1
|
Schlossbauer P, Klingler F, Burkhart M, Leroux AC, Hesse F, Otte K. MiRNA Chaining for Efficient Stable Overexpression to Improve Protein Quantity and Quality in CHO Cells. Methods Mol Biol 2025; 2853:85-101. [PMID: 39460916 DOI: 10.1007/978-1-0716-4104-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
MicroRNAs (miRNAs), small noncoding RNAs with a length of about 22 nucleotides, harbor the potential to be powerful tools for the genetic engineering of production cell lines like Chinese hamster ovary (CHO) cells. Their ability to regulate multiple targets at once and their potential to fine-tune effect strengths contrast with classical engineering approaches. However, most studies of miRNAs rely on transiently flooding the cells with miRNA mimics. Since this approach is not suitable for long-term cultivation in a bioprocess, stable overexpression of miRNAs becomes more and more important for the biotech industry. Here, the user might be confronted with insufficient overexpression of the miRNA of interest. In this chapter, we present a method for the generation of stable CHO cell lines expressing a miRNA from a plasmid-based system containing multiple copies of the miRNA, allowing tuning of overexpression and regulation.
Collapse
Affiliation(s)
- Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Florian Klingler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Madina Burkhart
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | | | - Friedemann Hesse
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany.
| |
Collapse
|
2
|
Martina M, Banderali U, Yogi A, Arbabi Ghahroudi M, Liu H, Sulea T, Durocher Y, Hussack G, van Faassen H, Chakravarty B, Liu QY, Iqbal U, Ling B, Lessard E, Sheff J, Robotham A, Callaghan D, Moreno M, Comas T, Ly D, Stanimirovic D. A Novel Antigen Design Strategy to Isolate Single-Domain Antibodies that Target Human Nav1.7 and Reduce Pain in Animal Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405432. [PMID: 39206821 PMCID: PMC11516162 DOI: 10.1002/advs.202405432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Genetic studies have identified the voltage-gated sodium channel 1.7 (Nav1.7) as pain target. Due to the ineffectiveness of small molecules and monoclonal antibodies as therapeutics for pain, single-domain antibodies (VHHs) are developed against the human Nav1.7 (hNav1.7) using a novel antigen presentation strategy. A 70 amino-acid peptide from the hNav1.7 protein is identified as a target antigen. A recombinant version of this peptide is grafted into the complementarity determining region 3 (CDR3) loop of an inert VHH in order to maintain the native 3D conformation of the peptide. This antigen is used to isolate one VHH able to i) bind hNav1.7, ii) slow the deactivation of hNav1.7, iii) reduce the ability of eliciting action potentials in nociceptors, and iv) reverse hyperalgesia in in vivo rat and mouse models. This VHH exhibits the potential to be developed as a therapeutic capable of suppressing pain. This novel antigen presentation strategy can be applied to develop biologics against other difficult targets such as ion channels, transporters and GPCRs.
Collapse
Affiliation(s)
- Marzia Martina
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Umberto Banderali
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Alvaro Yogi
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Mehdi Arbabi Ghahroudi
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Hong Liu
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Traian Sulea
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Yves Durocher
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Greg Hussack
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Henk van Faassen
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Balu Chakravarty
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Qing Yan Liu
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Umar Iqbal
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Binbing Ling
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Etienne Lessard
- Human Health Therapeutics Research CentreNational Research Council Canada6100 Royalmount Avenue MontréalQuebecH4P 2R2Canada
| | - Joey Sheff
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Anna Robotham
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Debbie Callaghan
- Human Health Therapeutics Research CentreNational Research Council Canada100 Sussex DriveOttawaONK1N 5A2Canada
| | - Maria Moreno
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Tanya Comas
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Dao Ly
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research CenterNational Research Council Canada1200 Montreal Road, Building M54OttawaONK1A 0R6Canada
| |
Collapse
|
3
|
Schlossbauer P, Naumann L, Klingler F, Burkhart M, Handrick R, Korff K, Neusüß C, Otte K, Hesse F. Stable overexpression of native and artificial miRNAs for the production of differentially fucosylated antibodies in CHO cells. Eng Life Sci 2024; 24:2300234. [PMID: 38845814 PMCID: PMC11151017 DOI: 10.1002/elsc.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 06/09/2024] Open
Abstract
Cell engineering strategies typically rely on energy-consuming overexpression of genes or radical gene-knock out. Both strategies are not particularly convenient for the generation of slightly modulated phenotypes, as needed in biosimilar development of for example differentially fucosylated monoclonal antibodies (mAbs). Recently, transiently transfected small noncoding microRNAs (miRNAs), known to be regulators of entire gene networks, have emerged as potent fucosylation modulators in Chinese hamster ovary (CHO) production cells. Here, we demonstrate the applicability of stable miRNA overexpression in CHO production cells to adjust the fucosylation pattern of mAbs as a model phenotype. For this purpose, we applied a miRNA chaining strategy to achieve adjustability of fucosylation in stable cell pools. In addition, we were able to implement recently developed artificial miRNAs (amiRNAs) based on native miRNA sequences into a stable CHO expression system to even further fine-tune fucosylation regulation. Our results demonstrate the potential of miRNAs as a versatile tool to control mAb fucosylation in CHO production cells without adverse side effects on important process parameters.
Collapse
Affiliation(s)
- Patrick Schlossbauer
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | | | - Florian Klingler
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - Madina Burkhart
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - René Handrick
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | | | | | - Kerstin Otte
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| | - Friedemann Hesse
- Institute for Applied BiotechnologyUniversity of Applied Sciences BiberachBiberachGermany
| |
Collapse
|
4
|
Sneed SL, Reese BB, Laureano AF, Ratnapriya S, Fraschilla I, Jeffrey KL, Coffey GP, Conley PB, Anthony RM. An engineered immunomodulatory IgG1 Fc suppresses autoimmune inflammation through pathways shared with i.v. immunoglobulin. J Clin Invest 2024; 134:e172980. [PMID: 38357917 PMCID: PMC10866649 DOI: 10.1172/jci172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies in the form of high-dose intravenous immunoglobulin (IVIG) exert immunomodulatory activity and are used in this capacity to treat inflammatory and autoimmune diseases. Reductionist approaches have revealed that terminal sialylation of the single asparagine-linked (N-linked) glycan at position 297 of the IgG1 Fc bestows antiinflammatory activity, which can be recapitulated by introduction of an F241A point mutation in the IgG1 Fc (FcF241A). Here, we examined the antiinflammatory activity of CHO-K1 cell-produced FcF241A in vivo in models of autoimmune inflammation and found it to be independent of sialylation. Intriguingly, sialylation markedly improved the half-life and bioavailability of FcF241A via impaired interaction with the asialoglycoprotein receptor ASGPR. Further, FcF241A suppressed inflammation through the same molecular pathways as IVIG and sialylated IgG1 Fc and required the C-type lectin SIGN-R1 in vivo. This contrasted with FcAbdeg (efgartigimod), an engineered IgG1 Fc with enhanced neonatal Fc receptor (FcRn) binding, which reduced total serum IgG concentrations, independent of SIGN-R1. When coadministered, FcF241A and FcAbdeg exhibited combinatorial antiinflammatory activity. Together, these results demonstrated that the antiinflammatory activity of FcF241A requires SIGN-R1, similarly to that of high-dose IVIG and sialylated IgG1, and can be used in combination with other antiinflammatory therapeutics that rely on divergent pathways, including FcAbdeg.
Collapse
Affiliation(s)
- Sunny L. Sneed
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Brian B. Reese
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Ana F.S. Laureano
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Sneha Ratnapriya
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| | - Isabella Fraschilla
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kate L. Jeffrey
- Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Robert M. Anthony
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, and
| |
Collapse
|
5
|
Kang M, Wang Z, Ge X. One-step production of fully biotinylated and glycosylated human Fc gamma receptors. Biotechnol Prog 2024; 40:e3392. [PMID: 37734055 PMCID: PMC10922510 DOI: 10.1002/btpr.3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Initiating and regulating humoral immunity, Fc gamma receptors (FcγRs) have been identified both as therapeutics and as drug targets, and thus production of biologically active FcγRs is highly demanded for biopharmaceutical development. Focusing on low-affinity FcγRs IIA (131H/R allotypes), IIB, and IIIA (176F/V), this study used human 293-F cells to achieve correct post-translational modifications (PTMs) including biotinylation, N-glycosylation, and disulfides. Approaches involving co-expression of FcγR-AviTag and Escherichia coli biotin ligase BirA, endoplasmic reticulum retention, stable and transient transfections, and optimization of transgene ratio were investigated. Protein electrophoresis under reducing and non-reducing conditions, enzymatic deglycosylation, streptavidin pull-down assays, and binding kinetic analysis collectively indicated that the produced FcγR ectodomains were fully biotinylated, N-glycosylated, had formed disulfide bond, and exhibited expected binding affinities toward IgG1 trastuzumab and its Fc mutants. A clear trade-off between production yield and PTM quality was also observed. Achieving multiple types of PTMs completely by one-step cell culture should have applications for the production of a variety of complex proteins of biomedical importance.
Collapse
Affiliation(s)
- Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, CA, USA
- Present address: Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, CA, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, CA, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
6
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
7
|
Nguyen NTB, Leung HW, Pang KT, Tay SJ, Walsh I, Choo ABH, Yang Y. Optimizing effector functions of monoclonal antibodies via tailored N-glycan engineering using a dual landing pad CHO targeted integration platform. Sci Rep 2023; 13:15620. [PMID: 37731040 PMCID: PMC10511539 DOI: 10.1038/s41598-023-42925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) eliminate cancer cells via various effector mechanisms including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are influenced by the N-glycan structures on the Fc region of mAbs. Manipulating these glycan structures on mAbs allows for optimization of therapeutic benefits associated with effector functions. Traditional approaches such as gene deletion or overexpression often lead to only all-or-nothing changes in gene expression and fail to modulate the expression of multiple genes at defined ratios and levels. In this work, we have developed a CHO cell engineering platform enabling modulation of multiple gene expression to tailor the N-glycan profiles of mAbs for enhanced effector functions. Our platform involves a CHO targeted integration platform with two independent landing pads, allowing expression of multiple genes at two pre-determined genomic sites. By combining with internal ribosome entry site (IRES)-based polycistronic vectors, we simultaneously modulated the expression of α-mannosidase II (MANII) and chimeric β-1,4-N-acetylglucosaminyl-transferase III (cGNTIII) genes in CHO cells. This strategy enabled the production of mAbs carrying N-glycans with various levels of bisecting and non-fucosylated structures. Importantly, these engineered mAbs exhibited different degrees of effector cell activation and CDC, facilitating the identification of mAbs with optimal effector functions. This platform was demonstrated as a powerful tool for producing antibody therapeutics with tailored effector functions via precise engineering of N-glycan profiles. It holds promise for advancing the field of metabolic engineering in mammalian cells.
Collapse
Affiliation(s)
- Ngan T B Nguyen
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Hau Wan Leung
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Kuin Tian Pang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Andre B H Choo
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
8
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
9
|
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology 2023; 33:545-555. [PMID: 37283470 DOI: 10.1093/glycob/cwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of death in women, globally. A variety of biological processes results in metastasis, a poorly understood pathological phenomenon, causing a high relapse rate. Glycosylation, microribonucleic acids (miRNAs) and epithelial to mesenchymal transition (EMT), have been shown to regulate this cascade where tumor cells detach from their primary site, enter the circulatory system and colonize distant sites. Integrated proteomics and glycomics approaches have been developed to probe the molecular mechanism regulating such metastasis. In this review, we describe specific aspects of glycosylation and its interrelation with miRNAs, EMT and multidrug resistance during BC progression and metastasis. We explore various approaches that determine the role of proteomes and glycosylation in BC diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Rohan Ponangi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Kuppanur G Indresh
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| |
Collapse
|
10
|
Park JS, Choi HJ, Jung KM, Lee KY, Shim JH, Park KJ, Kim YM, Han JY. Production of recombinant human IgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activity using genome-edited chickens. Commun Biol 2023; 6:589. [PMID: 37264071 DOI: 10.1038/s42003-023-04937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.
Collapse
Affiliation(s)
- Jin Se Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyeon Shim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Avinnogen Co., Ltd, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Chia S, Tay SJ, Song Z, Yang Y, Walsh I, Pang KT. Enhancing pharmacokinetic and pharmacodynamic properties of recombinant therapeutic proteins by manipulation of sialic acid content. Biomed Pharmacother 2023; 163:114757. [PMID: 37087980 DOI: 10.1016/j.biopha.2023.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023] Open
Abstract
The circulatory half-life of recombinant therapeutic proteins is an important pharmacokinetic attribute because it determines the dosing frequency of these drugs, translating directly to treatment cost. Thus, recombinant therapeutic glycoproteins such as monoclonal antibodies have been chemically modified by various means to enhance their circulatory half-life. One approach is to manipulate the N-glycan composition of these agents. Among the many glycan constituents, sialic acid (specifically, N-acetylneuraminic acid) plays a critical role in extending circulatory half-life by masking the terminal galactose that would otherwise be recognised by the hepatic asialoglycoprotein receptor (ASGPR), resulting in clearance of the biotherapeutic from the circulation. This review aims to provide an illustrative overview of various strategies to enhance the pharmacokinetic/pharmacodynamic properties of recombinant therapeutic proteins through manipulation of their sialic acid content.
Collapse
Affiliation(s)
- Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore.
| | - Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A⁎STAR), 20 Biopolis Way, #06-01, Centros, 138668, Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, 637459, Singapore.
| |
Collapse
|
12
|
Park CS, Kang M, Kim A, Moon C, Kim M, Kim J, Yang S, Jang L, Jang JY, Kim HH. Fragmentation stability and retention time-shift obtained by LC-MS/MS to distinguish sialylated N-glycan linkage isomers in therapeutic glycoproteins. J Pharm Anal 2023; 13:305-314. [PMID: 37102108 PMCID: PMC10124117 DOI: 10.1016/j.jpha.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Sialylated N-glycan isomers with α2-3 or α2-6 linkage(s) have distinctive roles in glycoproteins, but are difficult to distinguish. Wild-type (WT) and glycoengineered (mutant) therapeutic glycoproteins, cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4-Ig), were produced in Chinese hamster ovary cell lines; however, their linkage isomers have not been reported. In this study, N-glycans of CTLA4-Igs were released, labeled with procainamide, and analyzed by liquid chromatography-tandem mass spectrometry (MS/MS) to identify and quantify sialylated N-glycan linkage isomers. The linkage isomers were distinguished by comparison of 1) intensity of the N-acetylglucosamine ion to the sialic acid ion (Ln/Nn) using different fragmentation stability in MS/MS spectra and 2) retention time-shift for a selective m/z value in the extracted ion chromatogram. Each isomer was distinctively identified, and each quantity (>0.1%) was obtained relative to the total N-glycans (100%) for all observed ionization states. Twenty sialylated N-glycan isomers with only α2-3 linkage(s) in WT were identified, and each isomer's sum of quantities was 50.4%. Furthermore, 39 sialylated N-glycan isomers (58.8%) in mono- (3 N-glycans; 0.9%), bi- (18; 48.3%), tri- (14; 8.9%), and tetra- (4; 0.7%) antennary structures of mutant were obtained, which comprised mono- (15 N-glycans; 25.4%), di- (15; 28.4%), tri- (8; 4.8%), and tetra- (1; 0.2%) sialylation, respectively, with only α2-3 (10 N-glycans; 4.8%), both α2-3 and α2-6 (14; 18.4%), and only α2-6 (15; 35.6%) linkage(s). These results are consistent with those for α2-3 neuraminidase-treated N-glycans. This study generated a novel plot of Ln/Nn versus retention time to distinguish sialylated N-glycan linkage isomers in glycoprotein.
Collapse
Affiliation(s)
- Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
13
|
Baniahmad SF, Oliverio R, Obregon-Gomez I, Robert A, Lenferink AEG, Pazos E, Virgilio N, Banquy X, De Crescenzo G, Durocher Y. Affinity-controlled capture and release of engineered monoclonal antibodies by macroporous dextran hydrogels using coiled-coil interactions. MAbs 2023; 15:2218951. [PMID: 37300397 DOI: 10.1080/19420862.2023.2218951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Long-term delivery is a successful strategy used to reduce the adverse effects of monoclonal antibody (mAb)-based treatments. Macroporous hydrogels and affinity-based strategies have shown promising results in sustained and localized delivery of the mAbs. Among the potential tools for affinity-based delivery systems, the de novo designed Ecoil and Kcoil peptides are engineered to form a high-affinity, heterodimeric coiled-coil complex under physiological conditions. In this study, we created a set of trastuzumab molecules tagged with various Ecoil peptides and evaluated their manufacturability and characteristics. Our data show that addition of an Ecoil tag at the C-termini of the antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab in CHO cells or affect antibody binding to its antigen. We also evaluated the influence of the number, length, and position of the Ecoil tags on the capture and release of Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide-binding partner). Notably, our data show that antibodies are released from the macroporous hydrogels in a biphasic manner; the first phase corresponding to the rapid release of residual, unbound trastuzumab from the macropores, followed by the affinity-controlled, slow-rate release of antibodies from the Kcoil-functionalized macropore surface.
Collapse
Affiliation(s)
- Seyed Farzad Baniahmad
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| | - Romane Oliverio
- Department of Chemical Engineering Polytechnique Montréal, Montréal, Québec Canada
- Faculty of Pharmacy, Axe Formulation Et Analyse du Médicament, Université de Montréal, Québec, Canada
| | - Ines Obregon-Gomez
- CICA - Centro Interdisciplinar de Química E Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruna, Coruna, Spain
| | - Alma Robert
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| | - Anne E G Lenferink
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química E Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruna, Coruna, Spain
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche Sur Les Systèmes Polymères Et Composites à Haute Performance (CREPEC), Montréal, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation Et Analyse du Médicament, Université de Montréal, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering Polytechnique Montréal, Montréal, Québec Canada
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, Canada
| |
Collapse
|
14
|
Jaramillo ML, Sulea T, Durocher Y, Acchione M, Schur MJ, Robotham A, Kelly JF, Goneau MF, Robert A, Cepero-Donates Y, Gilbert M. A glyco-engineering approach for site-specific conjugation to Fab glycans. MAbs 2023; 15:2149057. [PMID: 36447399 PMCID: PMC9715014 DOI: 10.1080/19420862.2022.2149057] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Effective processes for synthesizing antibody-drug conjugates (ADCs) require: 1) site-specific incorporation of the payload to avoid interference with binding to the target epitope, 2) optimal drug/antibody ratio to achieve sufficient potency while avoiding aggregation or solubility problems, and 3) a homogeneous product to facilitate approval by regulatory agencies. In conventional ADCs, the drug molecules are chemically attached randomly to antibody surface residues (typically Lys or Cys), which can interfere with epitope binding and targeting, and lead to overall product heterogeneity, long-term colloidal instability and unfavorable pharmacokinetics. Here, we present a more controlled process for generating ADCs where drug is specifically conjugated to only Fab N-linked glycans in a narrow ratio range through functionalized sialic acids. Using a bacterial sialytransferase, we incorporated N-azidoacetylneuraminic acid (Neu5NAz) into the Fab glycan of cetuximab. Since only about 20% of human IgG1 have a Fab glycan, we extended the application of this approach by using molecular modeling to introduce N-glycosylation sites in the Fab constant region of other therapeutic monoclonal antibodies. We used trastuzumab as a model for the incorporation of Neu5NAz in the novel Fab glycans that we designed. ADCs were generated by clicking the incorporated Neu5NAz with monomethyl auristatin E (MMAE) attached to a self-immolative linker terminated with dibenzocyclooctyne (DBCO). Through this process, we obtained cetuximab-MMAE and trastuzumab-MMAE with drug/antibody ratios in the range of 1.3 to 2.5. We confirmed that these ADCs still bind their targets efficiently and are as potent in cytotoxicity assays as control ADCs obtained by standard conjugation protocols. The site-directed conjugation to Fab glycans has the additional benefit of avoiding potential interference with effector functions that depend on Fc glycan structure.
Collapse
Affiliation(s)
- Maria L. Jaramillo
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Mauro Acchione
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Melissa J. Schur
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - John F. Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - Marie-France Goneau
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada
| | - Alma Robert
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Yuneivy Cepero-Donates
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, H4P 2R2, Montreal, Qc, Canada
| | - Michel Gilbert
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6, Ottawa, ON, Canada,CONTACT Michel Gilbert Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, K1A 0R6Ottawa, ON, Canada
| |
Collapse
|
15
|
Abstract
The proper glycosylation of glycoproteins is important for their structure and function. This is an especially important consideration when choosing a platform to express recombinant glycoproteins destined for therapeutic use. Chinese hamster ovary (CHO) cells have been the choice expression platform for their ability to produce recombinant glycoproteins with glycosylation profiles similar to those observed in humans. However, consistency with glycosylation has been noted as problematic, and sialylation, an important modification in human glycoproteins, has not been achieved to an acceptable degree in CHO cells. Plant biotechnology and glycoengineering has now made it possible to produce therapeutic recombinant glycoproteins in plants with glycosylation profiles observed in humans, including sialylation. Furthermore, the glycosylation profiles of recombinant therapeutic glycoproteins produced in plants are homogenous and consistently reproducible. Here, entirely via transient expression, two therapeutic monoclonal antibodies are produced in glycoengineered Nicotiana benthamiana plants that carry human glycosylation profiles including sialylation.
Collapse
Affiliation(s)
- Adrian Esqueda
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Qiang Chen
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
16
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
17
|
Vattepu R, Sneed SL, Anthony RM. Sialylation as an Important Regulator of Antibody Function. Front Immunol 2022; 13:818736. [PMID: 35464485 PMCID: PMC9021442 DOI: 10.3389/fimmu.2022.818736] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Antibodies play a critical role in linking the adaptive immune response to the innate immune system. In humans, antibodies are categorized into five classes, IgG, IgM, IgA, IgE, and IgD, based on constant region sequence, structure, and tropism. In serum, IgG is the most abundant antibody, comprising 75% of antibodies in circulation, followed by IgA at 15%, IgM at 10%, and IgD and IgE are the least abundant. All human antibody classes are post-translationally modified by sugars. The resulting glycans take on many divergent structures and can be attached in an N-linked or O-linked manner, and are distinct by antibody class, and by position on each antibody. Many of these glycan structures on antibodies are capped by sialic acid. It is well established that the composition of the N-linked glycans on IgG exert a profound influence on its effector functions. However, recent studies have described the influence of glycans, particularly sialic acid for other antibody classes. Here, we discuss the role of glycosylation, with a focus on terminal sialylation, in the biology and function across all antibody classes. Sialylation has been shown to influence not only IgG, but IgE, IgM, and IgA biology, making it an important and unappreciated regulator of antibody function.
Collapse
Affiliation(s)
- Ravi Vattepu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sunny Lyn Sneed
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
19
|
Establishment of a glycoengineered CHO cell line for enhancing the antennary structure and sialylation of CTLA4-Ig. Enzyme Microb Technol 2022; 157:110007. [DOI: 10.1016/j.enzmictec.2022.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
20
|
Glycoengineering of Therapeutic Antibodies with Small Molecule Inhibitors. Antibodies (Basel) 2021; 10:antib10040044. [PMID: 34842612 PMCID: PMC8628514 DOI: 10.3390/antib10040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs—the manipulation and optimisation of mAb glycan structures—are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community.
Collapse
|
21
|
Wang Q, Wang T, Zhang R, Yang S, McFarland KS, Chung CY, Jia H, Wang LX, Cipollo JF, Betenbaugh MJ. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Biotechnol Bioeng 2021; 119:102-117. [PMID: 34647616 DOI: 10.1002/bit.27953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022]
Abstract
The N-glycan pattern of an IgG antibody, attached at a conserved site within the fragment crystallizable (Fc) region, is a critical antibody quality attribute whose structural variability can also impact antibody function. For tailoring the Fc glycoprofile, glycoengineering in cell lines as well as Fc amino acid mutations have been applied. Multiple glycoengineered Chinese hamster ovary cell lines were generated, including defucosylated (FUT8KO), α-2,6-sialylated (ST6KI), and defucosylated α-2,6-sialylated (FUT8KOST6KI), expressing either a wild-type anti-CD20 IgG (WT) or phenylalanine to alanine (F241A) mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry characterization of antibody N-glycans revealed that the F241A mutation significantly increased galactosylation and sialylation content and glycan branching. Furthermore, overexpression of recombinant human α-2,6-sialyltransferase resulted in a predominance of α-2,6-sialylation rather than α-2,3-sialylation for both WT and heavily sialylated F241A antibody N-glycans. Interestingly, knocking out α-1,6-fucosyltransferase (FUT8KO), which removed core fucose, lowered the content of N-glycans with terminal Gal and increased levels of terminal GlcNAc and Man5 groups on WT antibody. Further complement-dependent cytotoxicity (CDC) analysis revealed that, regardless of the production cells, WT antibody samples have higher cytotoxic CDC activity with more exposed Gal residues compared to their individual F241A mutants. However, the FUT8KO WT antibody, with a large fraction of bi-GlcNAc structures (G0), displayed the lowest CDC activity of all WT antibody samples. Furthermore, for the F241A mutants, a higher CDC activity was observed for α-2,6- compared to α-2,3-sialylation. Antibody-dependent cellular cytotoxicity (ADCC) analysis revealed that the defucosylated WT and F241A mutants showed enhanced in vitro ADCC performance compared to their fucosylated counterparts, with the defucosylated WT antibodies displaying the highest overall ADCC activity, regardless of sialic acid substitution. Moreover, the FcγRIIIA receptor binding by antibodies did not always correspond directly with ADCC result. This study demonstrates that glycoengineering and protein engineering can both promote and inhibit antibody effector functions and represent practical approaches for varying glycan composition and functionalities during antibody development.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roushu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Shuang Yang
- Division of Bacterial, Parasitic and Allergenic Products (DBPAP), Laboratory for Bacterial Polysaccharides, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kevin S McFarland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - John F Cipollo
- Division of Bacterial, Parasitic and Allergenic Products (DBPAP), Laboratory for Bacterial Polysaccharides, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. Int J Mol Sci 2021; 22:ijms22126616. [PMID: 34205578 PMCID: PMC8235063 DOI: 10.3390/ijms22126616] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Surface plasmon resonance (SPR)-based optical biosensors offer real-time and label-free analysis of protein interactions, which has extensively contributed to the discovery and development of therapeutic monoclonal antibodies (mAbs). As the biopharmaceutical market for these biologics and their biosimilars is rapidly growing, the role of SPR biosensors in drug discovery and quality assessment is becoming increasingly prominent. One of the critical quality attributes of mAbs is the N-glycosylation of their Fc region. Other than providing stability to the antibody, the Fc N-glycosylation influences immunoglobulin G (IgG) interactions with the Fcγ receptors (FcγRs), modulating the immune response. Over the past two decades, several studies have relied on SPR-based assays to characterize the influence of N-glycosylation upon the IgG-FcγR interactions. While these studies have unveiled key information, many conclusions are still debated in the literature. These discrepancies can be, in part, attributed to the design of the reported SPR-based assays as well as the methodology applied to SPR data analysis. In fact, the SPR biosensor best practices have evolved over the years, and several biases have been pointed out in the development of experimental SPR protocols. In parallel, newly developed algorithms and data analysis methods now allow taking into consideration complex biomolecular kinetics. In this review, we detail the use of different SPR biosensing approaches for characterizing the IgG-FcγR interactions, highlighting their merit and inherent experimental complexity. Furthermore, we review the latest SPR-derived conclusions on the influence of the N-glycosylation upon the IgG-FcγR interactions and underline the differences and similarities across the literature. Finally, we explore new avenues taking advantage of novel computational analysis of SPR results as well as the latest strategies to control the glycoprofile of mAbs during production, which could lead to a better understanding and modelling of the IgG-FcγRs interactions.
Collapse
|
23
|
Nguyen NTB, Lin J, Tay SJ, Mariati, Yeo J, Nguyen-Khuong T, Yang Y. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci Rep 2021; 11:12969. [PMID: 34155258 PMCID: PMC8217518 DOI: 10.1038/s41598-021-92320-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies are decorated with complex-type N-glycans that significantly affect their biodistribution and bioactivity. The N-glycan structures on antibodies are incompletely processed in wild-type CHO cells due to their limited glycosylation capacity. To improve N-glycan processing, glycosyltransferase genes have been traditionally overexpressed in CHO cells to engineer the cellular N-glycosylation pathway by using random integration, which is often associated with large clonal variations in gene expression levels. In order to minimize the clonal variations, we used recombinase-mediated-cassette-exchange (RMCE) technology to overexpress a panel of 42 human glycosyltransferase genes to screen their impact on antibody N-linked glycosylation. The bottlenecks in the N-glycosylation pathway were identified and then released by overexpressing single or multiple critical genes. Overexpressing B4GalT1 gene alone in the CHO cells produced antibodies with more than 80% galactosylated bi-antennary N-glycans. Combinatorial overexpression of B4GalT1 and ST6Gal1 produced antibodies containing more than 70% sialylated bi-antennary N-glycans. In addition, antibodies with various tri-antennary N-glycans were obtained for the first time by overexpressing MGAT5 alone or in combination with B4GalT1 and ST6Gal1. The various N-glycan structures and the method for producing them in this work provide opportunities to study the glycan structure-and-function and develop novel recombinant antibodies for addressing different therapeutic applications.
Collapse
Affiliation(s)
- Ngan T. B. Nguyen
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jianer Lin
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shi Jie Tay
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mariati
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jessna Yeo
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Terry Nguyen-Khuong
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- grid.452198.30000 0004 0485 9218Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
24
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
25
|
Leng JX, Ren WW, Li Y, Yang G, Gao XD, Fujita M. Cell engineering for the production of hybrid-type N-glycans in HEK293 cells. J Biochem 2021; 170:139-151. [PMID: 33878161 DOI: 10.1093/jb/mvab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glycoprotein therapeutics are among the leading products in the biopharmaceutical industry. The heterogeneity of glycans in therapeutic proteins is an issue for maintaining quality, activity, and safety during bioprocessing. In this study, we knocked out genes encoding Golgi α-mannosidase-II, MAN2A1 and MAN2A2 in human embryonic kidney 293 (HEK293) cells, establishing an M2D-KO cell line that can produce recombinant proteins mainly with hybrid-type N-glycans. Furthermore, FUT8, which encodes α1,6-fucosyltransferase, was knocked out in the M2D-KO cell line, establishing a DF-KO cell line that can express non-core fucosylated hybrid-type N-glycans. Two recombinant proteins, lysosomal acid lipase (LIPA) and constant fragment (Fc) of human IgG1, were expressed in the M2D-KO and DF-KO cell lines. Glycan structural analysis revealed that complex-type N-glycans were removed in both M2D-KO and DF-KO cells. Our results suggest that these cell lines are suitable for the production of therapeutic proteins with hybrid-type N-glycans. Moreover, KO cell lines would be useful as models for researching the mechanism of antimetastatic effects in human tumors by swainsonine treatment.
Collapse
Affiliation(s)
- Ji-Xiong Leng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Bigelow E, Song Y, Chen J, Holstein M, Huang Y, Duhamel L, Stone K, Furman R, Li ZJ, Ghose S. Using continuous chromatography methodology to achieve high-productivity and high-purity enrichment of charge variants for analytical characterization. J Chromatogr A 2021; 1643:462008. [PMID: 33780880 DOI: 10.1016/j.chroma.2021.462008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
Charge variants of biological products, such as monoclonal antibodies (mAbs), often play an important role in stability and biological activity. Characterization of these charge variants is challenging, however, primarily due to the lack of both efficient and effective isolation methods. In this work, we present a novel use of an established, high productivity continuous chromatography method, known as multi-column counter-current solvent gradient purification (MCSGP), to create an enriched product that can be better utilized for analytical characterization. We demonstrate the principle of this separation method and compare it to traditional batch HPLC (high performance liquid chromatography) or FPLC (fast protein liquid chromatography) methods, using the isolation of charge variants of different mAbs as a case study. In a majority of cases, we are able to show that the MCSGP method is able to provide enhanced purity and quantity of samples when compared to traditional fractionation methods, using the same separation conditions. In one such case, a sample prepared by MCSGP methodology achieved 95% purity in 10 hours of processing time, while those prepared by FPLC and HPLC achieved purities of 78% and 87% in 48 and 300 hours of processing time, respectively. We further evaluate charge variant enrichment strategies using both salt and pH gradients on cation exchange chromatography (CEX) and anion exchange chromatography (AEX) resins, to provide more effective separation and less sample processing following enrichment. As a result, we find that we are able to utilize different gradients to change the enrichment capabilities of certain charged species. Lastly, we summarize the identified mAb charge variants used in this work, and highlight benefits to analytical characterization of charge variants enriched with the continuous chromatography method. The method adds a new option for charge variant enrichment and facilitates analytical characterization of charge variants.
Collapse
Affiliation(s)
- Elizabeth Bigelow
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434.
| | - Yuanli Song
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| | - Jie Chen
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| | - Melissa Holstein
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| | - Yunping Huang
- Biologics Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901
| | - Lauren Duhamel
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| | - Kelly Stone
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| | - Ran Furman
- Biologics Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901
| | - Zheng Jian Li
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| | - Sanchayita Ghose
- Biologics Development, Bristol Myers Squibb, 38 Jackson Road, Devens, MA 01434
| |
Collapse
|
27
|
Li D, Lou Y, Zhang Y, Liu S, Li J, Tao J. Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Am J Cancer Res 2021; 11:5430-5446. [PMID: 33859756 PMCID: PMC8039950 DOI: 10.7150/thno.53961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Human immunoglobulin G (IgG), especially autoantibodies, has major implications for the diagnosis and management of a wide range of autoimmune diseases. However, some healthy individuals also have autoantibodies, while a portion of patients with autoimmune diseases test negative for serologic autoantibodies. Recent advances in glycomics have shown that IgG Fc N-glycosylations are more reliable diagnostic and monitoring biomarkers than total IgG autoantibodies in a wide variety of autoimmune diseases. Furthermore, these N-glycosylations of IgG Fc, particularly sialylation, have been reported to exert significant anti-inflammatory effects by upregulating inhibitory FcγRIIb on effector macrophages and reducing the affinity of IgG for either complement protein or activating Fc gamma receptors. Therefore, sialylated IgG is a potential therapeutic strategy for attenuating pathogenic autoimmunity. IgG sialylation-based therapies for autoimmune diseases generated through genetic, metabolic or chemoenzymatic modifications have made some advances in both preclinical studies and clinical trials.
Collapse
|
28
|
Cambay F, Raymond C, Brochu D, Gilbert M, Tu TM, Cantin C, Lenferink A, Grail M, Henry O, De Crescenzo G, Durocher Y. Impact of IgG1 N-glycosylation on their interaction with Fc gamma receptors. CURRENT RESEARCH IN IMMUNOLOGY 2020; 1:23-37. [PMID: 35493857 PMCID: PMC9040152 DOI: 10.1016/j.crimmu.2020.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022] Open
Abstract
The effector functions of the IgGs are modulated by the N-glycosylation of their Fc region. Particularly, the absence of core fucosylation is known to increase the affinity of IgG1s for the Fcγ receptor IIIa expressed by immune cells, in turn translating in an improvement in the antibody-dependent cellular cytotoxicity. However, the impact of galactosylation and sialylation is still debated in the literature. In this study, we have investigated the influence of high and low levels of core fucosylation, terminal galactosylation and terminal α2,6-sialylation of the Fc N-glycans of trastuzumab on its affinity for the FcγRIIIa. A large panel of antibody glycoforms (i.e., highly α2,6-sialylated or galactosylated IgG1s, with high or low levels of core fucosylation) were generated and characterized, while their interactions with the FcγRs were analysed by a robust surface plasmon resonance-based assay as well as in a cell-based reporter bioassay. Overall, IgG1 glycoforms with reduced fucosylation display a stronger affinity for the FcγRIIIa. In addition, fucosylation, and the presence of terminal galactose and sialic acids are shown to increase the affinity for the FcγRIIIa as compared to the agalactosylated forms. These observations perfectly translate in the response observed in our reporter bioassay. Rapid production in CHO cells of IgGs bearing defined and relevant N-glycans IgG1 N-glycosylation influence upon FcγRs binding studied in a robust SPR assay Excellent correlation between the EC50 from a cell-based assay and the affinities
Collapse
|
29
|
Glycoproteomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:413-434. [PMID: 33205259 DOI: 10.1007/10_2020_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.
Collapse
|
30
|
Sanches M, D'Angelo I, Jaramillo M, Baardsnes J, Zwaagstra J, Schrag J, Schoenhofen I, Acchione M, Lawn S, Wickman G, Weisser N, Poon DKY, Ng G, Dixit S. AlbuCORE: an albumin-based molecular scaffold for multivalent biologics design. MAbs 2020; 12:1802188. [PMID: 32816577 PMCID: PMC7531512 DOI: 10.1080/19420862.2020.1802188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As biologics have become a mainstay in the development of novel therapies, protein engineering tools to expand on their structural advantages, namely specificity, affinity, and valency are of interest. Antibodies have dominated this field as the preferred scaffold for biologics development while there has been limited exploration into the use of albumin with its unique physiological characteristics as a platform for biologics design. There has been a great deal of interest to create bispecific and more complex multivalent molecules to build on the advantages offered by protein-based therapeutics relative to small molecules. Here, we explore the use of human serum albumin (HSA) as a scaffold for the design of multispecific biologics. In particular, we describe a structure-guided approach to the design of split HSA molecules we refer to as AlbuCORE, that effectively and spontaneously forms a native albumin-like molecule, but in a heterodimeric state upon co-expression. We show that the split AlbuCORE designs allow the creation of novel fusion entities with unique alternate geometries. We also show that, apart from these AlbuCORE fusion entities, there is an opportunity to explore their albumin-like small hydrophobic molecule carrying capacity as a drug conjugate in these designs.
Collapse
Affiliation(s)
| | - Igor D'Angelo
- One Amgen Center Dr, Amgen Inc ., Thousand Oaks, CA, USA
| | - Maria Jaramillo
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - John Zwaagstra
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Joe Schrag
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Ian Schoenhofen
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Mauro Acchione
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Sam Lawn
- R&D, Zymeworks Inc , Vancouver, BC, Canada
| | | | | | | | - Gordon Ng
- Search and Evaluation, Abbvie Inc , North Chicago, Illinois, USA
| | | |
Collapse
|
31
|
Ma B, Guan X, Li Y, Shang S, Li J, Tan Z. Protein Glycoengineering: An Approach for Improving Protein Properties. Front Chem 2020; 8:622. [PMID: 32793559 PMCID: PMC7390894 DOI: 10.3389/fchem.2020.00622] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Natural proteins are an important source of therapeutic agents and industrial enzymes. While many of them have the potential to be used as highly effective medical treatments for a wide range of diseases or as catalysts for conversion of a range of molecules into important product types required by modern society, problems associated with poor biophysical and biological properties have limited their applications. Engineering proteins with reduced side-effects and/or improved biophysical and biological properties is therefore of great importance. As a common protein modification, glycosylation has the capacity to greatly influence these properties. Over the past three decades, research from many disciplines has established the importance of glycoengineering in overcoming the limitations of proteins. In this review, we will summarize the methods that have been used to glycoengineer proteins and briefly discuss some representative examples of these methods, with the goal of providing a general overview of this research area.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Sun T, Kwok WC, Chua KJ, Lo TM, Potter J, Yew WS, Chesnut JD, Hwang IY, Chang MW. Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:1864-1872. [PMID: 32470293 DOI: 10.1021/acssynbio.0c00221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chinese hamster ovary (CHO) cells are the superior host cell culture models used for the bioproduction of therapeutic proteins. One of the prerequisites for bioproduction using CHO cell lines is the need to generate stable CHO cell lines with optimal expression output. Antibiotic selection is commonly employed to isolate and select CHO cell lines with stable expression, despite its potential negative impact on cellular metabolism and expression level. Herein, we present a novel proline-based selection system for the isolation of stable CHO cell lines. The system exploits a dysfunctional proline metabolism pathway in CHO cells by using a pyrroline-5-carboxylate synthase gene as a selection marker, enabling selection to be made using proline-free media. The selection system was demonstrated by expressing green fluorescent protein (GFP) and a monoclonal antibody. When GFP was expressed, more than 90% of stable transfectants were enriched within 2 weeks of the selection period. When a monoclonal antibody was expressed, we achieved comparable titers (3.35 ± 0.47 μg/mL) with G418 and Zeocin-based selections (1.65 ± 0.46 and 2.25 ± 0.07 μg/mL, respectively). We further developed a proline-based coselection by using S. cerevisiae PRO1 and PRO2 genes as markers, which enables the generation of 99.5% double-transgenic cells. The proline-based selection expands available selection tools and provides an alternative to antibiotic-based selections in CHO cell line development.
Collapse
Affiliation(s)
- Tao Sun
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Wee Chiew Kwok
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Koon Jiew Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Tat-Ming Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Jason Potter
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Jonathan D. Chesnut
- Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, California 92008, United States
| | - In Young Hwang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
33
|
Full-length galectin-8 and separate carbohydrate recognition domains: the whole is greater than the sum of its parts? Biochem Soc Trans 2020; 48:1255-1268. [PMID: 32597487 DOI: 10.1042/bst20200311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Galectin-8 (Gal-8) is a tandem-repeat type galectin with affinity for β-galactosides, bearing two carbohydrate recognition domains (CRD) connected by a linker peptide. The N- and C-terminal domains (Gal-8N and Gal-8C) share 35% homology, and their glycan ligand specificity is notably dissimilar: while Gal-8N shows strong affinity for α(2-3)-sialylated oligosaccharides, Gal-8C has higher affinity for non-sialylated oligosaccharides, including poly-N-acetyllactosamine and/ or A and B blood group structures. Particularly relevant for understanding the biological role of this lectin, full-length Gal-8 can bind cell surface glycoconjugates with broader affinity than the isolated Gal-8N and Gal-8C domains, a trait also described for other tandem-repeat galectins. Herein, we aim to discuss the potential use of separate CRDs in modelling tandem-repeat galectin-8 and its biological functions. For this purpose, we will cover several aspects of the structure-function relationship of this protein including crystallographic structures, glycan specificity, cell function and biological roles, with the ultimate goal of understanding the potential role of each CRD in predicting full-length Gal-8 involvement in relevant biological processes.
Collapse
|
34
|
Majewska NI, Tejada ML, Betenbaugh MJ, Agarwal N. N-Glycosylation of IgG and IgG-Like Recombinant Therapeutic Proteins: Why Is It Important and How Can We Control It? Annu Rev Chem Biomol Eng 2020; 11:311-338. [DOI: 10.1146/annurev-chembioeng-102419-010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulatory bodies worldwide consider N-glycosylation to be a critical quality attribute for immunoglobulin G (IgG) and IgG-like therapeutics. This consideration is due to the importance of posttranslational modifications in determining the efficacy, safety, and pharmacokinetic properties of biologics. Given its critical role in protein therapeutic production, we review N-glycosylation beginning with an overview of the myriad interactions of N-glycans with other biological factors. We examine the mechanism and drivers for N-glycosylation during biotherapeutic production and the several competing factors that impact glycan formation, including the abundance of precursor nucleotide sugars, transporters, glycosidases, glycosyltransferases, and process conditions. We explore the role of these factors with a focus on the analytical approaches used to characterize glycosylation and associated processes, followed by the current state of advanced glycosylation modeling techniques. This combination of disciplines allows for a deeper understanding of N-glycosylation and will lead to more rational glycan control.
Collapse
Affiliation(s)
- Natalia I. Majewska
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;,
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, Maryland 20878, USA
| | - Max L. Tejada
- Bioassay, Impurities and Quality, AstraZeneca, Gaithersburg, Maryland 20878, USA
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;,
| | - Nitin Agarwal
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, Maryland 20878, USA
| |
Collapse
|
35
|
Donald LJ, Spearman M, Mishra N, Komatsu E, Butler M, Perreault H. Mass spectrometric analysis of core fucosylation and sequence variation in a human-camelid monoclonal antibody. Mol Omics 2020; 16:221-230. [PMID: 32163054 DOI: 10.1039/c9mo00168a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospray mass spectrometry (ESI-MS) was used to measure the masses of an intact dimeric monoclonal antibody (Mab) and assess the fucosylation level. The Mab under study was EG2-hFc, a chimeric human-camelid antibody of about 80 kDa (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90). It was obtained from cell culture with and without a fucosylation inhibitor, and treated with EndoS which cleaves between the two core N-acetyl glucosamine (GlcNAc) residues. It is the first time that this combined approach with a unique mass spectrometer was used to measure 146 Da differences as part of a large intact dimeric antibody. Results showed that in the dimer, both heavy chains were fucosylated on the core GlcNAc of the Fc Asn site equivalent to Asn297. In the presence of the fucosylation inhibitor, fucosylation was lost on both subunits. Following reduction, monomers were analyzed and the masses obtained corroborated the dimer results. Dimeric EG2-hFc Mab treated with PNGase F, to deglycosylate the protein, was also measured by MS for mass comparison. In spite of the success of fucosylation level measurements, the experimental masses of deglycosylated dimers and GlcNAc-Fuc bearing dimers did not correspond to masses of our sequence of reference (A. Bell et al., Cancer Lett., 2010, 289(1), 81-90; ; ), which prompted experiments to determine the protein backbone sequence. Digest mixtures from trypsin, GluC, as well as trypsin + GluC proteolysis were analyzed by matrix-assisted laser desorption/ionization (MALDI) MS and MS/MS. A few variations were found relative to the reference sequence, which are discussed in detail herein. These measurements allowed us to build a new "experimental" sequence for the EG2-hFc samples investigated in this work, although there are still ambiguities to be resolved in this new sequence. MALDI-MS/MS also confirmed the fucosylation pattern in the Fc tryptic peptide EEQYNSTYR.
Collapse
Affiliation(s)
- Lynda J Donald
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Höti N, Lih TS, Pan J, Zhou Y, Yang G, Deng A, Chen L, Dong M, Yang RB, Tu CF, Haffner MC, Kay Li Q, Zhang H. A Comprehensive Analysis of FUT8 Overexpressing Prostate Cancer Cells Reveals the Role of EGFR in Castration Resistance. Cancers (Basel) 2020; 12:cancers12020468. [PMID: 32085441 PMCID: PMC7072180 DOI: 10.3390/cancers12020468] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/12/2023] Open
Abstract
The emergence of castration-resistance is one of the major challenges in the management of patients with advanced prostate cancer. Although the spectrum of systemic therapies that are available for use alongside androgen deprivation for treatment of castration-resistant prostate cancer (CRPC) is expanding, none of these regimens are curative. Therefore, it is imperative to apply systems approaches to identify and understand the mechanisms that contribute to the development of CRPC. Using comprehensive proteomic approaches, we show that a glycosylation-related enzyme, alpha (1,6) fucosyltransferase (FUT8), which is upregulated in CRPC, might be responsible for resistance to androgen deprivation. Mechanistically, we demonstrated that overexpression of FUT8 resulted in upregulation of the cell surface epidermal growth factor receptor (EGFR) and corresponding downstream signaling, leading to increased cell survival in androgen-depleted conditions. We studied the coregulatory mechanisms of EGFR and FUT8 expression in CRPC xenograft models and found that castration induced FUT8 overexpression associated with increased expression of EGFR. Taken together, our findings suggest a crucial role played by FUT8 as a mediator in switching prostate cancer cells from nuclear receptor signaling (androgen receptor) to the cell surface receptor (EGFR) mechanisms in escaping castration-induced cell death. These findings have clinical implication in understanding the role of FUT8 as a master regulator of cell surface receptors in cancer-resistant phenotypes.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Correspondence: ; Tel.: (410)-502-8149; Fax: (443)-287-6388
| | - Tung-Shing Lih
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Yangying Zhou
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ashely Deng
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Lijun Chen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Mingmimg Dong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (R.-B.Y.); (C.-F.T.)
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (R.-B.Y.); (C.-F.T.)
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.-S.L.); (J.P.); (Y.Z.); (G.Y.); (A.D.); (L.C.); (M.D.); (M.C.H.); (Q.K.L.); (H.Z.)
| |
Collapse
|
37
|
Lalonde ME, Koyuturk I, Brochu D, Jabbour J, Gilbert M, Durocher Y. Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. J Biotechnol 2020; 307:87-97. [PMID: 31697975 DOI: 10.1016/j.jbiotec.2019.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023]
Abstract
Alpha-1-antitrypsin (A1AT) is an abundant serum inhibitor of serine proteases. A1AT deficiency is a common genetic disorder which is currently treated with augmentation therapies. These treatments involve weekly injections of patients with purified plasma-derived A1AT. Such therapies can be extremely expensive and rely on plasma donors. Hence, large-scale production of recombinant A1AT (rA1AT) could greatly benefit these patients, as it could decrease the cost of treatments, reduce biosafety concerns and ensure quantitative and qualitative controls of the protein. In this report, we sought to produce α2,6-sialylated rA1AT with our cumate-inducible stable CHO pool expression system. Our different CHO pools could reach volumetric productivities of 1,2 g/L. The human α2,6-sialyltransferase was stably expressed in these cells in order to mimic elevated α2,6-sialylation levels of native A1AT protein. Sialylation of the recombinant protein was stable over the duration of the fed-batch production phase and was higher in a pool where cells were sorted and enriched by FACS based on cell-surface α2,6-sialylation. Addition of ManNAc to the cell culture media during production enhanced both α2,3 and α2,6 A1AT sialylation levels whereas addition of 2F-peracetylfucose potently inhibited fucosylation of the protein. Finally, we demonstrated that rA1AT proteins exhibited human neutrophil elastase inhibitory activities similar to the commercial human plasma-derived A1AT.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, H3C 3J7, Canada
| | - Izel Koyuturk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, H3C 3J7, Canada
| | - Denis Brochu
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, K1A OR6, Canada
| | - Jonathan Jabbour
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, H3C 3J7, Canada
| | - Michel Gilbert
- Life Sciences, Human Health Therapeutics Research Centre, 100 Sussex Drive, National Research Council Canada, Ottawa, Ontario, K1A OR6, Canada
| | - Yves Durocher
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, H3C 3J7, Canada; Life Sciences, Human Health Therapeutics Research Centre, Building Montreal-Royalmount, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada.
| |
Collapse
|
38
|
Joubert S, Dodelet V, Béliard R, Durocher Y. [Biomanufacturing of monoclonal antibodies]. Med Sci (Paris) 2020; 35:1153-1159. [PMID: 31903930 DOI: 10.1051/medsci/2019219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibody-based drugs are an increasingly important part of the therapeutic arsenal against a wide variety of medical conditions. As the number of commercial products and pipeline candidates grows, a crucial issue facing the industry is the current and future state of biomanufacturing. The productivity of the protein expression platforms, along with the performance of the technologies impacting upstream and downstream bioprocessing, are critical factors affecting the cost and time of therapeutic antibody development and commercialization. Cell engineering strategies are being used to improve the production of antibodies and to better control their quality in terms of posttranslational modifications, in particular with regards to their glycosylation state, as this can influence their therapeutic activity. Additionally, the advance of "omics" technologies have recently given rise to new possibilities in improving these expression platforms. We review here the various advances in biomanufacturing essential to the continued growth of the therapeutic antibody market.
Collapse
Affiliation(s)
- Simon Joubert
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada
| | - Vincent Dodelet
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada
| | - Roland Béliard
- Laboratoires français du fractionnement et des biotechnologies, Les Ulis, Courtaboeuf Cedex, France
| | - Yves Durocher
- Centre de recherche sur les thérapeutiques en santé humaine, Conseil national de recherche du Canada, Montréal, Québec H4P 2R2, Canada - Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
39
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Van Landuyt L, Lonigro C, Meuris L, Callewaert N. Customized protein glycosylation to improve biopharmaceutical function and targeting. Curr Opin Biotechnol 2019; 60:17-28. [DOI: 10.1016/j.copbio.2018.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
|
41
|
Abstract
Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Attribute Sciences, Process Development, Amgen, Inc , Thousand Oaks, California , USA
| | - Bhavana Shah
- Department of Attribute Sciences, Process Development, Amgen, Inc , Thousand Oaks, California , USA
| | - Jason Richardson
- Department of Attribute Sciences, Process Development, Amgen, Inc , Thousand Oaks, California , USA
| |
Collapse
|
42
|
Chang MM, Gaidukov L, Jung G, Tseng WA, Scarcelli JJ, Cornell R, Marshall JK, Lyles JL, Sakorafas P, Chu AHA, Cote K, Tzvetkova B, Dolatshahi S, Sumit M, Mulukutla BC, Lauffenburger DA, Figueroa B, Summers NM, Lu TK, Weiss R. Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat Chem Biol 2019; 15:730-736. [PMID: 31110306 DOI: 10.1038/s41589-019-0288-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022]
Abstract
N-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG. We knocked out two key glycosyltransferase genes, α-1,6-fucosyltransferase (FUT8) and β-1,4-galactosyltransferase (β4GALT1), genomically integrated circuits expressing synthetic glycosyltransferase genes under constitutive or inducible promoters and generated antibodies with concurrently desired fucosylation (0-97%) and galactosylation (0-87%) levels. Simultaneous and independent control of FUT8 and β4GALT1 expression was achieved using orthogonal small molecule inducers. Effector function studies confirmed that glycosylation profile changes affected antibody binding to a cell surface receptor. Precise and rational modification of N-glycosylation will allow new recombinant protein therapeutics with tailored in vitro and in vivo effects for various biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Michelle M Chang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leonid Gaidukov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giyoung Jung
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Allen Tseng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Richard Cornell
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Jeffrey K Marshall
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Jonathan L Lyles
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul Sakorafas
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - An-Hsiang Adam Chu
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Kaffa Cote
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Boriana Tzvetkova
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Sepideh Dolatshahi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Madhuresh Sumit
- Culture Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Bhanu Chandra Mulukutla
- Culture Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruno Figueroa
- Culture Process Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Nevin M Summers
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy K Lu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Valk-Weeber RL, Dijkhuizen L, van Leeuwen SS. Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydr Res 2019; 479:13-22. [PMID: 31100702 DOI: 10.1016/j.carres.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Glycoproteins are biologically active proteins of which the attached glycans contribute to their biological functionality. Limited data is available on the functional properties of these N-glycans in isolation, without the protein core. Glycan release, typically performed with the PNGase F enzyme, is achieved on denatured proteins in the presence of detergents which are notoriously difficult to be completely removed. In this work we compared two methods aiming at recovering N-glycans in a high yield and at high purity from a PNGase F glycoprotein digest of bovine lactoferrin. Detergents were removed from the digest by two separate approaches. In the first approach, protein and glycans were precipitated with acetone and the detergent containing supernatant was discarded. In the second approach, detergent was removed by adsorption onto a polystyrene resin. Following detergent removal, the glycans were further purified by a sequence of solid phase extraction (SPE) steps. Both approaches for detergent removal yielded a final glycan purity above 85%. Recovery of the glycans from lactoferrin was, however, much lower when utilizing acetone precipitation versus the polystyrene resin; 52% versus 85% respectively. A more detailed analysis of the acetone precipitation step revealed a loss of shorter oligomannose structures specifically. A loss of glycans of lesser complexity (oligomannose and biantennary structures) was also observed for other glycoproteins (RNase B, porcine thyroglobulin, human lactoferrin). These results indicate that acetone precipitation, a commonly used step for small-scale glycan purification, is not suitable for all target glycoproteins. The polystyrene resin detergent removal step conserved the full N-glycan profile and could be applied to all mammalian glycoproteins tested. Using this optimized protocol, large-scale quantitative isolation of N-glycan structures was achieved with sufficient purity for functional studies.
Collapse
Affiliation(s)
- Rivca L Valk-Weeber
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
44
|
Abstract
Antibodies are immunoglobulins that play essential roles in immune systems. All antibodies are glycoproteins that carry at least one or more conserved N-linked oligosaccharides (N-glycans) at the Fc domain. Many studies have demonstrated that both the presence and fine structures of the attached glycans can exert a profound impact on the biological functions and therapeutic efficacy of antibodies. However, antibodies usually exist as mixtures of heterogeneous glycoforms that are difficult to separate in pure glycoforms. Recent progress in glycoengineering has provided useful methods that enable production of glycan-defined and site-selectively modified antibodies for functional studies and for improved therapeutic efficacy. This review highlights major approaches in glycoengineering of antibodies with a focus on recent advances in three areas: glycoengineering through glycan biosynthetic pathway manipulation, glycoengineering through in vitro chemoenzymatic glycan remodeling, and glycoengineering of antibodies for site-specific antibody-drug conjugation.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| | - Tiezheng Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA; , , , ,
| |
Collapse
|
45
|
Cambay F, Henry O, Durocher Y, De Crescenzo G. Impact of N-glycosylation on Fcγ receptor / IgG interactions: unravelling differences with an enhanced surface plasmon resonance biosensor assay based on coiled-coil interactions. MAbs 2019; 11:435-452. [PMID: 30822189 DOI: 10.1080/19420862.2019.1581017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The N-glycosylation profile of immunoglobulin G (IgG) is considered a critical quality attribute due to its impact on IgG-Fc gamma receptor (FcγR) interactions, which subsequently affect antibody-dependent cell-based immune responses. In this study, we investigated the impact of the FcγR capture method, as well as FcγR N-glycosylation, on the kinetics of interaction with various glycoforms of trastuzumab (TZM) in a surface plasmon resonance (SPR) biosensor assay. More specifically, we developed a novel strategy based on coiled-coil interactions for the stable and oriented capture of coil-tagged FcγRs at the biosensor surface. Coil-tagged FcγR capture outperformed all other capture strategies applied to the SPR study of IgG-FcγR interactions, as the robustness and reproducibility of the assay and the shelf life of the biosensor chip were excellent (> 1,000 IgG injections with the same biosensor surface). Coil-tagged FcγRs displaying different N-glycosylation profiles were generated either by different expression systems, in vitro glycoengineering or by size-exclusion chromatography, and roughly characterized by lectin blotting. Of salient interest, the overlay of their kinetics of interaction with several TZM glycoforms revealed key differences on both association and dissociation kinetics, confirming a complex influence of the FcγR N-glycosylation and its inherent heterogeneity upon receptor interaction with mAbs. This work is thus an important step towards better understanding of the impact of glycosylation upon binding of IgGs, either natural or engineered, to their receptors.
Collapse
Affiliation(s)
- Florian Cambay
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada.,b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada
| | - Olivier Henry
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| | - Yves Durocher
- b Human Health Therapeutics Research Center , National Research Council Canada , Montréal , Québec , Canada.,c Département de Biochimie et Médecine Moléculaire , Université de Montréal , Montréal , Québec , Canada
| | - Gregory De Crescenzo
- a Department of Chemical Engineering , Polytechnique Montréal , Montréal , Québec , Canada
| |
Collapse
|
46
|
Ehret J, Zimmermann M, Eichhorn T, Zimmer A. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Biotechnol Bioeng 2019; 116:816-830. [PMID: 30552760 PMCID: PMC6590254 DOI: 10.1002/bit.26904] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/12/2018] [Accepted: 12/14/2018] [Indexed: 01/07/2023]
Abstract
Glycosylation is a key critical quality attribute for monoclonal antibodies and other recombinant proteins because of its impact on effector mechanisms and half‐life. In this study, a variety of compounds were evaluated for their ability to modulate glycosylation profiles of recombinant monoclonal antibodies produced in Chinese hamster ovary cells. Compounds were supplemented into the cell culture feed of fed‐batch experiments performed with a CHO K1 and a CHO DG44 cell line expressing a recombinant immunoglobulin G1 (IgG1). Experiments were performed in spin tubes or the ambr®15 controlled bioreactor system, and the impact of the compounds at various concentrations was determined by monitoring the glycosylation profile of the IgG and cell culture parameters, such as viable cell density, viability, and titer. Results indicate that the highest impact on mannosylation was achieved through 15 µM kifunensine supplementation leading to an 85.8% increase in high‐mannose containing species. Fucosylation was reduced by 76.1% through addition of 800 µM 2‐F‐peracetyl fucose. An increase of 40.9% in galactosylated species was achieved through the addition of 120 mM galactose in combination with 48 µM manganese and 24 µM uridine. Furthermore, 6.9% increased sialylation was detected through the addition of 30 µM dexamethasone in combination with the same manganese, uridine, and galactose mixture used to increase total galactosylation. Further compounds or combinations of additives were also efficient at achieving a smaller overall glycosylation modulation, required, for instance, during the development of biosimilars. To the best of our knowledge, no evaluation of the efficacy of such a variety of compounds in the same cell culture system has been described. The studied cell culture media additives are efficient modulators of glycosylation and are thus a valuable tool to produce recombinant glycoproteins.
Collapse
Affiliation(s)
- Janike Ehret
- Merck Life Sciences, Upstream R&D, Darmstadt, Germany
| | - Martina Zimmermann
- Merck Life Sciences, Upstream R&D, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Aline Zimmer
- Merck Life Sciences, Upstream R&D, Darmstadt, Germany
| |
Collapse
|
47
|
Schulz MA, Tian W, Mao Y, Van Coillie J, Sun L, Larsen JS, Chen YH, Kristensen C, Vakhrushev SY, Clausen H, Yang Z. Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology 2018; 28:542-549. [PMID: 29596681 DOI: 10.1093/glycob/cwy022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Precise gene editing technologies are providing new opportunities to stably engineer host cells for recombinant production of therapeutic glycoproteins with different glycan structures. The glycosylation of recombinant therapeutics has long been a focus for both quality and consistency of products and for optimizing and improving pharmacokinetic properties as well as bioactivity. Structures of glycans on therapeutic glycoproteins are important for circulation, biodistribution and bioactivity. In particular, the latter has been demonstrated for therapeutic IgG1 antibodies where the core α1,6Fucose on the conserved N-glycan at Asn297 have remarkable dampening effects on antibody effector functions. We previously explored precise gene engineering and design options for N-glycosylation in CHO cells, and here we focus on engineering options possible for N-glycans on human IgG1. We demonstrate stable precise gene engineering of rather homogenous biantennary N-glycans with and without galactose (G0F, G2F) as well as the α2,6-linked monosialylated (G2FS1) glycoform. We were unable to introduce substantial disialylated glycoforms. Instead we engineered a novel monoantennary homogeneous N-glycan design with complete α2,6-linked sialic acid capping. All N-glycoforms may be engineered with and without core α1,6Fucose. The stably engineered design options enable production of human IgG antibodies with an array of distinct glycoforms for testing and selection of optimal design for different therapeutic applications.
Collapse
Affiliation(s)
- Morten A Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yang Mao
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Joachim S Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Claus Kristensen
- GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.,GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| |
Collapse
|
48
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
49
|
Zhong X, Ma W, Meade CL, Tam AS, Llewellyn E, Cornell R, Cote K, Scarcelli JJ, Marshall JK, Tzvetkova B, Figueroa B, DiNino D, Sievers A, Lee C, Guo J, Mahan E, Francis C, Lam K, D'Antona AM, Zollner R, Zhu HL, Kriz R, Somers W, Lin L. Transient CHO expression platform for robust antibody production and its enhanced N-glycan sialylation on therapeutic glycoproteins. Biotechnol Prog 2018; 35:e2724. [PMID: 30299005 DOI: 10.1002/btpr.2724] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Weijun Ma
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Caryl L Meade
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Amy S Tam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Eliza Llewellyn
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Richard Cornell
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Kaffa Cote
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Jeffrey K Marshall
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Boriana Tzvetkova
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Bruno Figueroa
- Bioprocessing Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Dana DiNino
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Annette Sievers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Christopher Lee
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Jane Guo
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Evan Mahan
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Christopher Francis
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Khetemenee Lam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Aaron M D'Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Richard Zollner
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Hongli L Zhu
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Ron Kriz
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Will Somers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| |
Collapse
|
50
|
Metabolic engineering of CHO cells to prepare glycoproteins. Emerg Top Life Sci 2018; 2:433-442. [DOI: 10.1042/etls20180056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.
Collapse
|