1
|
Whitehead CA, Wines BD, Davies AM, McDonnell JM, Trist HM, Esparon SE, Hogarth PM. Stellabody: A novel hexamer-promoting mutation for improved IgG potency. Immunol Rev 2024; 328:438-455. [PMID: 39364646 DOI: 10.1111/imr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Advances in antibody engineering are being directed at the development of next generation immunotherapeutics with improved potency. Hexamerisation of IgG is a normal physiological aspect of IgG biology and recently described mutations that facilitate this process have a substantial impact upon monoclonal antibody behavior resulting in the elicitation of dramatically enhanced complement-dependent cytotoxicity, Fc receptor function, and enhanced antigen binding effects, such as targeted receptor agonism or microbe neutralization. Whereas the discovery of IgG hexamerisation enhancing mutations has largely focused on residues with exposure at the surface of the Fc-Fc and CH2-CH3 interfaces, our unique approach is the engineering of the mostly buried residue H429 in the CH3 domain. Selective substitution at position 429 forms the basis of Stellabody technology, where the choice of amino acid results in distinct hexamerisation outcomes. H429F results in monomeric IgG that hexamerises after target binding, so called "on-target" hexamerisation, while the H429Y mutant forms pH-sensitive hexamers in-solution prior to antigen binding. Moreover, Stellabody technologies are broadly applicable across the family of antibody-based biologic therapeutics, including conventional mAbs, bispecific mAbs, and Ig-like biologics such as Fc-fusions, with applications in diverse diseases.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna M Davies
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, London, UK
| | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, London, UK
| | - Halina M Trist
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Sandra E Esparon
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Cageling R, Carillo S, Boumeester AJ, Lubbers-Geuijen K, Bones J, Jooß K, Somsen GW. Microfluidic capillary electrophoresis - mass spectrometry for rapid charge-variant and glycoform assessment of monoclonal antibody biosimilar candidates. J Pharm Biomed Anal 2024; 248:116301. [PMID: 38901155 DOI: 10.1016/j.jpba.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Early-stage cell line screening is a vital step in developing biosimilars of therapeutic monoclonal antibodies (mAbs). While the quality of the manufactured antibodies is commonly assessed by charge-based separation methods employing UV absorbance detection, these methods lack the ability to identify resolved mAb variants. We evaluated the performance of microfluidic capillary electrophoresis coupled to mass spectrometry (MCE-MS) as a rapid tool for profiling mAb biosimilar candidates from clonal cell lines. A representative originator sample was used to develop the MCE-MS method. The addition of dimethylsulfoxide (DMSO) to the background electrolyte yielded up to 60-fold enhancement of the protein MS signal. The resulting electropherograms consistently provided resolution of mAb charge variants within 10 min. Deconvoluted mass spectra facilitated the identification of basic variants such as C-terminal lysine and proline amidation, while the acidic variants could be assigned to deamidated forms. The MCE-MS method also allowed the identification of 18 different glycoforms in biosimilar samples. To mimic early-stage cell line selection, samples from five clonal cell lines that all expressed the same biosimilar candidate mAb were compared to their originator mAb. Based on the similarity observed in charge variants and glycoform profiles acquired by MCE-MS, the most promising candidate could be selected. The MCE-MS method demonstrated good overall reproducibility, as confirmed by a transferability study involving two separate laboratories. This study highlights the efficacy of the MCE-MS method for rapid proteoform screening of clonal cell line samples, underscoring its potential significance as an analytical tool in biosimilar process development.
Collapse
Affiliation(s)
- Ruben Cageling
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands; Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland
| | - Anja J Boumeester
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands
| | - Karin Lubbers-Geuijen
- Analytical Development, Polpharma Biologics, Yalelaan 46, Utrecht, 3584 CM, the Netherlands
| | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| | - Kevin Jooß
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands.
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| |
Collapse
|
3
|
Des Soye BJ, Melani RD, Hollas MAR, Duan J, Patrie SM, Fisher TD, Mattamana BB, Daud A, Pinelli DF, Ladner DP, Kelleher NL, Forte E. Characterization of the Antibody Response to SARS-CoV-2 Infection in COVID-19 Transplant versus Nontransplant Recipients by Ig-MS. J Proteome Res 2024; 23:3944-3957. [PMID: 39146476 DOI: 10.1021/acs.jproteome.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Solid organ transplant recipients with immunosuppressant regimens to prevent rejection are less able to mount effective immune responses to pathogenic infection. Here, we apply a recently reported mass spectrometry-based serological approach known as Ig-MS to characterize immune responses against infection with SARS-CoV-2 in cohorts of transplant recipients and immunocompetent controls, both at a single early time point following COVID-19 diagnosis as well as over the course of one-month postdiagnosis. We found that the antibody repertoires generated by transplant recipients against SARS-CoV-2 do not differ significantly compared to immunocompetent individuals with regard to repertoire titer, clonality, or glycan composition. Importantly, our study is the first to characterize the evolution of antibody glycan profiles in transplant recipients with COVID-19 disease, presenting evidence that the evolution of glycan composition in these immunocompromised individuals is similar to that in immunocompetent people.
Collapse
Affiliation(s)
- Benjamin J Des Soye
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A R Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiana Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Troy D Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Basil Baby Mattamana
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Amna Daud
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| | - David F Pinelli
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniela P Ladner
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Prantl L, Heider P, Bergmeister L, Calana K, Bohn JP, Wolf D, Banki Z, Bosch A, Plach M, Huber G, Schrödel S, Thirion C, Stoiber H. Enhancement of complement-dependent cytotoxicity by linking factor-H derived short consensus repeats 19-20 to CD20 antibodies. Front Immunol 2024; 15:1379023. [PMID: 39104533 PMCID: PMC11298693 DOI: 10.3389/fimmu.2024.1379023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Antibody-mediated complement-dependent cytotoxicity (CDC) on malignant cells is regulated by several complement control proteins, including the inhibitory complement factor H (fH). fH consists of 20 short consensus repeat elements (SCRs) with specific functional domains. Previous research revealed that the fH-derived SCRs 19-20 (SCR1920) can displace full-length fH on the surface of chronic lymphocytic leukemia (CLL) cells, which sensitizes CLL cells for e.g. CD20-targeting therapeutic monoclonal antibody (mAb) induced CDC. Therefore, we constructed lentiviral vectors for the generation of cell lines that stably produce mAb-SCR-fusion variants starting from the clinically approved parental mAbs rituximab, obinutuzumab and ofatumumab, respectively. Flow-cytometry revealed that the modification of the mAbs by the SCRs does not impair the binding to CD20. Increased in vitro lysis potency compared to their parental mAbs was corroborated by showing specific and dose dependent target cell elimination by CDC when compared to their parental mAbs. Lysis of CLL cells was not affected by the depletion of NK cells, suggesting that antibody-dependent cellular cytotoxicity plays a minor role in this context. Overall, this study emphasizes the crucial role of CDC in the elimination of CLL cells by mAbs and introduces a novel approach for enhancing CDC by directly fusing fH SCR1920 with mAbs.
Collapse
MESH Headings
- Humans
- Antigens, CD20/immunology
- Antigens, CD20/genetics
- Complement Factor H/immunology
- Complement Factor H/metabolism
- Complement Factor H/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Antibody-Dependent Cell Cytotoxicity
- Rituximab/pharmacology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Cell Line, Tumor
Collapse
Affiliation(s)
- Lena Prantl
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Philipp Heider
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Lisa Bergmeister
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Katharina Calana
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Jan-Paul Bohn
- Department of Internal Medicine V, Hematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Hematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltan Banki
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | - Heribert Stoiber
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
- Lysomab GmbH, Schwaz, Austria
| |
Collapse
|
5
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Owen MD, Sacks C, Bathina S, Emmins RA, Dickson AJ. Characterising the structural and cellular role of immunoglobulin C-terminal lysine in secretory pathways. J Biotechnol 2023; 374:38-48. [PMID: 37495115 DOI: 10.1016/j.jbiotec.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Improved understanding of expression of recombinant immunoglobulin (IgG)-based therapies can decrease manufacturing process costs and bring down costs to patients. Deletion of C-terminal Lysine (C-Lys) from IgG molecules has been shown to greatly impact yield. This study set out to characterise structural components of IgG C-terminal variants which modulate protein expression by examination of the consequences of mutations at the C-terminal of IgG on expression and by the use of fluorescent C-terminal fragment fusion proteins. Cell-based and cell-free experiments were also implemented to characterise how the C-terminal differentially engages with cellular pathways to modulate expression. IgG variants engineered by removal of the C-terminal Lys were expressed at significantly lower rates than control variants by CHO (and HEK) cells. Engineered constructs of mCherry fused with short regions of the C-terminal regions of IgG mimicked the ordering of expressability observed for IgG variants. These fluorescent C-terminal fragment fusions offered the potential to profile how sequences (and point mutations) modified expression. Via combinations of cell and cell-free systems, screening across a range of variants of IgG and mCherry reporter constructs has shown that interactions between specific C-terminal amino acid sequences and the ribosome can regulate the rate and extent of expression. This study highlights the importance of amino acid sequence regulatory events determining the efficiency of production of desirable recombinant proteins, showing that wildtype C-terminal lysine is a necessary capping molecule for IgG1 expression. From a wider perspective, these data are especially significant towards the design of novel entities. The approach has also provided information about novel short C-terminal tags which may be used to provide selective synthesis of specific subunits in the production of multisubunit products. Alternative strategies for removing C-terminal amino acid heterogeneity whilst maintaining efficient rates of expression have been provided.
Collapse
Affiliation(s)
- Mark D Owen
- Department of Chemical Engineering, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | - Alan J Dickson
- Department of Chemical Engineering, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
7
|
Barbero LM, Ianni AD, Molinaro F, Cowan KJ, Sirtori FR. Hybrid liquid chromatography high resolution and accuracy mass spectrometry approach for quantification of antibody-drug conjugates at the intact protein level in biological samples. Eur J Pharm Sci 2023; 188:106502. [PMID: 37336420 DOI: 10.1016/j.ejps.2023.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Preclinical in vivo and in vitro characterization of Antibody-Drug Conjugates (ADCs) involves the development of several bioanalytical methods to address many drug exposure questions. The current pharma industry approach requires at least three different assays that must be run, i.e., total antibody (mAb), conjugated payload or conjugated mAb, and free payload assays. Herein we present analytical performances of a quantitative hybrid Ligand Binding/Liquid Chromatography High Resolution and Accuracy Mass Spectrometry (LB/LCHRAM) method that can condense much of the necessary bioanalytical information in one method. The method includes an immuno-capture step, and it detects whole ADC molecules. It was applied to plasma mouse samples and showed reliable bioanalytical performance according to full method validation standards. Quantitation using extracted ion chromatograms and deconvoluted mass peaks was evaluated. The limit of quantitation resulted in 0.5ng of protein on column with a linear dynamic range spanning from 0.5 to 10μg/mL. Moreover, lower drug-to-antibody ratio (DAR) ADC species can be simultaneously detected, also enabling qualitative characterization of in vivo ADC conjugation.
Collapse
Affiliation(s)
- Luca M Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy.
| | - Andrea Di Ianni
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy; Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Molinaro
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| | - Kyra J Cowan
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| |
Collapse
|
8
|
Nimmerjahn F, Vidarsson G, Cragg MS. Effect of posttranslational modifications and subclass on IgG activity: from immunity to immunotherapy. Nat Immunol 2023; 24:1244-1255. [PMID: 37414906 DOI: 10.1038/s41590-023-01544-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023]
Abstract
Humoral immune responses are characterized by complex mixtures of polyclonal antibody species varying in their isotype, target epitope specificity and affinity. Posttranslational modifications occurring during antibody production in both the antibody variable and constant domain create further complexity and can modulate antigen specificity and antibody Fc-dependent effector functions, respectively. Finally, modifications of the antibody backbone after secretion may further impact antibody activity. An in-depth understanding of how these posttranslational modifications impact antibody function, especially in the context of individual antibody isotypes and subclasses, is only starting to emerge. Indeed, only a minute proportion of this natural variability in the humoral immune response is currently reflected in therapeutic antibody preparations. In this Review, we summarize recent insights into how IgG subclass and posttranslational modifications impact IgG activity and discuss how these insights may be used to optimize therapeutic antibody development.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Division of Genetics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Zhang W, Wang H, Feng N, Li Y, Gu J, Wang Z. Developability assessment at early-stage discovery to enable development of antibody-derived therapeutics. Antib Ther 2022; 6:13-29. [PMID: 36683767 PMCID: PMC9847343 DOI: 10.1093/abt/tbac029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Developability refers to the likelihood that an antibody candidate will become a manufacturable, safe and efficacious drug. Although the safety and efficacy of a drug candidate will be well considered by sponsors and regulatory agencies, developability in the narrow sense can be defined as the likelihood that an antibody candidate will go smoothly through the chemistry, manufacturing and control (CMC) process at a reasonable cost and within a reasonable timeline. Developability in this sense is the focus of this review. To lower the risk that an antibody candidate with poor developability will move to the CMC stage, the candidate's developability-related properties should be screened, assessed and optimized as early as possible. Assessment of developability at the early discovery stage should be performed in a rapid and high-throughput manner while consuming small amounts of testing materials. In addition to monoclonal antibodies, bispecific antibodies, multispecific antibodies and antibody-drug conjugates, as the derivatives of monoclonal antibodies, should also be assessed for developability. Moreover, we propose that the criterion of developability is relative: expected clinical indication, and the dosage and administration route of the antibody could affect this criterion. We also recommend a general screening process during the early discovery stage of antibody-derived therapeutics. With the advance of artificial intelligence-aided prediction of protein structures and features, computational tools can be used to predict, screen and optimize the developability of antibody candidates and greatly reduce the risk of moving a suboptimal candidate to the development stage.
Collapse
Affiliation(s)
- Weijie Zhang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Hao Wang
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Nan Feng
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Yifeng Li
- Technology and Process Development, WuXi Biologicals, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jijie Gu
- Biologicals Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China
| | - Zhuozhi Wang
- To whom correspondence should be addressed. Biologics Innovation and Discovery, WuXi Biologicals, 1951 Huifeng West Road, Fengxian District, Shanghai 201400, China, Phone number: +86-21-50518899
| |
Collapse
|
11
|
Ayalew L, Chan P, Hu Z, Shen A, Duenas E, Kirschbrown W, Schick AJ, Chen Y, Kim MT. C-Terminal Lysine Processing of IgG in Human Suction Blister Fluid: Implications for Subcutaneous Administration. Mol Pharm 2022; 19:4043-4054. [DOI: 10.1021/acs.molpharmaceut.2c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luladey Ayalew
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Phyllis Chan
- Clinical Pharmacology, Genentech, South San Francisco, California 94080, United States
| | - Zhilan Hu
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California 94080, United States
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California 94080, United States
| | - Eileen Duenas
- Purification Development, Genentech, South San Francisco, California 94080, United States
| | - Whitney Kirschbrown
- Clinical Pharmacology, Genentech, South San Francisco, California 94080, United States
| | - Arthur J. Schick
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Yan Chen
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Michael T. Kim
- Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Gurel B, Berksoz M, Capkin E, Parlar A, Pala MC, Ozkan A, Capan Y, Daglikoca DE, Yuce M. Structural and Functional Analysis of CEX Fractions Collected from a Novel Avastin® Biosimilar Candidate and Its Innovator: A Comparative Study. Pharmaceutics 2022; 14:pharmaceutics14081571. [PMID: 36015197 PMCID: PMC9415858 DOI: 10.3390/pharmaceutics14081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Avastin® is a humanized recombinant monoclonal antibody used to treat cancer by targeting VEGF-A to inhibit angiogenesis. SIMAB054, an Avastin® biosimilar candidate developed in this study, showed a different charge variant profile than its innovator. Thus, it is fractionated into acidic, main, and basic isoforms and collected physically by Cation Exchange Chromatography (CEX) for a comprehensive structural and functional analysis. The innovator product, fractionated into the same species and collected by the same method, is used as a reference for comparative analysis. Ultra-Performance Liquid Chromatography (UPLC) ESI-QToF was used to analyze the modifications leading to charge heterogeneities at intact protein and peptide levels. The C-terminal lysine clipping and glycosylation profiles of the samples were monitored by intact mAb analysis. The post-translational modifications, including oxidation, deamidation, and N-terminal pyroglutamic acid formation, were determined by peptide mapping analysis in the selected signal peptides. The relative binding affinities of the fractionated charge isoforms against the antigen, VEGF-A, and the neonatal receptor, FcRn, were revealed by Surface Plasmon Resonance (SPR) studies. The results show that all CEX fractions from the innovator product and the SIMAB054 shared the same structural variants, albeit in different ratios. Common glycoforms and post-translational modifications were the same, but at different percentages for some samples. The dissimilarities were mostly originating from the presence of extra C-term Lysin residues, which are prone to enzymatic degradation in the body, and thus they were previously assessed as clinically irrelevant. Another critical finding was the presence of different glyco proteoforms in different charge species, such as increased galactosylation in the acidic and afucosylation in the basic species. SPR characterization of the isolated charge variants further confirmed that basic species found in the CEX analyses of the biosimilar candidate were also present in the innovator product, although at lower amounts. The charge variants’ in vitro antigen- and neonatal receptor-binding activities varied amongst the samples, which could be further investigated in vivo with a larger sample set to reveal the impact on the pharmacokinetics of drug candidates. Minor structural differences may explain antigen-binding differences in the isolated charge variants, which is a key parameter in a comparability exercise. Consequently, such a biosimilar candidate may not comply with high regulatory standards unless the binding differences observed are justified and demonstrated not to have any clinical impact.
Collapse
Affiliation(s)
- Busra Gurel
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
| | - Melike Berksoz
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Eda Capkin
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Meltem Corbacioglu Pala
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Aylin Ozkan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Yılmaz Capan
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
| | - Duygu Emine Daglikoca
- ILKO ARGEM Biotechnology R&D Center, Istanbul 34906, Turkey; (M.B.); (E.C.); (M.C.P.); (A.O.); (Y.C.)
- Correspondence: (D.E.D.); (M.Y.)
| | - Meral Yuce
- SUNUM Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (D.E.D.); (M.Y.)
| |
Collapse
|
13
|
Singh SK, Kumar D, Nagpal S, Dubey SK, Rathore AS. A Charge Variant of Bevacizumab Offers Enhanced FcRn-Dependent Pharmacokinetic Half-Life and Efficacy. Pharm Res 2022; 39:851-865. [PMID: 35355206 DOI: 10.1007/s11095-022-03236-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lysine variants of monoclonal antibodies (mAbs) result from incomplete clipping of the C-terminal lysine residues of the heavy chain. Although the structure of the lysine variants has been determined for several mAb products, a detailed study that investigates the impact of lysine charge variants on PK/PD and preclinical safety is yet to be published. OBJECTIVE An in-depth investigation of the impact of C- terminal lysine clipping of mAbs on safety and efficacy for bevacizumab charge variants. METHOD Charge variant isolation using semi-preparative chromatography is followed by a comparative analysis of FcRn binding, pharmacokinetics, and pharmacodynamics in relevant animal models. RESULTS K1 variant exhibited improved FcRn binding affinity (4-fold), half-life (1.3-fold), and anti-tumor activity (1.3-fold) as compared to the K0 (main) product. However, the K2 variant, even though exhibited higher FcRn affinity (2-fold), displayed lower half-life (1.6-fold) and anti-tumor activity at medium and low doses. Differential proteomic analysis revealed that seven pathways (such as glycolysis, gluconeogenesis, carbon metabolism, synthesis of amino acids) were significantly enriched. Higher efficacy of the K1 variant is likely due to higher bioavailability of the drug, leading to complete downregulation of the pathways that facilitate catering of the energy requirements of the proliferating tumor cells. On the contrary, the K2 variant exhibits a shorter half-life, resulting only in partial reduction in the metabolic/energy requirements of the growing tumor cells. CONCLUSION Overall, we conclude that the mAb half-life, dosage, and efficacy of a biotherapeutic product are significantly impacted by the charge variant profile of a biotherapeutic product.
Collapse
Affiliation(s)
- Sumit K Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Deepak Kumar
- Department of Chemical Engineering, IIT, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | | | - Sunil K Dubey
- R&D Healthcare Division, Emami Limited, Kolkata, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
14
|
Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs 2022; 14:2020082. [PMID: 35104168 PMCID: PMC8812776 DOI: 10.1080/19420862.2021.2020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation. We further evaluate the opportunities and challenges of using biopharmaceutical informatics for drug discovery and optimization. Finally, we discuss the potential of developability guidelines based on in silico metrics that can be used for the assessment of antibody stability and manufacturability.
Collapse
Affiliation(s)
- Rahul Khetan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | | | - Uddipan Kar
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew C R Martin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
15
|
Kaya SI, Cetinkaya A, Caglayan MG, Ozkan SA. Recent biopharmaceutical applications of capillary electrophoresis methods on recombinant DNA technology-based products. Electrophoresis 2021; 43:1035-1049. [PMID: 34529858 DOI: 10.1002/elps.202100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Biopharmaceuticals (recombinant technology-based products, vaccines, whole blood and blood components, gene therapy, cells, tissues, etc.,) are described as biological medical products produced from various living sources such as human, microbial, animal, and so on by manufacturing, extraction, or semi-synthesis. They are complex molecules having high molecular weights. For their safety and efficacy, their structural, clinical, physicochemical, and chemical features must be carefully controlled, and they must be well characterized by analytical techniques before the approval of the final product. Capillary electrophoresis (CE) having versatile modes can provide valuable safety and efficacy information, such as amino acid sequence, size variants (low and high molecular weight variants), charged variants (acidic and basic impurities), aggregates, N-linked glycosylation, and O-linked glycosylation. There are numerous applications of CE in the literature. In this review, the most significant and recent studies on the analysis of recombinant DNA technology-based products using different CE modes in the last ten years have been overviewed. It was seen that the researches mostly focus on the analysis of mAbs and IgG. In addition, in recent years, researchers have started to prefer CE combined mass spectrometry (MS) techniques to provide a more detailed characterization for protein and peptide fragments.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet G Caglayan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Di Marco F, Berger T, Esser-Skala W, Rapp E, Regl C, Huber CG. Simultaneous Monitoring of Monoclonal Antibody Variants by Strong Cation-Exchange Chromatography Hyphenated to Mass Spectrometry to Assess Quality Attributes of Rituximab-Based Biotherapeutics. Int J Mol Sci 2021; 22:9072. [PMID: 34445776 PMCID: PMC8396523 DOI: 10.3390/ijms22169072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20—ZENIT, 39120 Magdeburg, Germany;
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
17
|
Identification, characterization and control of a sequence variant in monoclonal antibody drug product: a case study. Sci Rep 2021; 11:13233. [PMID: 34168178 PMCID: PMC8225904 DOI: 10.1038/s41598-021-92338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sequence variants (SV) in protein bio therapeutics can be categorized as unwanted impurities and may raise serious concerns in efficacy and safety of the product. Early detection of specific sequence modifications, that can result in altered physicochemical and or biological properties, is therefore desirable in product manufacturing. Because of their low abundance, and finite resolving power of conventional analytical techniques, they are often overlooked in early drug development. Here, we present a case study where trace amount of a sequence variant is identified in a monoclonal antibody (mAb) based therapeutic protein by LC-MS/MS and the structural and functional features of the SV containing mAb is assessed using appropriate analytical techniques. Further, a very sensitive selected reaction monitoring (SRM) technique is developed to quantify the SV which revealed both prominent and inconspicuous nature of the variant in process chromatography. We present the extensive characterization of a sequence variant in protein biopharmaceutical and first report on control of sequence variants to < 0.05% in final drug product by utilizing SRM based mass spectrometry method during the purification steps.
Collapse
|
18
|
Faid V, Leblanc Y, Berger M, Seifert A, Bihoreau N, Chevreux G. C-terminal lysine clipping of IgG1: impact on binding to human FcγRIIIa and neonatal Fc receptors. Eur J Pharm Sci 2021; 159:105730. [PMID: 33493670 DOI: 10.1016/j.ejps.2021.105730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (mAbs) display numerous structural attributes, some of them may impact their safety and/or efficacy profiles. C-terminal lysine clipping is a common phenomenon occurring during the bioproduction of mAbs and leads to variable amounts of final process-related charge variants. If Fc-glycosylation has been by far the most documented critical quality attribute (CQA), the potential impacts of mAb C-terminal lysine content is far less reported, particularly on the ability of these basic variants to bind human Fc receptors. To address this question, three charge variant species having zero (K0), one (K1) and two (K2) C-terminal lysine(s) were isolated with high purity from an in-house human IgG1 by preparative strong-cation exchange (SCX) chromatography. A comprehensive biophysical characterization of these three fractions was undertaken, demonstrating their high similarity in terms of structural homogeneity, with a particular attention paid on their respective N-glycosylation profiles. The binding affinity of the fractions to human FcγRIIIa-Val176 was assessed both by affinity chromatography and surface plasmon resonance (SPR), and to human neonatal Fc receptor (FcRn) by affinity chromatography. Results demonstrate that the three charge variants did not show any significant binding difference for the two tested human Fc receptors, translating certainly to comparable biological properties. As a consequence, C-terminal lysine clipping of the present therapeutic IgG1 should not impact both FcRn-dependent pharmacokinetic profiles and FcγRIIIa-driven cytotoxic activities. The methods used in this study can be widely applied to other IgG1 to define criticality of the C-terminal lysine clipping as a CQA.
Collapse
Affiliation(s)
- Valegh Faid
- Analytical Department, LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf (Les Ulis), France.
| | - Yann Leblanc
- Analytical Department, LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf (Les Ulis), France
| | - Marie Berger
- Analytical Department, LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf (Les Ulis), France
| | - Alexander Seifert
- Analytical Department, LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf (Les Ulis), France
| | - Nicolas Bihoreau
- Analytical Department, LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf (Les Ulis), France
| | - Guillaume Chevreux
- Analytical Department, LFB Biotechnologies, 3 avenue des Tropiques, 91958 Courtaboeuf (Les Ulis), France
| |
Collapse
|
19
|
Wei B, Gao X, Cadang L, Izadi S, Liu P, Zhang HM, Hecht E, Shim J, Magill G, Pabon JR, Dai L, Phung W, Lin E, Wang C, Whang K, Sanchez S, Oropeza J, Camperi J, Zhang J, Sandoval W, Zhang YT, Jiang G. Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. MAbs 2021; 13:1893427. [PMID: 33682619 PMCID: PMC7946005 DOI: 10.1080/19420862.2021.1893427] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fc galactosylation is a critical quality attribute for anti-tumor recombinant immunoglobulin G (IgG)-based monoclonal antibody (mAb) therapeutics with complement-dependent cytotoxicity (CDC) as the mechanism of action. Although the correlation between galactosylation and CDC has been known, the underlying structure–function relationship is unclear. Heterogeneity of the Fc N-glycosylation produced by Chinese hamster ovary (CHO) cell culture biomanufacturing process leads to variable CDC potency. Here, we derived a kinetic model of galactose transfer reaction in the Golgi apparatus and used this model to determine the correlation between differently galactosylated species from CHO cell culture process. The model was validated by a retrospective data analysis of more than 800 historical samples from small-scale and large-scale CHO cell cultures. Furthermore, using various analytical technologies, we discovered the molecular basis for Fc glycan terminal galactosylation changing the three-dimensional conformation of the Fc, which facilitates the IgG1 hexamerization, thus enhancing C1q avidity and subsequent complement activation. Our study offers insight into the formation of galactosylated species, as well as a novel three-dimensional understanding of the structure–function relationship of terminal galactose to complement activation in mAb therapeutics.
Collapse
Affiliation(s)
- Bingchuan Wei
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States.,Small Molecule Analytical Chemistry, Genentech Inc, South San Francisco, United States
| | - Xuan Gao
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Saeed Izadi
- Pharmaceutical Development, Genentech Inc., South San Francisco, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States.,Department of Chemistry and Biochemistry, Florida State University,Florida, United States
| | - Hui-Min Zhang
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Elizabeth Hecht
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, United States
| | - Jeongsup Shim
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Gordon Magill
- Department of Cell Culture and Bioprocess Operations, Genentech Inc., South San Francisco, United States
| | - Juan Rincon Pabon
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States.,Department of Chemistry, University of Kansas, Lawrence United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Wilson Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, United States
| | - Elaine Lin
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Christopher Wang
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Kevin Whang
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Sean Sanchez
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Jose Oropeza
- Biological Technologies, Genentech Inc., South San Francisco, United States
| | - Julien Camperi
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Jennifer Zhang
- Protein Analytical Chemistry, Genentech Inc., South San Francisco,United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, United States
| | | | - Guoying Jiang
- Biological Technologies, Genentech Inc., South San Francisco, United States
| |
Collapse
|
20
|
Sénard T, Gargano AFG, Falck D, de Taeye SW, Rispens T, Vidarsson G, Wuhrer M, Somsen GW, Domínguez-Vega E. MS-Based Allotype-Specific Analysis of Polyclonal IgG-Fc N-Glycosylation. Front Immunol 2020; 11:2049. [PMID: 32973813 PMCID: PMC7472933 DOI: 10.3389/fimmu.2020.02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Current approaches to study glycosylation of polyclonal human immunoglobulins G (IgG) usually imply protein digestion or glycan release. While these approaches allow in-depth characterization, they also result in a loss of valuable information regarding certain subclasses, allotypes and co-occuring post-translational modifications (PTMs). Unfortunately, the high variability of polyclonal IgGs makes their intact mass spectrometry (MS) analysis extremely challenging. We propose here a middle-up strategy for the analysis of the intact fragment crystallizable (Fc) region of human plasma IgGs, with the aim of acquiring integrated information of the N-glycosylation and other PTMs of subclasses and allotypes. Human plasma IgG was isolated using Fc-specific beads followed by an on-bead C H 2 domain digestion with the enzyme IdeS. The obtained mixture of Fc subunits was analyzed by capillary electrophoresis (CE) and hydrophilic interaction liquid chromatography (HILIC) hyphenated with MS. CE-MS provided separation of different IgG-subclasses and allotypes, while HILIC-MS allowed resolution of the different glycoforms and their oxidized variants. The orthogonality of these techniques was key to reliably assign Fc allotypes. Five individual donors were analyzed using this approach. Heterozygosis was observed in all the analyzed donors resulting in a total of 12 allotypes identified. The assignments were further confirmed using recombinant monoclonal IgG allotypes as standards. While the glycosylation patterns were similar within allotypes of the same subclass, clear differences were observed between IgG subclasses and donors, highlighting the relevance of the proposed approach. In a single analysis, glycosylation levels specific for each allotype, relative abundances of subclasses and information on co-occurring modifications are obtained. This middle-up method represents an important step toward a comprehensive analysis of immunoglobulin G-Fc variants.
Collapse
Affiliation(s)
- Thomas Sénard
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea F G Gargano
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam Analytical Chemistry Group, Amsterdam, Netherlands.,Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Govert W Somsen
- Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Zhang W, Liu X, Tang H, Zhang X, Zhou Y, Fan L, Wang H, Tan WS, Zhao L. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl Microbiol Biotechnol 2020; 104:6953-6966. [PMID: 32577803 DOI: 10.1007/s00253-020-10744-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine (Tyr) is crucial to the maintenance of the monoclonal antibody (mAb) titers and quality attributes in fed-batch cultures of recombinant Chinese hamster ovary (rCHO) cells. However, the relation between tyrosine and these aspects is not yet fully defined. In order to further elucidate such a relation, two groups of fed-batch experiments with high tyrosine (H-T) or low tyrosine (L-T) additions producing an IgG1 monoclonal antibody against CD20 were implemented to investigate the intracellular and extracellular effects of tyrosine on the culture performance. It was found that the scarcity of tyrosine led to the distinctive reduction in both viable cell density and antibody specific production rate, hence the sharply reduced titer, possibly related to the impaired translation efficiency caused by the substrate limitation of tyrosine. In addition, alterations to the critical quality attributes were detected in the L-T group, compared to those in the H-T condition. Notable decrease in the contents of intact antibody was found under the L-T condition because of the elevated reductive level in the supernatant. Moreover, the aggregate content in the L-T condition was also reduced, probably resulting from the accumulation of extracellular cystine. In particular, the lysine variant content noticeably increased with tyrosine limitation owing to the downregulation of two carboxypeptidases, i.e., CpB and CpH. Overall, understanding the role of tyrosine in these aspects is fundamental to the increase of product titers and control of critical quality attributes in the monoclonal antibody production of rCHO cell fed-batch cultures. KEY POINTS: • Tyrosine is essential in the maintenance of product titers and the control of product qualities in high cell density cultivations in rCHO cell. • This study revealed the bottleneck of decreased qmAbupon the deficiency of tyrosine. • The impact of tyrosine on the critical product qualities and the underlying mechanisms were also thoroughly assessed.
Collapse
Affiliation(s)
- Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xuping Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xinran Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Yanan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Hangzhou, 311404, Zhejiang, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China.
| |
Collapse
|
22
|
Chu TH, Crowley AR, Backes I, Chang C, Tay M, Broge T, Tuyishime M, Ferrari G, Seaman MS, Richardson SI, Tomaras GD, Alter G, Leib D, Ackerman ME. Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies. PLoS Pathog 2020; 16:e1008083. [PMID: 32092122 PMCID: PMC7058349 DOI: 10.1371/journal.ppat.1008083] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/05/2020] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Antibody functions such as neutralization require recognition of antigen by the Fab region, while effector functions are additionally mediated by interactions of the Fc region with soluble factors and cellular receptors. The efficacy of individual antibodies varies based on Fab domain characteristics, such as affinity for antigen and epitope-specificity, and on Fc domain characteristics that include isotype, subclass, and glycosylation profile. Here, a series of HIV-specific antibody subclass and hinge variants were constructed and tested to define those properties associated with differential effector function. In the context of the broadly neutralizing CD4 binding site-specific antibody VRC01 and the variable loop (V3) binding antibody 447-52D, hinge truncation and extension had a considerable impact on the magnitude of phagocytic activity of both IgG1 and IgG3 subclasses. The improvement in phagocytic potency of antibodies with extended hinges could not be attributed to changes in either intrinsic antigen or antibody receptor affinity. This effect was specific to phagocytosis and was generalizable to different phagocytes, at different effector cell to target ratios, for target particles of different size and composition, and occurred across a range of antibody concentrations. Antibody dependent cellular cytotoxicity and neutralization were generally independent of hinge length, and complement deposition displayed variable local optima. In vivo stability testing showed that IgG molecules with altered hinges can exhibit similar biodistribution and pharmacokinetic profiles as IgG1. Overall, these results suggest that when high phagocytic activity is desirable, therapeutic antibodies may benefit from being formatted as human IgG3 or engineered IgG1 forms with elongated hinges.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Andrew R. Crowley
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Iara Backes
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Cheryl Chang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Matthew Tay
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thomas Broge
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marina Tuyishime
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Simone I. Richardson
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - David Leib
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
23
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
24
|
Lubbers R, Oostindie SC, Dijkstra DJ, Parren PWHI, Verheul MK, Abendstein L, Sharp TH, de Ru A, Janssen GMC, van Veelen PA, van den Bremer ETJ, Bleijlevens B, de Kreuk BJ, Beurskens FJ, Trouw LA. Carbamylation reduces the capacity of IgG for hexamerization and complement activation. Clin Exp Immunol 2019; 200:1-11. [PMID: 31853959 PMCID: PMC7066385 DOI: 10.1111/cei.13411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a post‐translational modification that can be detected on a range of proteins, including immunoglobulin (Ig)G, in several clinical conditions. Carbamylated IgG (ca‐IgG) was reported to lose its capacity to trigger complement activation, but the mechanism remains unclear. Because C1q binds with high affinity to hexameric IgG, we analyzed whether carbamylation of IgG affects binding of C1q, hexamerization and complement‐dependent cytotoxicity (CDC). Synovial tissues of rheumatoid arthritis (RA) patients were analyzed for the presence of ca‐IgG in vivo. Synovial tissues from RA patients were analyzed for the presence of ca‐IgG using mass spectrometry (MS). Monomeric or hexameric antibodies were carbamylated in vitro and quality in solution was controlled. The capacity of ca‐IgG to activate complement was analyzed in enzyme‐linked immunosorbent (ELISAs) and cellular CDC assays. Using MS, we identified ca‐IgG to be present in the joints of RA patients. Using in vitro carbamylated antibodies, we observed that ca‐IgG lost its capacity to activate complement in both solid‐phase and CDC assays. Mixing ca‐IgG with non‐modified IgG did not result in effective inhibition of complement activation by ca‐IgG. Carbamylation of both monomeric IgG and preformed hexameric IgG greatly impaired the capacity to trigger complement activation. Furthermore, upon carbamylation, the preformed hexameric IgG dissociated into monomeric IgG in solution, indicating that carbamylation influences both hexamerization and C1q binding. In conclusion, ca‐IgG can be detected in vivo and has a strongly reduced capacity to activate complement which is, in part, mediated through a reduced ability to form hexamers.
Collapse
Affiliation(s)
- R Lubbers
- Department Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - S C Oostindie
- Genmab, Utrecht, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - D J Dijkstra
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - P W H I Parren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.,Lava Therapeutics, Utrecht, the Netherlands
| | - M K Verheul
- Department Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - L Abendstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - T H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - A de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - G M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - P A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - L A Trouw
- Department Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
25
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
26
|
Lippold S, Nicolardi S, Wuhrer M, Falck D. Proteoform-Resolved FcɤRIIIa Binding Assay for Fab Glycosylated Monoclonal Antibodies Achieved by Affinity Chromatography Mass Spectrometry of Fc Moieties. Front Chem 2019; 7:698. [PMID: 31709228 PMCID: PMC6822288 DOI: 10.3389/fchem.2019.00698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
Fcɤ receptors (FcɤR) mediate key functions in immunological responses. For instance, FcɤRIIIa is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). FcɤRIIIa interacts with the fragment crystallizable (Fc) of immunoglobulin G (IgG). This interaction is known to be highly dependent on IgG Fc glycosylation. Thus, the impact of glycosylation features on this interaction has been investigated in several studies by numerous analytical and biochemical techniques. FcɤRIIIa affinity chromatography (AC) hyphenated to mass spectrometry (MS) is a powerful tool to address co-occurring Fc glycosylation heterogeneity of monoclonal antibodies (mAbs). However, MS analysis of mAbs at the intact level may provide limited proteoform resolution, for example, when additional heterogeneity is present, such as antigen-binding fragment (Fab) glycosylation. Therefore, we investigated middle-up approaches to remove the Fab and performed AC-MS on the IgG Fc to evaluate its utility for FcɤRIIIa affinity assessment compared to intact IgG analysis. We found the protease Kgp to be particularly suitable for a middle-up FcɤRIIIa AC-MS workflow as demonstrated for the Fab glycosylated cetuximab. The complexity of the mass spectra of Kgp digested cetuximab was significantly reduced compared to the intact level while affinity was fully retained. This enabled a reliable assignment and relative quantitation of Fc glycoforms in FcɤRIIIa AC-MS. In conclusion, our workflow allows a functional separation of differentially glycosylated IgG Fc. Consequently, applicability of FcɤRIIIa AC-MS is extended to Fab glycosylated IgG, i.e., cetuximab, by significantly reducing ambiguities in glycoform assignment vs. intact analysis.
Collapse
Affiliation(s)
- Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Insights from capillary electrophoresis approaches for characterization of monoclonal antibodies and antibody drug conjugates in the period 2016–2018. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1122-1123:1-17. [DOI: 10.1016/j.jchromb.2019.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
|
28
|
Strasser J, de Jong RN, Beurskens FJ, Wang G, Heck AJR, Schuurman J, Parren PWHI, Hinterdorfer P, Preiner J. Unraveling the Macromolecular Pathways of IgG Oligomerization and Complement Activation on Antigenic Surfaces. NANO LETTERS 2019; 19:4787-4796. [PMID: 31184907 DOI: 10.1021/acs.nanolett.9b02220] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
IgG antibodies play a central role in protection against pathogens by their ability to alert and activate the innate immune system. Here, we show that IgGs assemble into oligomers on antigenic surfaces through an ordered, Fc domain-mediated process that can be modulated by protein engineering. Using high-speed atomic force microscopy, we unraveled the molecular events of IgG oligomer formation on surfaces. IgG molecules were recruited from solution although assembly of monovalently binding molecules also occurred through lateral diffusion. Monomers were observed to assemble into hexamers with all intermediates detected, but in which only hexamers bound C1. Functional characterization of oligomers on cells also demonstrated that C1 binding to IgG hexamers was a prerequisite for maximal activation, whereas tetramers, trimers, and dimers were mostly inactive. We present a dynamic IgG oligomerization model, which provides a framework for exploiting the macromolecular assembly of IgGs on surfaces for tool, immunotherapy, and vaccine design.
Collapse
Affiliation(s)
- Jürgen Strasser
- University of Applied Sciences Upper Austria , 4020 Linz , Austria
| | | | | | - Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
- School of Chemistry and Materials Science , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
- Netherlands Proteomics Centre , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
- Netherlands Proteomics Centre , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | | | - Paul W H I Parren
- Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , 2333 ZA Leiden , The Netherlands
- Lava Therapeutics , 3584 CM Utrecht , The Netherlands
| | | | - Johannes Preiner
- University of Applied Sciences Upper Austria , 4020 Linz , Austria
| |
Collapse
|
29
|
Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: an accessory monitoring tool for process development. J Ind Microbiol Biotechnol 2019; 46:1167-1178. [PMID: 31175523 PMCID: PMC6697719 DOI: 10.1007/s10295-019-02202-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Recombinant monoclonal antibodies are predominantly produced in mammalian cell culture bioprocesses. Post-translational modifications affect the micro-heterogeneity of the product and thereby influence important quality attributes, such as stability, solubility, pharmacodynamics and pharmacokinetics. The analysis of the surface charge distribution of monoclonal antibodies provides aggregated information about these modifications. In this work, we established a direct injection pH gradient cation exchange chromatography method, which determines charge heterogeneity from cell culture supernatant without any purification steps. This tool was further applied to monitor processes that were performed under certain process conditions. Concretely, we were able to provide insights into charge variant formation during a fed-batch process of a Chinese hamster ovary cell culture, in turn producing a monoclonal antibody under varying temperatures and glucose feed strategies. Glucose concentration impacted the total emergence of acidic variants, whereas the variation of basic species was mainly dependent on process temperature. The formation rates of acidic species were described with a second-order reaction, where a temperature increase favored the conversion. This platform method will aid as a sophisticated optimization tool for mammalian cell culture processes. It provides a quality fingerprint for the produced mAb, which can be tested, compared to the desired target and confirmed early in the process chain.
Collapse
|
30
|
de Taeye SW, Rispens T, Vidarsson G. The Ligands for Human IgG and Their Effector Functions. Antibodies (Basel) 2019; 8:E30. [PMID: 31544836 PMCID: PMC6640714 DOI: 10.3390/antib8020030] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Steven W de Taeye
- Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
- Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | - Theo Rispens
- Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | - Gestur Vidarsson
- Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, Wyatt RJ. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front Immunol 2019; 10:504. [PMID: 30941137 PMCID: PMC6433978 DOI: 10.3389/fimmu.2019.00504] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and a common cause of end-stage renal disease. Evaluation of a kidney biopsy is necessary for diagnosis, with routine immunofluorescence microscopy revealing dominant or co-dominant IgA immunodeposits usually with complement C3 and sometimes IgG and/or IgM. IgA nephropathy reduces life expectancy by more than 10 years and leads to kidney failure in 20–40% of patients within 20 years of diagnosis. There is accumulating clinical, genetic, and biochemical evidence that complement plays an important role in the pathogenesis of IgA nephropathy. The presence of C3 differentiates the diagnosis of IgA nephropathy from the subclinical deposition of glomerular IgA. Markers for the activation of the alternative and mannan-binding lectin (MBL) pathways in renal-biopsy specimens are associated with disease activity and portend a worse renal outcome. Complement proteins in the circulation have also been evaluated in IgA nephropathy and found to be of prognostic value. Recently, genetic studies have identified IgA nephropathy-associated loci. Within these loci are genes encoding products involved in complement regulation and interaction with immune complexes. Put together, these data identify the complement cascade as a rational treatment target for this chronic kidney disease. Recent case reports on the successful use of humanized anti-C5 monoclonal antibody eculizumab are consistent with this hypothesis, but a better understanding of the role of complement in IgA nephropathy is needed to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Dana V Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Maillard
- Department of Nephrology, Dialysis, Transplantation, CHU de Saint-Etienne, GIMAP, EA3064, Université Jean Monnet, COMUE Université de Lyon, Rhône-Alpes, France
| | - Bruce A Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert J Wyatt
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
32
|
Beck A, Liu H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies (Basel) 2019; 8:antib8010018. [PMID: 31544824 PMCID: PMC6640695 DOI: 10.3390/antib8010018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) intended for therapeutic usage are required to be thoroughly characterized, which has promoted an extensive effort towards the understanding of the structures and heterogeneity of this major class of molecules. Batch consistency and comparability are highly relevant to the successful pharmaceutical development of mAbs and related products. Small structural modifications that contribute to molecule variants (or proteoforms) differing in size, charge or hydrophobicity have been identified. These modifications may impact (or not) the stability, pharmacokinetics, and efficacy of mAbs. The presence of the same type of modifications as found in endogenous immunoglobulin G (IgG) can substantially lower the safety risks of mAbs. The knowledge of modifications is also critical to the ranking of critical quality attributes (CQAs) of the drug and define the Quality Target Product Profile (QTPP). This review provides a summary of the current understanding of post-translational and physico-chemical modifications identified in recombinant mAbs and endogenous IgGs at physiological conditions.
Collapse
Affiliation(s)
- Alain Beck
- Biologics CMC and developability, IRPF, Center d'immunologie Pierre Fabre, St Julien-en-Genevois CEDEX, 74160 Saint-Julien en Genevois, France.
| | - Hongcheng Liu
- Anokion, 50 Hampshire Street, Suite 402, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 2018; 11:239-264. [PMID: 30543482 DOI: 10.1080/19420862.2018.1553476] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing attention has been paid to developability assessment with the understanding that thorough evaluation of monoclonal antibody lead candidates at an early stage can avoid delays during late-stage development. The concept of developability is based on the knowledge gained from the successful development of approximately 80 marketed antibody and Fc-fusion protein drug products and from the lessons learned from many failed development programs over the last three decades. Here, we reviewed antibody quality attributes that are critical to development and traditional and state-of-the-art analytical methods to monitor those attributes. Based on our collective experiences, a practical workflow is proposed as a best practice for developability assessment including in silico evaluation, extended characterization and forced degradation using appropriate analytical methods that allow characterization with limited material consumption and fast turnaround time.
Collapse
Affiliation(s)
- Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | - Dongdong Wang
- b Analytical Department , Bioanalytix, Inc ., Cambridge , MA , USA
| | - Bruce Mason
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tony Rossomando
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Ning Li
- d Analytical Chemistry , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Dingjiang Liu
- e Formulation Development , Regeneron Pharmaceuticals, Inc ., Tarrytown , NY , USA
| | - Jason K Cheung
- f Pharmaceutical Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Wei Xu
- g Analytical Method Development , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Smita Raghava
- h Sterile Formulation Sciences , MRL, Merck & Co., Inc ., Kenilworth , NJ , USA
| | - Amit Katiyar
- i Analytical Development , Bristol-Myers Squibb , Pennington , NJ , USA
| | - Christine Nowak
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| | - Tao Xiang
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Diane D Dong
- j Manufacturing Sciences , Abbvie Bioresearch Center , Worcester , MA , USA
| | - Joanne Sun
- k Product development , Innovent Biologics , Suzhou Industrial Park , China
| | - Alain Beck
- l Analytical chemistry , NBEs, Center d'immunologie Pierre Fabre , St Julien-en-Genevois Cedex , France
| | - Hongcheng Liu
- c Product Characterization , Alexion Pharmaceuticals, Inc ., New Haven , CT , USA
| |
Collapse
|
34
|
Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs 2018; 10:513-538. [PMID: 29513619 PMCID: PMC5973765 DOI: 10.1080/19420862.2018.1438797] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Biologics Analytical Operations, Pharmaceutical & Biologics Development, Gilead Sciences, Ocean Ranch Blvd, Oceanside, CA
| | - Stephen Gozo
- Analytical Research & Development-Biologics, Celgene Corporation, Morris Avenue, Summit, NJ
| | - Amit Katiyar
- Analytical Development, Bristol-Myers Squibb, Pennington Rocky Road, Pennington, NJ
| | - Shara Dellatore
- Biologics & Vaccines Bioanalytics, MRL, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ USA
| | - Yune Kune
- Fortress Biologicals, Sawyer Road, Suite, Waltham, MA
| | - Ram Bhat
- Millennium Research laboratories, New Boston Street, Woburn, MA
| | - Joanne Sun
- Product Development, Innovent Biologics, Dongping Street, Suzhou Industrial Park, China
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Old Saw Mill River Road, Tarrytown, NY
| | - Dongdong Wang
- Analytical Department, BioAnalytix, Inc., Memorial Drive, Cambridge, MA
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | | | - Cory King
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Bruce Mason
- Pre-formulation, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alain Beck
- Analytical Chemistry, NBEs, Center d'Immunologie Pierre Fabre, St Julien-en-Genevois Cedex, France
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| |
Collapse
|
35
|
Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J 2017; 13. [PMID: 28862393 DOI: 10.1002/biot.201700476] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Indexed: 02/04/2023]
Abstract
Antibodies are typical examples of biopharmaceuticals which are composed of numerous, almost infinite numbers of potential molecular entities called variants or isoforms, which constitute the microheterogeneity of these molecules. These variants are generated during biosynthesis by so-called posttranslational modification, during purification or upon storage. The variants differ in biological properties such as pharmacodynamic properties, for example, Antibody Dependent Cellular Cytotoxicity, complement activation, and pharmacokinetic properties, for example, serum half-life and safety. Recent progress in analytical technologies such as various modes of liquid chromatography and mass spectrometry has helped to elucidate the structure of a lot of these variants and their biological properties. In this review the most important modifications (glycosylation, terminal modifications, amino acid side chain modifications, glycation, disulfide bond variants and aggregation) are reviewed and an attempt is made to give an overview on the biological properties, for which the reports are often contradictory. Even though there is a deep understanding of cellular and molecular mechanism of antibody modification and their consequences, the clinical proof of the effects observed in vitro and in vivo is still not fully rendered. For some modifications such as core-fucosylation of the N-glycan and aggregation the effects are clear and should be monitored, but with others such as C-terminal lysine clipping the reports are contradictory. As a consequence it seems too early to tell if any modification can be safely ignored.
Collapse
Affiliation(s)
- Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Nico Lingg
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
36
|
Spidel JL, Vaessen B, Albone EF, Cheng X, Verdi A, Kline JB. Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase. Bioconjug Chem 2017; 28:2471-2484. [PMID: 28820579 DOI: 10.1021/acs.bioconjchem.7b00439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of microbial transglutaminase (MTG) to produce site-specific antibody-drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab' fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.
Collapse
Affiliation(s)
- Jared L Spidel
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Benjamin Vaessen
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Earl F Albone
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Xin Cheng
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Arielle Verdi
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - J Bradford Kline
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| |
Collapse
|
37
|
Lobner E, Humm AS, Mlynek G, Kubinger K, Kitzmüller M, Traxlmayr MW, Djinović-Carugo K, Obinger C. Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex. MAbs 2017; 9:1088-1104. [PMID: 28816592 PMCID: PMC5627596 DOI: 10.1080/19420862.2017.1364825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fcabs (Fc domain with antigen-binding sites) are promising novel therapeutics. By engineering of the C-terminal loops of the CH3 domains, 2 antigen binding sites can be inserted in close proximity. To elucidate the binding mode(s) between homodimeric Fcabs and small homodimeric antigens, the interaction between the Fcabs 448 and CT6 (having the AB, CD and EF loops and the C-termini engineered) with homodimeric VEGF was investigated. The crystal structures of these Fcabs, which form polymers with the antigen VEGF in solution, were determined. However, construction of heterodimeric Fcabs (JanusFcabs: one chain Fc-wt, one chain VEGF-binding) results in formation of distinct JanusFcab–VEGF complexes (2:1), which allowed elucidation of the crystal structure of the JanusCT6–VEGF complex at 2.15 Å resolution. VEGF binding to Janus448 and JanusCT6 is shown to be entropically unfavorable, but enthalpically favorable. Structure-function relationships are discussed with respect to Fcab design and engineering strategies.
Collapse
Affiliation(s)
- Elisabeth Lobner
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Anne-Sophie Humm
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Georg Mlynek
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Konstantin Kubinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael Kitzmüller
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael W Traxlmayr
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Kristina Djinović-Carugo
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria.,d Department of Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, Ljubljana , Slovenia
| | - Christian Obinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| |
Collapse
|
38
|
Recent progress in the understanding of complement activation and its role in tumor growth and anti-tumor therapy. Biomed Pharmacother 2017; 91:446-456. [DOI: 10.1016/j.biopha.2017.04.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
|
39
|
Obinutuzumab: what is there to learn from clinical trials? Blood 2017; 130:581-589. [PMID: 28584136 DOI: 10.1182/blood-2017-03-771832] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
Obinutuzumab (OBZ) is a recombinant type II anti-CD20 and immunoglobulin G1 Fc-optimized monoclonal antibody (mAb), recently approved in chronic lymphocytic leukemia (CLL; B-cell CLL) and follicular lymphoma (FL). Rituximab (RTX) is frequently considered as its "ancestor" and OBZ clinical development was justified by the importance of FcγRIIIA-mediated mechanisms in RTX clinical activity. However, RTX differs from OBZ in 2 critical independent properties: being a type I anti-CD20 mAb and not being Fc-optimized. Moreover, the use of a different dosing regimen for RTX and OBZ further complicates any interpretation of clinical results. The results obtained for OBZ in CLL provide new arguments for FcγRIIIA-mediated mechanisms when the target antigen is expressed at a low density. Results of OBZ in FL confirm the interest for FcγRIIIA-mediated mechanisms, with some limitations, some of them being possibly due to lack of OBZ-induced complement activation. The situation in diffuse large B-cell lymphoma is deceiving, as the possible gains of activity of OBZ appear to be annihilated by the lack of complement activation. Although RTX was by chance an anti-CD20 mAb with equilibrated pharmacodynamic properties, the reinforcement of some of these properties, which has been done at the expense of complement activation, has conferred an advantage in some B-cell disorders while restricting OBZ indications. The OBZ story nicely demonstrates that the future of naked mAbs is to design agents with optimized and tailored properties, and that this must be done step by step, with a full clinical validation.
Collapse
|
40
|
Wagner-Rousset E, Fekete S, Morel-Chevillet L, Colas O, Corvaïa N, Cianférani S, Guillarme D, Beck A. Development of a fast workflow to screen the charge variants of therapeutic antibodies. J Chromatogr A 2017; 1498:147-154. [DOI: 10.1016/j.chroma.2017.02.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
|
41
|
Abstract
Pharmaceutical companies strive continuously to develop better medications in order to remain competitive. In the arena of monoclonal antibodies and related biologics (fusion proteins containing an IgG Fc fragment), the thrust is not only toward identifying new targets, but also toward developing new molecular formats. Here, new-generation antibodies used to treat rheumatic diseases are discussed, with emphasis on relations linking structure to pharmacological effects and on the improvements expected from the new formats. Isotypic and allotypic antibody diversity has pharmacological implications and is already exploited in commercially available antibodies. Efforts to engineer the Fc fragment of the various immunoglobulin G subclasses are reviewed with reference to abatacept, ixekizumab, other mutated IgG4 antibodies currently in development, sapelizumab, anifrolumab, and tanezumab. Bispecific antibodies are a focus of increasing interest (particularly those binding to both IL-17 and TNFα) and may earn a place in the therapeutic armamentarium as a means of avoiding the use of antibody combinations. However, the construction and production of bispecific antibodies continues to raise major technological challenges. Other molecular formats involve the fusion of antibodies to cytokines or the use of nanobodies and peptibodies. These new formats are at the very early stages of development, and their clinical relevance remains unclear.
Collapse
|
42
|
Hu Z, Tang D, Misaghi S, Jiang G, Yu C, Yim M, Shaw D, Snedecor B, Laird MW, Shen A. Evaluation of heavy chain C‐terminal deletions on productivity and product quality of monoclonal antibodies in Chinese hamster ovary (CHO) cells. Biotechnol Prog 2017; 33:786-794. [DOI: 10.1002/btpr.2444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/25/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zhilan Hu
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - Danming Tang
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - Shahram Misaghi
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - Guoying Jiang
- Biological Technologies, Genentech Inc1 DNA WaySouth San Francisco CA94080
| | - Christopher Yu
- Protein Analytical Chemistry, Genentech Inc1 DNA WaySouth San Francisco CA94080
| | - Mandy Yim
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - David Shaw
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - Brad Snedecor
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - Michael W. Laird
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| | - Amy Shen
- Dept. of Early Stage Cell CultureGenentech Inc1 DNA WaySouth San Francisco CA94080
| |
Collapse
|
43
|
Yang Y, Wang G, Song T, Lebrilla CB, Heck AJR. Resolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches. MAbs 2017; 9:638-645. [PMID: 28281873 PMCID: PMC5419080 DOI: 10.1080/19420862.2017.1290033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For therapeutic monoclonal antibodies (mAbs), detailed analysis of the structural integrity and heterogeneity, which results from multiple types of post-translational modifications (PTMs), is relevant to various processes, including product characterization, storage stability and quality control. Despite the recent rapid development of new bioanalytical techniques, it is still challenging to completely characterize the proteoform profile of a mAb. As a nearly indispensable tool in mAb analysis, mass spectrometry (MS) provides unique structural information at multiple levels. Here, we tested a hybrid strategy for the comprehensive characterization of micro-heterogeneity by integrating 2 state-of-the-art MS-based approaches, high-resolution native MS and targeted glycan profiling, to perform complementary analysis at the intact protein level and released glycan level, respectively. We compared the performance of these methods using samples of engineered half-body IgG4s and a panel of mAbs approved for human use. The glycosylation characterization data derived from these approaches were found to be mutually consistent in composition profiling, and complementary in identification and relative-quantitation of low-abundant uncommon glycoforms. In addition, multiple other sources of micro-heterogeneity, such as glycation, lack of glycosylation, and loss of light chains, could be detected by this approach, and the contribution of multiple types of modifications to the overall micro-heterogeneity could be assessed using our superposition algorithm. Our data demonstrate that the hybrid strategy allows reliable and thorough characterization of mAbs, revealing product characteristics that would easily be missed if only a single approach were used.
Collapse
Affiliation(s)
- Yang Yang
- a Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht , The Netherlands.,b Netherlands Proteomics Center , Utrecht , The Netherlands
| | - Guanbo Wang
- a Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht , The Netherlands.,b Netherlands Proteomics Center , Utrecht , The Netherlands
| | - Ting Song
- c Department of Chemistry , University of California , Davis , CA , USA
| | | | - Albert J R Heck
- a Biomolecular Mass Spectrometry and Proteomics , Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht , Utrecht , The Netherlands.,b Netherlands Proteomics Center , Utrecht , The Netherlands
| |
Collapse
|
44
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
45
|
Wang G, de Jong RN, van den Bremer ETJ, Beurskens FJ, Labrijn AF, Ugurlar D, Gros P, Schuurman J, Parren PWHI, Heck AJR. Molecular Basis of Assembly and Activation of Complement Component C1 in Complex with Immunoglobulin G1 and Antigen. Mol Cell 2016; 63:135-45. [PMID: 27320199 DOI: 10.1016/j.molcel.2016.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/24/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
The classical complement pathway contributes to the natural immune defense against pathogens and tumors. IgG antibodies can assemble at the cell surface into hexamers via Fc:Fc interactions, which recruit complement component C1q and induce complement activation. Biophysical characterization of the C1:IgG complex has remained elusive primarily due to the low affinity of IgG-C1q binding. Using IgG variants that dynamically form hexamers efficient in C1q binding and complement activation, we could assess C1q binding in solution by native mass spectrometry and size-exclusion chromatography. Fc-domain deglycosylation, described to abrogate complement activation, affected IgG hexamerization and C1q binding. Strikingly, antigen binding by IgG hexamers or deletion of the Fab arms substantially potentiated complement initiation, suggesting that Fab-mediated effects impact downstream Fc-mediated events. Finally, we characterized a reconstituted 2,045.3 ± 0.4-kDa complex of intact C1 bound to antigen-saturated IgG hexamer by native mass spectrometry, providing a clear visualization of a complete complement initiation complex.
Collapse
Affiliation(s)
- Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rob N de Jong
- Genmab, Yalelaan 60, 3584 CM Utrecht, the Netherlands
| | | | | | | | - Deniz Ugurlar
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Paul W H I Parren
- Genmab, Yalelaan 60, 3584 CM Utrecht, the Netherlands; Department of Immunohematology and Blood Transfusion, University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
46
|
Jiang G, Yu C, Yadav DB, Hu Z, Amurao A, Duenas E, Wong M, Iverson M, Zheng K, Lam X, Chen J, Vega R, Ulufatu S, Leddy C, Davis H, Shen A, Wong PY, Harris R, Wang YJ, Li D. Evaluation of Heavy-Chain C-Terminal Deletion on Product Quality and Pharmacokinetics of Monoclonal Antibodies. J Pharm Sci 2016; 105:2066-72. [PMID: 27262204 DOI: 10.1016/j.xphs.2016.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Due to their potential influence on stability, pharmacokinetics, and product consistency, antibody charge variants have attracted considerable attention in the biotechnology industry. Subtle to significant differences in the level of charge variants and new charge variants under various cell culture conditions are often observed during routine manufacturing or process changes and pose a challenge when demonstrating product comparability. To explore potential solutions to control charge heterogeneity, monoclonal antibodies (mAbs) with native, wild-type C-termini, and mutants with C-terminal deletions of either lysine or lysine and glycine were constructed, expressed, purified, and characterized in vitro and in vivo. Analytical and physiological characterization demonstrated that the mAb mutants had greatly reduced levels of basic variants without decreasing antibody biologic activity, structural stability, pharmacokinetics, or subcutaneous bioavailability in rats. This study provides a possible solution to mitigate mAb heterogeneity in C-terminal processing, improve batch-to-batch consistency, and facilitate the comparability study during process changes.
Collapse
Affiliation(s)
- Guoying Jiang
- Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080.
| | - Christopher Yu
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Daniela B Yadav
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Zhilan Hu
- Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Annamarie Amurao
- Purification Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Eileen Duenas
- Purification Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Marc Wong
- Purification Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Mark Iverson
- Purification Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Kai Zheng
- Late Stage Pharmaceutical and Processing Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Xanthe Lam
- Late Stage Pharmaceutical and Processing Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Jia Chen
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Roxanne Vega
- BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Sheila Ulufatu
- BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Cecilia Leddy
- BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Helen Davis
- BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Amy Shen
- Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Pin Y Wong
- Biological Technologies, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Reed Harris
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Y John Wang
- Late Stage Pharmaceutical and Processing Development, Genentech, 1 DNA Way, South San Francisco, California 94080
| | - Dongwei Li
- Department of Pharmacokinetic and Pharmacodynamic Sciences, Genentech, 1 DNA Way, South San Francisco, California 94080
| |
Collapse
|
47
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
48
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
49
|
Stasiłojć G, Österborg A, Blom AM, Okrój M. New perspectives on complement mediated immunotherapy. Cancer Treat Rev 2016; 45:68-75. [DOI: 10.1016/j.ctrv.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
|
50
|
Cotham VC, Brodbelt JS. Characterization of Therapeutic Monoclonal Antibodies at the Subunit-Level using Middle-Down 193 nm Ultraviolet Photodissociation. Anal Chem 2016; 88:4004-13. [DOI: 10.1021/acs.analchem.6b00302] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Victoria C. Cotham
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|