the physicochemical properties and cell signaling pathways of the hydrogels. Over the past few decades, considerable scientific research has made breakthroughs in a variety of applications such as pharmaceuticals, biotechnology, agriculture, biosensors, bioseparation, defense, and cosmetics. In the present review, different classifications of hydrogels and their limitations have been discussed. In addition, techniques involved in improving the physical, mechanical, and biological properties of hydrogels by admixing various organic and inorganic materials are explored. Future 3D printing technology will substantially advance the ability to pattern molecules, cells, and organs. With significant potential for producing living tissue structures or organs, hydrogels can successfully print mammalian cells and retain their functionalities. Furthermore, recent advances in functional hydrogels such as photo- and pH-responsive hydrogels and drug-delivery hydrogels are discussed in detail for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Dilip Kumar Shanmugam
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600 119, India
| | - Arish Dasan
- FunGlass-Centre for Functional and Surface Functionalised Glass, Alexander Dubcek University of Trencin, 91150 Trencin, Slovakia
| | | |
Collapse
|
14
|
Ma C, Duan X, Lei X. 3D cell culture model: From ground experiment to microgravity study. Front Bioeng Biotechnol 2023; 11:1136583. [PMID: 37034251 PMCID: PMC10080128 DOI: 10.3389/fbioe.2023.1136583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Microgravity has been shown to induce many changes in cell growth and differentiation due to offloading the gravitational strain normally exerted on cells. Although many studies have used two-dimensional (2D) cell culture systems to investigate the effects of microgravity on cell growth, three-dimensional (3D) culture scaffolds can offer more direct indications of the modified cell response to microgravity-related dysregulations compared to 2D culture methods. Thus, knowledge of 3D cell culture is essential for better understanding the in vivo tissue function and physiological response under microgravity conditions. This review discusses the advances in 2D and 3D cell culture studies, particularly emphasizing the role of hydrogels, which can provide cells with a mimic in vivo environment to collect a more natural response. We also summarized recent studies about cell growth and differentiation under real microgravity or simulated microgravity conditions using ground-based equipment. Finally, we anticipate that hydrogel-based 3D culture models will play an essential role in constructing organoids, discovering the causes of microgravity-dependent molecular and cellular changes, improving space tissue regeneration, and developing innovative therapeutic strategies. Future research into the 3D culture in microgravity conditions could lead to valuable therapeutic applications in health and pharmaceuticals.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xianglong Duan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Xianglong Duan, ; Xiaohua Lei,
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Xianglong Duan, ; Xiaohua Lei,
| |
Collapse
|
15
|
Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH, Tyan YC. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022; 27:2902. [PMID: 35566251 PMCID: PMC9104731 DOI: 10.3390/molecules27092902] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Hung-Pin Chan
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Wen Shu
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Noghani AE, Asadpour R, Saberivand A, Mazaheri Z, Hamidian G. Effect of NMDA receptor agonist and antagonist on spermatogonial stem cells proliferation in 2- and 3- dimensional culture systems. Mol Biol Rep 2022; 49:2197-2207. [PMID: 35000063 DOI: 10.1007/s11033-021-07041-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The main purpose of this study was to investigate the effect of D-serine (DS) and Dizocilpine (MK-801) on the proliferation of spermatogonial stem cells (SSCs) in two-dimensional (2D) and three-dimensional (3D) culture systems. METHODS AND RESULTS The SSCs of male NMRI mice were isolated by enzymatic digestion and cultured for two weeks. Then, the identity of SSCs was validated by anti-Plzf and anti-GFR-α1 antibodies via immunocytochemistry (ICC). The proliferation capacity of SSCs was evaluated by their culture on a layer of the decellularized testicular matrix (DTM) prepared from mouse testis, as well as two-dimensional (2D) with different mediums. After two weeks of the initiation of proliferation culture on 3D and 2D medium, the pre-meiotic at the mRNA and protein levels were evaluated via qRT-PCR and flow cytometry methods, respectively. The results showed that the proliferation rate of SSCs in 3D culture with 50 mM glutamic acid and 20 mM D-serine was significantly different from other groups after 14 days treatment. mRNA expression levels of promyelocytic leukemia zinc finger (Plzf) in 3D cultures supplemented by 20 mM D-serine and 50 mM glutamic acid were considerably higher than the 3D control group (p < 0.001). The flow cytometry analysis revealed that the amount of Plzf in the 2D-culture groups of SSCs with 20 mM MK-801 was considerably lower compared to the 2D-culture control group (p < 0.001). CONCLUSIONS This study indicated that decellularized testicular matrix supplemented with D-serine and glutamic acid could be considered a promising vehicle to support cells and provide an appropriate niche for the proliferation of SSCs.
Collapse
Affiliation(s)
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/Gelatin nanofibrous scaffolds. Andrologia 2022; 54:e14380. [PMID: 35083770 DOI: 10.1111/and.14380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM. After performing swelling, biodegradability and cell adhesion tests, human spermatogonia stem cells were cultured on scaffolds. In addition, both cell viability and proliferation were assessed using immunocytochemistry, flow cytometry and real-time PCR techniques in culturing during a 3-week period. SEM images indicated the presence of fibres with suitable diameters and arrangement as well as a sufficient porosity in nanocomposite scaffolds, showing good biocompatibility and biodegradability. The results show a significant increase in the number of spermatogonia stem cells in the cultured group on scaffold compared with the control group (p ≤ 0.05). As well, the results show that the expressions of integrin ɑ6 and β1 and Plzf genes estimated using real-time PCR in nanofiber scaffolds were significantly higher than those of the control group (p ≤ 0.05). However, the expression of c-Kit gene in the 3D group showed a significant decrease compared with the 2D group. Flow cytometry analysis also showed that the number of Plzf-positive cells was significantly higher in nanofiber porous scaffolds compared with the control group (p ≤ 0.05). Additionally, immunocytochemistry findings confirmed the presence of human spermatogonia stem cell colonies. In general, it seems that the designed nanocomposite scaffold could provide a suitable capacity for self-renewal of human spermatogonia stem cells, which can have a good application potential in research and reconstructive medicine related to the field of male infertility.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Allahyari
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Banafshe Esmaeilzade
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
18
|
Use of alginate hydrogel to improve long-term 3D culture of spermatogonial stem cells: stemness gene expression and structural features. ZYGOTE 2021; 30:312-318. [PMID: 34641993 DOI: 10.1017/s0967199421000551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The quality and quantity of a spermatogonial stem-cell (SSC) culture can be measured in less time using a 3D culture in a scaffold. The present study investigated stemness gene expression and the morphological and structural characterization of SSCs encapsulated in alginate. SSCs were harvested from BALB/c neonatal mice testes through two-step mechanical and enzymatic digestion. The spermatogonial populations were separated using magnetic-activated cell sorting (MACS) using an anti-Thy1 antibody and c-Kit. The SSCs then were encapsulated in alginate hydrogel. After 2 months of SSC culturing, the alginate microbeads were extracted and stained to evaluate their histological properties. Real-time polymerase chain reaction (PCR) was performed to determine the stemness gene expression. Scanning electron microscopy (SEM) was performed to evaluate the SSC morphology, density and scaffold structure. The results showed that encapsulated SSCs had decreased expression of Oct4, Sox2 and Nanos2 genes, but the expression of Nanog, Bcl6b and Plzf genes was not significantly altered. Histological examination showed that SSCs with pale nuclei and numerous nucleolus formed colonies. SEM evaluation revealed that the alginate scaffold structure preserved the SSC morphology and density for more than 60 days. Cultivation of SSCs on alginate hydrogel can affect Oct4, Sox2 and Nanos2 expression.
Collapse
|
19
|
Saremi J, Khanmohammadi M, Azami M, Ai J, Yousefi-Ahmadipour A, Ebrahimi-Barough S. Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles. J Biomed Mater Res A 2021; 109:1588-1599. [PMID: 33634587 DOI: 10.1002/jbm.a.37153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022]
Abstract
The main aim of this study was to evaluate the efficacy of cerium oxide nanoparticles (CNPs) encapsulated in fabricated hybrid silk-fibroin (SF)/polycaprolactone (PCL) nanofibers as an artificial neural guidance conduit (NGC) applicable for peripheral nerve regeneration. The NGC was prepared by PCL and SF filled with CNPs. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of CNPs inside SF and SF/PCL wall of conduits was 1% (wt/wt). The SEM image analysis showed the nanoscale texture of the scaffold in different topologies depend on composition with fiber diameters at about 351 ± 54 nm and 420 ± 73 nm respectively for CNPs + SF and CNPs + SF/PCL fibrous mats. Furthermore, contact angle measurement confirmed the hydrophilic behavior of the membranes, ascribable to the SF content and surface modification through modified methanol treatment. The balance of morphological and biochemical properties of hybrid CNPs 1% (wt/wt) + SF/PCL construct improves cell adhesion and proliferation in comparison with lower concentrations of CNPs in nanofibrous scaffolds. The release of CNPs 1% (wt/wt) from both CNPs + SF and CNPs+ SF/PCL fibrous mats was highly controlled and very slow during the extended time of incubation until 60 days. Fabricated double-layered NGC using CNPs + SF and CNPs + SF/PCL fibers was consistent for application in nervous tissue engineering and regenerative medicine from a structural and biocompatible perspective.
Collapse
Affiliation(s)
- Jamileh Saremi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Rodríguez-Casuriaga R, Geisinger A. Contributions of Flow Cytometry to the Molecular Study of Spermatogenesis in Mammals. Int J Mol Sci 2021; 22:1151. [PMID: 33503798 PMCID: PMC7865295 DOI: 10.3390/ijms22031151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mammalian testes are very heterogeneous organs, with a high number of different cell types. Testicular heterogeneity, together with the lack of reliable in vitro culture systems of spermatogenic cells, have been an obstacle for the characterization of the molecular bases of the unique events that take place along the different spermatogenic stages. In this context, flow cytometry has become an invaluable tool for the analysis of testicular heterogeneity, and for the purification of stage-specific spermatogenic cell populations, both for basic research and for clinical applications. In this review, we highlight the importance of flow cytometry for the advances on the knowledge of the molecular groundwork of spermatogenesis in mammals. Moreover, we provide examples of different approaches to the study of spermatogenesis that have benefited from flow cytometry, including the characterization of mutant phenotypes, transcriptomics, epigenetic and genome-wide chromatin studies, and the attempts to establish cell culture systems for research and/or clinical aims such as infertility treatment.
Collapse
Affiliation(s)
- Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| |
Collapse
|
21
|
Eyni H, Ghorbani S, Nazari H, Hajialyani M, Razavi Bazaz S, Mohaqiq M, Ebrahimi Warkiani M, Sutherland DS. Advanced bioengineering of male germ stem cells to preserve fertility. J Tissue Eng 2021; 12:20417314211060590. [PMID: 34868541 PMCID: PMC8638075 DOI: 10.1177/20417314211060590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
In modern life, several factors such as genetics, exposure to toxins, and aging have resulted in significant levels of male infertility, estimated to be approximately 18% worldwide. In response, substantial progress has been made to improve in vitro fertilization treatments (e.g. microsurgical testicular sperm extraction (m-TESE), intra-cytoplasmic sperm injection (ICSI), and round spermatid injection (ROSI)). Mimicking the structure of testicular natural extracellular matrices (ECM) outside of the body is one clear route toward complete in vitro spermatogenesis and male fertility preservation. Here, a new wave of technological innovations is underway applying regenerative medicine strategies to cell-tissue culture on natural or synthetic scaffolds supplemented with bioactive factors. The emergence of advanced bioengineered systems suggests new hope for male fertility preservation through development of functional male germ cells. To date, few studies aimed at in vitro spermatogenesis have resulted in relevant numbers of mature gametes. However, a substantial body of knowledge on conditions that are required to maintain and mature male germ cells in vitro is now in place. This review focuses on advanced bioengineering methods such as microfluidic systems, bio-fabricated scaffolds, and 3D organ culture applied to the germline for fertility preservation through in vitro spermatogenesis.
Collapse
Affiliation(s)
- Hossein Eyni
- Department of Anatomical Sciences,
School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Ghorbani
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| | - Hojjatollah Nazari
- Research Center for Advanced
Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of
Medical Sciences, Tehran, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research
Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah,
Iran
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering,
University of Technology Sydney, Sydney, NSW, Australia
| | - Mahdi Mohaqiq
- Institute of Regenerative Medicine,
School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | | | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center
(iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|