1
|
Abrantes R, Lopes J, Lopes D, Gomes J, Melo SA, Reis CA. Sialyl-Tn glycan epitope as a target for pancreatic cancer therapies. Front Oncol 2024; 14:1466255. [PMID: 39346741 PMCID: PMC11427427 DOI: 10.3389/fonc.2024.1466255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Pancreatic cancer (PC) is the sixth leading cause of cancer-related deaths worldwide, primarily due to late-stage diagnosis and limited treatment options. While novel biomarkers and immunotherapies are promising, further research into specific molecular targets is needed. Glycans, which are carbohydrate structures mainly found on cell surfaces, play crucial roles in health and disease. The Thomsen-Friedenreich-related carbohydrate antigen Sialyl-Tn (STn), a truncated O-glycan structure, is selectively expressed in epithelial tumors, including PC. In this study, we performed a comprehensive analysis of STn expression patterns in normal, premalignant, and malignant pancreatic lesions. Additionally, we analyzed the association between STn expression and various clinicopathological features. STn expression was statistically associated with pathological diagnosis; it was absent in normal pancreatic tissue but prevalent in pancreatic carcinoma lesions, including pancreatic ductal adenocarcinoma (PDAC), pancreatic acinar cell carcinoma, and pancreatic adenosquamous carcinoma. Moreover, we found a significant association between STn expression and tumor stage, with higher STn levels observed in stage II tumors compared to stage I. However, STn expression did not correlate with patient survival or outcomes. Furthermore, STn expression was assessed in PDAC patient-derived xenograft (PDX) models, revealing consistent STn levels throughout engraftment and tumor growth cycles. This finding supports the PDX model as a valuable tool for testing new anti-STn therapeutic strategies for PC in clinical setting.
Collapse
Affiliation(s)
- Rafaela Abrantes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Joanne Lopes
- Department of Pathology, Unidade Local de Saúde (ULS) de São João, Porto, Portugal
| | - Daniel Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Joana Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Sónia A. Melo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| |
Collapse
|
2
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Al-Alem L, Prendergast JM, Clark J, Zarrella B, Zarrella DT, Hill SJ, Growdon WB, Pooladanda V, Spriggs DR, Cramer D, Elias KM, Nazer RI, Skates SJ, Behrens J, Dransfield DT, Rueda BR. Sialyl-Tn serves as a potential therapeutic target for ovarian cancer. J Ovarian Res 2024; 17:71. [PMID: 38566237 PMCID: PMC10985924 DOI: 10.1186/s13048-024-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Ovarian cancer remains the deadliest of the gynecologic cancers in the United States. There have been limited advances in treatment strategies that have seen marked increases in overall survival. Thus, it is essential to continue developing and validating new treatment strategies and markers to identify patients who would benefit from the new strategy. In this report, we sought to further validate applications for a novel humanized anti-Sialyl Tn antibody-drug conjugate (anti-STn-ADC) in ovarian cancer. METHODS We aimed to further test a humanized anti-STn-ADC in sialyl-Tn (STn) positive and negative ovarian cancer cell line, patient-derived organoid (PDO), and patient-derived xenograft (PDX) models. Furthermore, we sought to determine whether serum STn levels would reflect STn positivity in the tumor samples enabling us to identify patients that an anti-STn-ADC strategy would best serve. We developed a custom ELISA with high specificity and sensitivity, that was used to assess whether circulating STn levels would correlate with stage, progression-free survival, overall survival, and its value in augmenting CA-125 as a diagnostic. Lastly, we assessed whether the serum levels reflected what was observed via immunohistochemical analysis in a subset of tumor samples. RESULTS Our in vitro experiments further define the specificity of the anti-STn-ADC. The ovarian cancer PDO, and PDX models provide additional support for an anti-STn-ADC-based strategy for targeting ovarian cancer. The custom serum ELISA was informative in potential triaging of patients with elevated levels of STn. However, it was not sensitive enough to add value to existing CA-125 levels for a diagnostic. While the ELISA identified non-serous ovarian tumors with low CA-125 levels, the sample numbers were too small to provide any confidence the STn ELISA would meaningfully add to CA-125 for diagnosis. CONCLUSIONS Our preclinical data support the concept that an anti-STn-ADC may be a viable option for treating patients with elevated STn levels. Moreover, our STn-based ELISA could complement IHC in identifying patients with whom an anti-STn-based strategy might be more effective.
Collapse
Affiliation(s)
- Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Justin Clark
- Siamab Therapeutics, Inc, Newton, MA, 02458, USA
| | - Bianca Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Sarah J Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Whitfield B Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Venkatesh Pooladanda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David R Spriggs
- Division of Hematology-Oncology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | | | - Steven J Skates
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeff Behrens
- Siamab Therapeutics, Inc, Newton, MA, 02458, USA
| | | | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Mercanoglu B, Karstens KF, Giannou AD, Meiners J, Lücke J, Seeger P, Brackrock V, Güngör C, Izbicki JR, Bockhorn M, Hackert T, Melling N, Wolters-Eisfeld G. A Comprehensive Analysis of Tn and STn Antigen Expression in Esophageal Adenocarcinoma. Cancers (Basel) 2024; 16:240. [PMID: 38254730 PMCID: PMC10814236 DOI: 10.3390/cancers16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Differential glycosylation, marked by the presence of truncated O-glycans, is a distinctive feature of epithelial-derived cancers. However, there is a notable gap in research regarding the expression of Tn and STn antigens in esophageal adenocarcinoma (EAC). To address this, we employed commercially available antibodies, previously validated for Tn and STn antigens, to analyze two cohorts of EAC tissues. Initially, large-area tissue sections from formalin-fixed paraffin-embedded (FFPE) EAC and corresponding healthy tissues were subjected to immunohistochemistry (IHC) staining and scoring. Subsequently, we evaluated the RNA expression levels of crucial O-glycosylation related genes-C1GALT1 and C1GALT1C1-using a quantitative real-time polymerase chain reaction (qRT-PCR). In a comprehensive analysis, a substantial cohort of EAC tissues (n = 311 for Tn antigen, n = 351 for STn antigen) was investigated and correlated with clinicopathological data. Our findings revealed that Tn and STn antigens are highly expressed (approximately 71% for both) in EAC, with this expression being tumor-specific. Notably, Tn antigen expression correlates significantly with the depth of tumor cell infiltration (p = 0.026). These antigens emerge as valuable markers and potential therapeutic targets for esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Karl-Frederick Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Anastasios D. Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Meiners
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Vera Brackrock
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
- Department of General and Visceral Surgery, University Medical Center Oldenburg, 26133 Oldenburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany (A.D.G.); (J.L.); (C.G.); (J.R.I.); (M.B.); (T.H.); (N.M.)
| |
Collapse
|
5
|
Manni M, Mantuano NR, Zingg A, Kappos EA, Behrens AJ, Back J, Follador R, Faridmoayer A, Läubli H. Detection of N-glycolyl-neuraminic acid-containing glycolipids in human skin. Front Immunol 2023; 14:1291292. [PMID: 38094289 PMCID: PMC10716299 DOI: 10.3389/fimmu.2023.1291292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Humans lack the enzyme that produces the sialic acid N-glycolyl neuraminic acid (Neu5Gc), but several lines of evidence have shown that Neu5Gc can be taken up by mammalian food sources and replace the common human sialic acid N-acetyl neuraminic acid (Neu5Ac) in glycans. Cancer tissue has been shown to have increased the presence of Neu5Gc and Neu5Gc-containing glycolipids such as the ganglioside GM3, which have been proposed as tumor-specific antigens for antibody treatment. Here, we show that a previously described antibody against Neu5Gc-GM3 is binding to Neu5GC-containing gangliosides and is strongly staining different cancer tissues. However, we also found a strong intracellular staining of keratinocytes of healthy skin. We confirmed this staining on freshly isolated keratinocytes by flow cytometry and detected Neu5Gc by mass spectrometry. This finding implicates that non-human Neu5Gc can be incorporated into gangliosides in human skin, and this should be taken into consideration when targeting Neu5Gc-containing gangliosides for cancer immunotherapy.
Collapse
Affiliation(s)
- Michela Manni
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Glycoera AG, Wädenswil, Switzerland
| | | | - Andreas Zingg
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Elisabeth A. Kappos
- Department of Plastic, Reconstructive, Aesthetic and Handsurgery, University Hospital and University of Basel, Basel, Switzerland
| | | | | | | | | | - Heinz Läubli
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
7
|
Nieminen H, Nummela P, Satomaa T, Heiskanen A, Hiltunen JO, Kaprio T, Seppänen H, Hagström J, Mustonen H, Ristimäki A, Haglund C. N-glycosylation in non-invasive and invasive intraductal papillary mucinous neoplasm. Sci Rep 2023; 13:13191. [PMID: 37580349 PMCID: PMC10425445 DOI: 10.1038/s41598-023-39220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMNs), often found incidentally, are potentially malignant cystic tumors of the pancreas. Due to the precancerous nature, IPMNs lacking malignant features should be kept on surveillance. The follow-up relies on magnetic resonance imaging, which has a limited accuracy to define the high-risk patients. New diagnostic methods are thus needed to recognize IPMNs with malignant potential. Here, aberrantly expressed glycans constitute a promising new area of research. We compared the N-glycan profiles of non-invasive IPMN tissues (n = 10) and invasive IPMN tissues (n = 10) to those of non-neoplastic pancreatic controls (n = 5) by matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry. Both IPMN subgroups showed increased abundance of neutral composition H4N4 and decrease in H3N5F1, increase in sialylation, and decrease in sulfation, as compared to the controls. Furthermore, invasive IPMN showed an increase in terminal N-acetylhexosamine containing structure H4N5, and increase in acidic complex-type glycans, but decrease in their complex fucosylation and sulfation, as compared to the controls. In conclusion, the N-glycan profiles differed between healthy pancreatic tissue and non-invasive and invasive IPMNs. The unique glycans expressed in invasive IPMNs may offer interesting new options for diagnostics.
Collapse
Affiliation(s)
- Heini Nieminen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029, Helsinki, Finland.
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | | | - Tuomas Kaprio
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029, Helsinki, Finland
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029, Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Departmentof Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029, Helsinki, Finland
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029, Helsinki, Finland
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Hsu HT, Kuo TM, Wei CY, Huang JY, Liu TW, Hsing MT, Lai MT, Chen CT. Investigation of the impact of Globo-H expression on the progression of gastric cancer. Am J Cancer Res 2023; 13:2969-2983. [PMID: 37560002 PMCID: PMC10408484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/28/2023] [Indexed: 08/11/2023] Open
Abstract
Globo-H (GH), a globo-series glycosphingolipid antigen that is synthesized by key enzymes β1,3-galactosyltransferase V (β3GalT5), fucosyltransferase (FUT) 1 and 2, is highly expressed on a variety of epithelial cancers rendering it a promising target for cancer immunotherapy. GH-targeting antibody-drug conjugate has been demonstrated an excellent tumor growth inhibition potency in animal models across multiple cancer types including Gastric cancer (GC). This study aims to further investigate the GH roles in GC. Significant correlations were observed between high mRNA expression of GH-synthetic key enzymes and worse overall survival (OS)/post-progression survival for GC patients based on the data from "Kaplan-Meier plotter" database (n=498). The level of GH expression was evaluated in clinical adenocarcinoma samples from 105 patients with GC by immunohistochemistry based on H-score. GH expression (H score ≥ 20; 33.3%) was significantly associated with a poor disease specific survival (DSS) and invasiveness in all samples with P=0.029 and P=0.013, respectively. In addition, it is also associated with shorter DSS and OS in poorly differentiated tumors with P=0.033 and P=0.045, respectively. Particularly, with patients ≥ 65 years of age, GH expression is also significantly associated with the stages (P=0.023), differentiation grade (P=0.038), and invasiveness (P=0.026) of the cancer. Sorted GC NCI-N87 cells with high level of endogenous GH showed higher proliferative activity compared with low-GH-expressing cells based on PCNA expression. Micro-western array analysis on high-GH-expressing GC cells indicated an upregulation in HER2-related signaling proteins including phospho-AKT/P38/JNK and Cyclin D1/Cyclin E1 proteins. Moreover, GH level was shown to be correlated with expression of total HER2 and caveolin-1 in GC cells. Immunoprecipitation study suggested that there are potential interactions among GH, caveolin-1, and HER2. In conclusions, GH level was significantly associated with the worse survival and disease progression in GC patients, especially in older patients. Enhanced cell proliferation activity through interactions among GH, HER2, and caveolin-1 interactions may contribute to GH induced tumor promotion signaling in GC. GH-targeting therapy may be a viable option for the treatment of GC patients.
Collapse
Affiliation(s)
- Hui-Ting Hsu
- Department of Pathology, Changhua Christian HospitalChanghua, Taiwan
- Institute of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- School of Medicine, Chung Shan Medical UniversityTaichung, Taiwan
- Department of Pathology, China Medical University HospitalTaichung, Taiwan
| | | | | | | | | | - Ming-Tai Hsing
- Department of Neurosurgery, Changhua Christian HospitalChanghua, Taiwan
| | | | | |
Collapse
|
9
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Gillmann KM, Temme JS, Marglous S, Brown CE, Gildersleeve JC. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr Opin Chem Biol 2023; 74:102281. [PMID: 36905763 PMCID: PMC10732169 DOI: 10.1016/j.cbpa.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 03/12/2023]
Abstract
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.
Collapse
Affiliation(s)
- Kara M Gillmann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Samantha Marglous
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Claire E Brown
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
Park S, Chin-Hun Kuo J, Reesink HL, Paszek MJ. Recombinant mucin biotechnology and engineering. Adv Drug Deliv Rev 2023; 193:114618. [PMID: 36375719 PMCID: PMC10253230 DOI: 10.1016/j.addr.2022.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mucins represent a largely untapped class of polymeric building block for biomaterials, therapeutics, and other biotechnology. Because the mucin polymer backbone is genetically encoded, sequence-specific mucins with defined physical and biochemical properties can be fabricated using recombinant technologies. The pendent O-glycans of mucins are increasingly implicated in immunomodulation, suppression of pathogen virulence, and other biochemical activities. Recent advances in engineered cell production systems are enabling the scalable synthesis of recombinant mucins with precisely tuned glycan side chains, offering exciting possibilities to tune the biological functionality of mucin-based products. New metabolic and chemoenzymatic strategies enable further tuning and functionalization of mucin O-glycans, opening new possibilities to expand the chemical diversity and functionality of mucin building blocks. In this review, we discuss these advances, and the opportunities for engineered mucins in biomedical applications ranging from in vitro models to therapeutics.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
A roadmap for translational cancer glycoimmunology at single cell resolution. J Exp Clin Cancer Res 2022; 41:143. [PMID: 35428302 PMCID: PMC9013178 DOI: 10.1186/s13046-022-02335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.
Collapse
|
13
|
Kurhade SE, Ross P, Gao FP, Farrell MP. Lectin Drug Conjugates Targeting High Mannose N-Glycans. Chembiochem 2022; 23:e202200266. [PMID: 35816406 PMCID: PMC9738879 DOI: 10.1002/cbic.202200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/05/2022] [Indexed: 12/14/2022]
Abstract
Cancer-associated alterations to glycosylation have been shown to aid cancer development and progression. An increased abundance of high mannose N-glycans has been observed in several cancers. Here, we describe the preparation of lectin drug conjugates (LDCs) that permit toxin delivery to cancer cells presenting high mannose N-glycans. Additionally, we demonstrate that cancer cells presenting low levels of high mannose N-glycans can be rendered sensitive to the LDCs by co-treatment with a type I mannosidase inhibitor. Our findings establish that an increased abundance of high mannose N-glycans in the glycocalyx of cancer cells can be leveraged to enable toxin delivery.
Collapse
Affiliation(s)
- Suresh E Kurhade
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Patrick Ross
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Fei Philip Gao
- Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Mark P Farrell
- Department of Medicinal Chemistry, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
14
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
15
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
16
|
Yao Y, Kim G, Shafer S, Chen Z, Kubo S, Ji Y, Luo J, Yang W, Perner SP, Kanellopoulou C, Park AY, Jiang P, Li J, Baris S, Aydiner EK, Ertem D, Mulder DJ, Warner N, Griffiths AM, Topf-Olivestone C, Kori M, Werner L, Ouahed J, Field M, Liu C, Schwarz B, Bosio CM, Ganesan S, Song J, Urlaub H, Oellerich T, Malaker SA, Zheng L, Bertozzi CR, Zhang Y, Matthews H, Montgomery W, Shih HY, Jiang J, Jones M, Baras A, Shuldiner A, Gonzaga-Jauregui C, Snapper SB, Muise AM, Shouval DS, Ozen A, Pan KT, Wu C, Lenardo MJ. Mucus sialylation determines intestinal host-commensal homeostasis. Cell 2022; 185:1172-1188.e28. [PMID: 35303419 PMCID: PMC9088855 DOI: 10.1016/j.cell.2022.02.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.
Collapse
Affiliation(s)
- Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Samantha Shafer
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlong Ji
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Weiming Yang
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Sebastian P Perner
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Chrysi Kanellopoulou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Safa Baris
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, Marmara University, 34722 Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Marmara University, 34722 Istanbul, Turkey
| | - Elif Karakoc Aydiner
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, Marmara University, 34722 Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Marmara University, 34722 Istanbul, Turkey
| | - Deniz Ertem
- Marmara University School of Medicine, Division of Pediatric Gastroenterology Hepatology and Nutrition, 34854 Istanbul, Turkey
| | - Daniel J Mulder
- Departments of Pediatrics, Medicine, and Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Chani Topf-Olivestone
- Pediatric Gastroenterology, Kaplan Medical Center, Pasternak St., POB 1, Rehovot 76100, Israel
| | - Michal Kori
- Pediatric Gastroenterology, Kaplan Medical Center, Pasternak St., POB 1, Rehovot 76100, Israel
| | - Lael Werner
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Song
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Thomas Oellerich
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; German Cancer Consortium/German Cancer Research Center, 69120 Heidelberg, Germany
| | - Stacy A Malaker
- Yale University, Department of Chemistry, New Haven, CT 06511, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Helen Matthews
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Will Montgomery
- Neuro-Immune Regulome Unit, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marcus Jones
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Aris Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Alan Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA; International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 04510, Mexico
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Pediatrics, IMS, and Biochemistry, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel
| | - Ahmet Ozen
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, 34722 Istanbul, Turkey; Marmara University School of Medicine, Division of Pediatric Gastroenterology Hepatology and Nutrition, 34854 Istanbul, Turkey
| | - Kuan-Ting Pan
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
18
|
Quader S, Tanabe S, Cabral H. Abnormal Glycosylation in Cancer Cells and Cancer Stem Cells as a Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:141-156. [PMID: 36587306 DOI: 10.1007/978-3-031-12974-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor resistance and recurrence have been associated with the presence of cancer stem cells (CSCs) in tumors. The functions and survival of the CSCs have been associated with several intracellular and extracellular features. Particularly, the abnormal glycosylation of these signaling pathways and markers of CSCs have been correlated with maintaining survival, self-renewal and extravasation properties. Here, we highlight the importance of glycosylation in promoting the stemness character of CSCs and the current strategies for targeting abnormal glycosylation toward generating effective therapies against the CSC population.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
19
|
Hitchcock CL, Povoski SP, Mojzisik CM, Martin EW. Survival Advantage Following TAG-72 Antigen-Directed Cancer Surgery in Patients With Colorectal Carcinoma: Proposed Mechanisms of Action. Front Oncol 2021; 11:731350. [PMID: 34950576 PMCID: PMC8688248 DOI: 10.3389/fonc.2021.731350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
Patients with colorectal carcinoma (CRC) continue to have variable clinical outcomes despite undergoing the same surgical procedure with curative intent and having the same pathologic and clinical stage. This problem suggests the need for better techniques to assess the extent of disease during surgery. We began to address this problem 35 years ago by injecting patients with either primary or recurrent CRC with 125I-labeled murine monoclonal antibodies against the tumor-associated glycoprotein-72 (TAG-72) and using a handheld gamma-detecting probe (HGDP) for intraoperative detection and removal of radioactive, i.e., TAG-72-positive, tissue. Data from these studies demonstrated a significant difference in overall survival data (p < 0.005 or better) when no TAG-72-positive tissue remained compared to when TAG-72-positive tissue remained at the completion of surgery. Recent publications indicate that aberrant glycosylation of mucins and their critical role in suppressing tumor-associated immune response help to explain the cellular mechanisms underlying our results. We propose that monoclonal antibodies to TAG-72 recognize and bind to antigenic epitopes on mucins that suppress the tumor-associated immune response in both the tumor and tumor-draining lymph nodes. Complete surgical removal of all TAG-72-positive tissue serves to reverse the escape phase of immunoediting, allowing a resetting of this response that leads to improved overall survival of the patients with either primary or recurrent CRC. Thus, the status of TAG-72 positivity after resection has a significant impact on patient survival.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cathy M. Mojzisik
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Festari MF, da Costa V, Rodríguez-Zraquia SA, Costa M, Landeira M, Lores P, Solari-Saquieres P, Kramer MG, Freire T. The tumour-associated Tn antigen fosters lung metastasis and recruitment of regulatory T cells in triple negative breast cancer. Glycobiology 2021; 32:366-379. [PMID: 34939098 DOI: 10.1093/glycob/cwab123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths. Among breast cancers (BC) subtypes, triple-negative (TN) BC, is characterized by metastatic progression and poor patient prognosis. Although, TNBC is initially sensitive to chemotherapy, many TNBC patients rapidly develop resistance, at which point metastatic disease is highly lethal. Cancer cells present phenotypic changes or molecular signatures that distinguish them from healthy cells. The Tn antigen (GalNAc-O-Thr/Ser), that constitutes a powerful tool as tumour marker, was recently reported to contribute to tumour growth. However, its role in BC-derived metastasis has not yet been addressed. In this work we generated a pre-clinical orthotopic Tn+ model of metastatic TNBC, that mimics the patient surgical treatment and is useful to study the role of Tn in metastasis and immunoregulation. We obtained two different cell clones which differed in their Tn antigen expression: a high Tn-expressing and a non-expressing clone. Interestingly, the Tn-positive cell line generated significantly larger tumours and higher degree of lung metastases associated with a lower survival rate than the Tn-negative and parental cell line. Furthermore, we also found that both tumours and draining-lymph nodes from Tn+-tumour bearing mice presented a higher frequency of CD4+ FoxP3+ T cells, while their splenocytes expressed higher levels of IL-10. In conclusion, this work suggests that the Tn antigen participates in breast tumour growth and spreading, favouring metastases to the lungs that are associated to an immunoregulatory state, suggesting that Tn-based immunotherapy could be a strategy of choice to treat these tumours.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Valeria da Costa
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Santiago A Rodríguez-Zraquia
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Mercedes Landeira
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Pablo Lores
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Patricia Solari-Saquieres
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - M Gabriela Kramer
- Laboratorio de Bioensayos, Campus Interinstitucional, INIA-UdelaR, Tacuarembó; and Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| |
Collapse
|
21
|
Ward EM, Kizer ME, Imperiali B. Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chem Biol 2021; 16:1795-1813. [PMID: 33497192 PMCID: PMC9200409 DOI: 10.1021/acschembio.0c00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influences of glycans impact all biological processes, disease states, and pathogenic interactions. Glycan-binding proteins (GBPs), such as lectins, are decisive tools for interrogating glycan structure and function because of their ease of use and ability to selectively bind defined carbohydrate epitopes and glycosidic linkages. GBP reagents are prominent tools for basic research, clinical diagnostics, therapeutics, and biotechnological applications. However, the study of glycans is hindered by the lack of specific and selective protein reagents to cover the massive diversity of carbohydrate structures that exist in nature. In addition, existing GBP reagents often suffer from low affinity or broad specificity, complicating data interpretation. There have been numerous efforts to expand the GBP toolkit beyond those identified from natural sources through protein engineering, to improve the properties of existing GBPs or to engineer novel specificities and potential applications. This review details the current scope of proteins that bind carbohydrates and the engineering methods that have been applied to enhance the affinity, selectivity, and specificity of binders.
Collapse
Affiliation(s)
- Elizabeth M. Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Thurin M. Tumor-Associated Glycans as Targets for Immunotherapy: The Wistar Institute Experience/Legacy. Monoclon Antib Immunodiagn Immunother 2021; 40:89-100. [PMID: 34161162 DOI: 10.1089/mab.2021.0024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor cells are characterized by the expression of tumor-specific carbohydrate structures that differ from their normal counterparts. Carbohydrates on tumor cells have phenotypical as well as functional implications, impacting the tumor progression process, from malignant transformation to metastasis formation. Importantly, carbohydrates are structures that play a role in receptor-ligand interaction and elicit the activity of growth factor receptors, integrins, lectins, and other type 1 transmembrane proteins. They have been recognized as biomarkers for cancer diagnosis, and evidence demonstrating their relevance as targets for anticancer therapeutic strategies, including immunotherapy, continues to accumulate. Different approaches targeting carbohydrates include monoclonal antibodies (mAbs), antibody (Ab)-drug conjugates, vaccines, and adhesion antagonists. Development of bispecific antibodies and chimeric antigen receptor (CAR)-modified T cells against tumor-associated carbohydrate antigens (TACAs) as promising cancer immunotherapeutic agents is rapidly evolving. As reviewed here, there are several cancer-associated glycan features that can be leveraged to design rational drug or immune system targets, applying multiple TACA structural and functional features to be targeted as the standard treatment paradigm. Many of the underlying targets were defined by researchers at the Wistar Institute in Philadelphia, Pennsylvania, which provide basis for different immunotherapy approaches.
Collapse
Affiliation(s)
- Magdalena Thurin
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Anti-glycan antibodies: roles in human disease. Biochem J 2021; 478:1485-1509. [PMID: 33881487 DOI: 10.1042/bcj20200610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.
Collapse
|
24
|
Khan T, Cabral H. Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies. Front Oncol 2021; 11:649338. [PMID: 33889547 PMCID: PMC8056457 DOI: 10.3389/fonc.2021.649338] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cell (CSCs) are deemed as one of the main reasons of tumor relapse due to their resistance to standard therapies. Numerous intracellular signaling pathways along with extracellular features are crucial in regulating CSCs properties, such as heterogeneity, plasticity and differentiation. Aberrant glycosylation of these cellular signaling pathways and markers of CSCs have been directly correlated with maintaining survival, self-renewal and extravasation properties. In this review, we highlight the importance of glycosylation in promoting stemness character of CSCs, and present strategies for targeting abnormal glycosylation to eliminate the resistant CSC population.
Collapse
Affiliation(s)
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Yang MC, Shia CS, Li WF, Wang CC, Chen IJ, Huang TY, Chen YJ, Chang HW, Lu CH, Wu YC, Wang NH, Lai JS, Yu CD, Lai MT. Preclinical Studies of OBI-999: A Novel Globo H-Targeting Antibody-Drug Conjugate. Mol Cancer Ther 2021; 20:1121-1132. [PMID: 33722855 DOI: 10.1158/1535-7163.mct-20-0763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Globo H (GH), a hexasaccharide, is expressed at low levels in normal tissues but is highly expressed in multiple cancer types, rendering it a promising target for cancer immunotherapy. OBI-999, a novel antibody-drug conjugate, is derived from a conjugation of a GH-specific mAb with a monomethyl auristatin E (MMAE) payload through a site-specific ThioBridge and a cleavable linker. OBI-999 high homogeneity with a drug-to-antibody ratio of 4 (>95%) was achieved using ThioBridge. OBI-999 displayed GH-dependent cellular internalization and trafficked to endosome and lysosome within 1 and 5 hours, respectively. Furthermore, OBI-999 showed low nanomolar cytotoxicity in the assay with high GH expression on tumor cells and exhibited a bystander killing effect on tumor cells with minimal GH expression. Tissue distribution indicated that OBI-999 and free MMAE gradually accumulated in the tumor, reaching maximum level at 168 hours after treatment, whereas OBI-999 and free MMAE decreased quickly at 4 hours after treatment in normal organs. Maximum MMAE level in the tumor was 16-fold higher than in serum, suggesting that OBI-999 is stable during circulation and MMAE is selectively released in the tumor. Excellent tumor growth inhibition of OBI-999 was demonstrated in breast, gastric, and pancreatic cancer xenograft or lung patient-derived xenograft models in a dose-dependent manner. The highest nonseverely toxic dose in cynomolgus monkeys is 10 mg/kg determined by a 3-week repeated-dose toxicology study demonstrating an acceptable safety margin. Taken together, these results support further clinical development of OBI-999, which is currently in a phase I/II clinical study in multiple solid tumors (NCT04084366). OBI-999, the first GH-targeting ADC, displayed excellent tumor inhibition in animal models across multiple cancer types, including breast, gastric, pancreatic, and lung cancers, warranting further investigation in the treatment of solid tumors.
Collapse
|
26
|
Sun J, Lu Q, Sanmamed MF, Wang J. Siglec-15 as an Emerging Target for Next-generation Cancer Immunotherapy. Clin Cancer Res 2021; 27:680-688. [PMID: 32958700 PMCID: PMC9942711 DOI: 10.1158/1078-0432.ccr-19-2925] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 01/21/2023]
Abstract
Immunomodulatory agents blocking the PD-1/PD-L1 pathway have shown a new way to treat cancer. The explanation underlying the success of these agents may be the selective expression of PD-L1 with dominant immune-suppressive activities in the tumor microenvironment (TME), supporting a more favorable tumor response-to-toxicity ratio. However, despite the big success of these drugs, most patients with cancer show primary or acquired resistance, calling for the identification of new immune modulators in the TME. Using a genome-scale T-cell activity array in combination with bioinformatic analysis of human cancer databases, we identified Siglec-15 as a critical immune suppressor with broad upregulation on various cancer types and a potential target for cancer immunotherapy. Siglec-15 has unique molecular features compared with many other known checkpoint inhibitory ligands. It shows prominent expression on macrophages and cancer cells and a mutually exclusive expression with PD-L1, suggesting that it may be a critical immune evasion mechanism in PD-L1-negative patients. Interestingly, Siglec-15 has also been identified as a key regulator for osteoclast differentiation and may have potential implications in bone disorders not limited to osteoporosis. Here, we provide an overview of Siglec-15 biology, its role in cancer immune regulation, the preliminary and encouraging clinical data related to the first-in-class Siglec-15 targeting mAb, as well as many unsolved questions in this pathway. As a new player in the cancer immunotherapeutic arena, Siglec-15 may represent a novel class of immune inhibitors with tumor-associated expression and divergent mechanisms of action to PD-L1, with potential implications in anti-PD-1/PD-L1-resistant patients.
Collapse
Affiliation(s)
- Jingwei Sun
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, CIMA, University of Navarra, Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York.
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, New York
| |
Collapse
|
27
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
28
|
Ghosh S, Trabbic KR, Shi M, Nishat S, Eradi P, Kleski KA, Andreana PR. Chemical synthesis and immunological evaluation of entirely carbohydrate conjugate Globo H-PS A1. Chem Sci 2020; 11:13052-13059. [PMID: 34123241 PMCID: PMC8163331 DOI: 10.1039/d0sc04595k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
An anticancer, entirely carbohydrate conjugate, Globo H-polysaccharide A1 (Globo H-PS A1), was chemically prepared and immunologically evaluated in C57BL/6 mice. Tumor associated carbohydrate antigen Globo H hexasaccharide was synthesized in an overall 7.8% yield employing a convergent [3 + 3] strategy that revealed an anomeric aminooxy group used for conjugation to oxidized PS A1 via an oxime linkage. Globo H-PS A1, formulated with adjuvants monophosphoryl lipid A and TiterMax® Gold. After immunization an antigen specific immune response was observed in ELISA with anti-Globo H IgG/IgM antibodies. Specificity of the corresponding antibodies was determined by FACS showing cell surface binding to Globo H-positive cancer cell lines MCF-7 and OVCAR-5. The anti-Globo H antibodies also exhibited complement-dependent cellular cytotoxicity against MCF-7 and OVCAR-5 cells.
Collapse
Affiliation(s)
- Samir Ghosh
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Kevin R Trabbic
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Mengchao Shi
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Sharmeen Nishat
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Pradheep Eradi
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Kristopher A Kleski
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| | - Peter R Andreana
- The University of Toledo, Department of Chemistry and Biochemistry 2801 West Bancroft Street Toledo Ohio USA 43606
| |
Collapse
|
29
|
Tran ENH, Day CJ, McCartney E, Poole J, Tse E, Jennings MP, Morona R. Shigella flexneri Targets Human Colonic Goblet Cells by O Antigen Binding to Sialyl-Tn and Tn Antigens via Glycan-Glycan Interactions. ACS Infect Dis 2020; 6:2604-2615. [PMID: 32926786 DOI: 10.1021/acsinfecdis.0c00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Shigella flexneri targets colonic cells in humans to initiate invasive infection processes that lead to dysentery, and direct interactions between their lipopolysaccharide O antigens and blood group A related glycans are involved in the cell adherence interactions. Here, we show that treatment with Tn and sialyl-Tn glycans, monoclonal antibodies and lectins reactive to Tn/sialyl-Tn, and luteolin (a Tn antigen synthesis inhibitor) all significantly inhibited S. flexneri adherence and invasion of cells in vitro. Surface plasmon resonance analysis showed that lipopolysaccharide O antigen had a high affinity interaction with Tn/sialyl-Tn. Immunofluorescence probing of human colon tissue with antibodies detected expression of Tn/sialyl-Tn by MUC2 producing goblet cells (GCs), and S. flexneri incubated with human colon tissue colocalized with GCs. Our findings demonstrate that S. flexneri targets GCs in the human colonic crypts via glycan-glycan interactions, establishing new insight into the infection process in humans.
Collapse
Affiliation(s)
- Elizabeth Ngoc Hoa Tran
- School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Erin McCartney
- Gastroenterological/Hepatological Biobank, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Edmund Tse
- Gastroenterological/Hepatological Biobank, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Renato Morona
- School of Biological Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
30
|
Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-001222. [PMID: 33020245 PMCID: PMC7537339 DOI: 10.1136/jitc-2020-001222] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
During oncogenesis, tumor cells present specific carbohydrate chains that are new targets for cancer immunotherapy. Whereas these tumor-associated carbohydrates (TACA) can be targeted with antibodies and vaccination approaches, TACA including sialic acid-containing glycans are able to inhibit anticancer immune responses by engagement of immune receptors on leukocytes. A family of immune-modulating receptors are sialic acid-binding Siglec receptors that have been recently described to inhibit antitumor activity mediated by myeloid cells, natural killer cells and T cells. Other TACA-binding receptors including selectins have been linked to cancer progression. Recent studies have shown that glycan-lectin interactions can be targeted to improve cancer immunotherapy. For example, interactions between the immune checkpoint T cell immunoglobulin and mucin-domain containing-3 and the lectin galectin-9 are targeted in clinical trials. In addition, an antibody against the lectin Siglec-15 is being tested in an early clinical trial. In this review, we summarize the previous and current efforts to target TACA and to inhibit inhibitory immune receptors binding to TACA including the Siglec-sialoglycan axis.
Collapse
Affiliation(s)
| | - Marina Natoli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| | - Heinz Läubli
- Department of Biomedicine, Universitätsspital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Papi F, Pâris A, Lafite P, Daniellou R, Nativi C. Synthesis of an STnThr analogue, structurally based on a TnThr antigen mimetic. Org Biomol Chem 2020; 18:7366-7372. [PMID: 32924046 DOI: 10.1039/d0ob01749c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The monosaccharide Tn and the disaccharide STn are tumor antigens with similar structures and common biosynthetic pathways. Both are always over-expressed simultaneously on tumor cell surfaces. We report herein the efficient synthesis of the STnThr antigen analogue 2, featuring the immunogenic TnThr mimetic 1 aglycon. Analogously to the native STn, 2 is recognized by the influenza N1 neuraminidase. A model of the N1·2 complex showed the sialyl moiety of 2 well nested in the active site pocket, with docking unaffected by the rigid aglycon. The analogue 2 is, therefore, in association with mimetic 1, a good determinant for the design of new multiantigen cancer vaccines.
Collapse
Affiliation(s)
- Francesco Papi
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, I-50119 Sesto F.no (FI), Italy.
| | - Arnaud Pâris
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans/CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans/CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans/CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Cristina Nativi
- Department of Chemistry, University of Florence, via della Lastruccia, 3-13, I-50119 Sesto F.no (FI), Italy.
| |
Collapse
|
32
|
Minnix M, Li L, Yazaki P, Chea J, Poku E, Colcher D, Shively JE. Improved targeting of an anti-TAG-72 antibody drug conjugate for the treatment of ovarian cancer. Cancer Med 2020; 9:4756-4767. [PMID: 32368864 PMCID: PMC7333846 DOI: 10.1002/cam4.3078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Ovarian cancer has only a 17% 5-year survival rate in patients diagnosed with late stage disease. Tumor-associated glycoprotein-72 (TAG72), expressed in 88% of all stages of ovarian cancer, is an excellent candidate for antibody-targeted therapy, as it is not expressed in normal human adult tissues, except in the secretory endometrium. METHODS Using the clinically relevant anti-TAG72 murine monoclonal antibody CC49, we evaluated antibody drug conjugates (ADCs) incorporating the highly potent, synthetic antimitotic agent monomethylauristatin E (MMAE). MMAE was conjugated to CC49 via reduced disulfides in the hinge region, using three different types of linker chemistry, vinylsulfone (VS-MMAE), bromoacetamido (Br-MMAE), and maleimido (mal-MMAE). RESULTS The drug antibody ratios (DARs) of the three ADCs were 2.3 for VS-MMAE, 10 for Br-MMAE, and 9.5 for mal-MMAE. All three ADCs exhibited excellent tumor to blood ratios on PET imaging, but the absolute uptake of CC49-mal-MMAE (3.3%ID/g) was low compared to CC49-Br-MMAE (6.43%ID/g), at 142 hours. Blood clearance at 43 hours was 38% for intact CC49, about 24% for both CC49-VS-MMAE and CC49-Br-MMAE, and 7% for CC49-mal-MMAE. CC49-VS-MMAE was not further studied due to its low DAR, while CC49-mal-MMAE was ineffective in the OVCAR3 xenograft likely due to its rapid blood clearance. In contrast, CC49-Br-MMAE treated mice exhibited an average of a 15.6 day tumor growth delay and a 40% increase in survival vs controls with four doses of 7.5 or 15 mg/kg of CC49-Br-MMAE. CONCLUSION We conclude that CC49-Br-MMAE with a high DAR and stable linker performs well in a difficult to treat solid tumor model.
Collapse
Affiliation(s)
- Megan Minnix
- Department of Molecular Imaging and TherapyBeckman Research InstituteCity of HopeDuarteCAUSA
- Irell and Manella Graduate School of Biological SciencesBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Lin Li
- Department of Molecular Imaging and TherapyBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Paul Yazaki
- Department of Molecular Imaging and TherapyBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Junie Chea
- RadiopharmacyCity of Hope Medical CenterDuarteCAUSA
| | - Erasmus Poku
- RadiopharmacyCity of Hope Medical CenterDuarteCAUSA
| | - David Colcher
- Department of Molecular Imaging and TherapyBeckman Research InstituteCity of HopeDuarteCAUSA
| | - John E. Shively
- Department of Molecular Imaging and TherapyBeckman Research InstituteCity of HopeDuarteCAUSA
| |
Collapse
|
33
|
Daberdaku S, Ferrari C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 2020; 35:1870-1876. [PMID: 30395191 DOI: 10.1093/bioinformatics/bty918] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/21/2018] [Accepted: 11/01/2018] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Antibodies are a class of proteins capable of specifically recognizing and binding to a virtually infinite number of antigens. This binding malleability makes them the most valuable category of biopharmaceuticals for both diagnostic and therapeutic applications. The correct identification of the antigen-binding residues in the antibody is crucial for all antibody design and engineering techniques and could also help to understand the complex antigen binding mechanisms. However, the antibody-binding interface prediction field appears to be still rather underdeveloped. RESULTS We present a novel method for antibody interface prediction from their experimentally solved structures based on 3D Zernike Descriptors. Roto-translationally invariant descriptors are computed from circular patches of the antibody surface enriched with a chosen subset of physico-chemical properties from the AAindex1 amino acid index set, and are used as samples for a binary classification problem. An SVM classifier is used to distinguish interface surface patches from non-interface ones. The proposed method was shown to outperform other antigen-binding interface prediction software. AVAILABILITY AND IMPLEMENTATION Linux binaries and Python scripts are available at https://github.com/sebastiandaberdaku/AntibodyInterfacePrediction. The datasets generated and/or analyzed during the current study are available at https://doi.org/10.6084/m9.figshare.5442229. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sebastian Daberdaku
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Carlo Ferrari
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Fernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, Reis CA, Santos LL, Ferreira JA. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Am J Cancer Res 2020; 10:4903-4928. [PMID: 32308758 PMCID: PMC7163443 DOI: 10.7150/thno.42480] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.
Collapse
|
35
|
Thomas D, Sagar S, Caffrey T, Grandgenett PM, Radhakrishnan P. Truncated O-glycans promote epithelial-to-mesenchymal transition and stemness properties of pancreatic cancer cells. J Cell Mol Med 2019; 23:6885-6896. [PMID: 31389667 PMCID: PMC6787448 DOI: 10.1111/jcmm.14572] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/23/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of Sialyl-Tn (STn) antigen correlates with poor prognosis and reduced patient survival. We demonstrated that expression of Tn and STn in pancreatic ductal adenocarcinoma (PDAC) is due to hypermethylation of Core 1 synthase specific molecular chaperone (COSMC) and enhanced the malignant properties of PDAC cells with an unknown mechanism. To explore the mechanism, we have genetically deleted COSMC in PDAC cells to express truncated O-glycans (SimpleCells, SC) which enhanced cell migration and invasion. Since epithelial-to-mesenchymal transition (EMT) play a vital role in metastasis, we have analysed the induction of EMT in SC cells. Expressions of the mesenchymal markers were significantly high in SC cells as compared to WT cells. Equally, we found reduced expressions of the epithelial markers in SC cells. Re-expression of COSMC in SC cells reversed the induction of EMT. In addition to this, we also observed an increased cancer stem cell population in SC cells. Furthermore, orthotopic implantation of T3M4 SC cells into athymic nude mice resulted in significantly larger tumours and reduced animal survival. Altogether, these results suggest that aberrant expression of truncated O-glycans in PDAC cells enhances the tumour aggressiveness through the induction of EMT and stemness properties.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Thomas Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNEUSA
| |
Collapse
|
36
|
Tao Y, Wang R, Lai Q, Wu M, Wang Y, Jiang X, Zeng L, Zhou S, Li Z, Yang T, Yao Y, Wu Y, Yu L, Fu Y, Lai W, Peng Y, Lu Y, Zhang Z, Guo C, Zhang G, Gou L, Yang J. Targeting of DDR1 with antibody-drug conjugates has antitumor effects in a mouse model of colon carcinoma. Mol Oncol 2019; 13:1855-1873. [PMID: 31116512 PMCID: PMC6717758 DOI: 10.1002/1878-0261.12520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023] Open
Abstract
DDR1 has been identified as a cancer‐associated receptor tyrosine kinase that is highly expressed in several malignancies relative to normal tissues. Clinically approved multi‐kinase inhibitors, such as nilotinib, inhibit DDR1‐mediated tumor growth in xenograft models, suggesting DDR1 might be a potential target for cancer treatments. Here, we employed an antibody‐based strategy with a novel anti‐DDR1 antibody‐drug conjugate (ADC) for colon carcinoma treatment. We developed T4H11‐DM4, an ADC targeting DDR1 which carries the tubulin inhibitor payload DM4. Immunohistochemical analysis of a tissue microarray containing 100 colon cancer specimens revealed that DDR1 was highly expressed in 81% of tumor tissues. Meanwhile, high expression of DDR1 was associated with poor survival in patients. In vitro, T4H11‐DM4 exhibited potent anti‐proliferative activity with half maximal inhibitory concentration (IC50) values in the nanomolar range in a panel of colon cancer cell lines. In vivo, the antitumor efficacy of T4H11‐DM4 was evaluated in three colon cancer cell lines expressing different levels of DDR1. T4H11‐DM4 achieved complete tumor regression at doses of 5 and 10 mg·kg−1 in HT‐29 and HCT116 tumor models. Moreover, a correlation between in vivo efficacy of T4H11‐DM4 and the levels of DDR1 expression on the cell surface was observed. Tumor cell proliferation was caused by the induction of mitotic arrest, indicating that the antitumor effect in vivo was mediated by DM4. In addition, T4H11‐DM4 was efficacious in oxaliplatin‐resistant colon cancer models. In exploratory safety studies, T4H11‐DM4 exhibited no overt toxicities when multi‐doses were administered at 10 mg·kg−1 into BALB/c nude mice or when a single dose up to 50 mg·kg−1 was administered into BALB/c mice. Overall, our findings highlight the potential of DDR1‐targeted ADC and may facilitate the development of a new effective therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Yiran Tao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruixue Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lishi Zeng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongping Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghan Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- West China School of Public Health and Healthy Food Evaluation Research Center/No. 4 West China Teaching Hospital, Sichuan University, Chengdu, China
| | - Yangping Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weirong Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cuiyu Guo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guangbing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, China
| |
Collapse
|
37
|
Ascites from Ovarian Cancer Induces Novel Fucosylated Proteins. CANCER MICROENVIRONMENT 2019; 12:181-195. [PMID: 31267484 DOI: 10.1007/s12307-019-00227-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is considered to be the most lethal type of gynecological cancer. During the advanced stages of ovarian cancer, an accumulation of ascites is observed. Fucosylation has been classified as an abnormal post-translational modification that is present in many diseases, including ovarian cancer. Ovarian cancer cells that are cultured with ascites stimulation change their morphology; concomitantly, the fucosylation process is altered. However, it is not known which fucosylated proteins are modified. The goal of this work was to identify the differentially fucosylated proteins that are expressed by ovarian cancer cell lines that are cultured with ovarian cancer patients' ascites. Aleuria aurantia lectin was used to detect fucosylation, and some changes were observed, especially in the cell membrane. Affinity chromatography and mass spectrometry (MALDI-TOF) were used to identify 6 fucosylated proteins. Four proteins (Intermediate filament family orphan 1 [IFFO1], PHD finger protein 20-like protein 1 [PHF20L1], immunoglobulin gamma 1 heavy chain variable region partial [IGHV1-2], and Zinc finger protein 224 [ZNF224]) were obtained from cell cultures stimulated with ascites, and the other two proteins (Peregrin [BRPF1] and Dystrobrevin alpha [DTNA]) were obtained under normal culture conditions. The fucosylated state of some of these proteins was further analyzed. The experimental results show that the ascites of ovarian cancer patients modulated the fucosylation process. The PHD finger protein 20-like protein 1, Zinc finger protein 224 and Peregrin proteins colocalize with fucosylation at different levels.
Collapse
|
38
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
39
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
40
|
Ellerman D. Bispecific T-cell engagers: Towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 2018; 154:102-117. [PMID: 30395966 DOI: 10.1016/j.ymeth.2018.10.026] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
Bispecific molecules redirecting the cytotoxicity of T-cells are a growing class of therapeutics with numerous molecules being tested in clinical trials. However, it has been a long way since the proof of concept studies in the mid 1980's. In the process we have learnt about the impact of different variables related to the bispecific molecule and the target antigen on the potency of this type of drugs. This work reviews the insights gained and how that knowledge has been used to design more potent bispecific T-cell engagers. The more recent advancement of antibodies with this modality into safety studies in non-human primates and as well as in clinical studies has revealed potential toxicity liabilities for the mode of action. Modifications in existing antibody formats and new experimental molecules designed to mitigate these problems are discussed.
Collapse
|
41
|
Trabbic KR, Kleski KA, Shi M, Bourgault JP, Prendergast JM, Dransfield DT, Andreana PR. Production of a mouse monoclonal IgM antibody that targets the carbohydrate Thomsen-nouveau cancer antigen resulting in in vivo and in vitro tumor killing. Cancer Immunol Immunother 2018; 67:1437-1447. [PMID: 30030557 PMCID: PMC11028060 DOI: 10.1007/s00262-018-2206-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/09/2018] [Indexed: 11/29/2022]
Abstract
The construction of a tumor-associated carbohydrate antigen-zwitterionic polysaccharide conjugate, Thomsen-nouveau-polysaccharide A1 (Tn-PS A1, where Tn = D-GalpNAc), has led to the development of a carbohydrate binding monoclonal antibody named Kt-IgM-8. Kt-IgM-8 was produced via hybridoma from Tn-PS A1 hyperimmunized Jackson Laboratory C57BL/6 mice, splenocytes and the murine myeloma cell line Sp2/0Ag14 with subsequent cloning on methyl cellulose semi-solid media. This in-house generated monoclonal antibody negates binding influenced from peptides, proteins, and lipids and preferentially binds monovalent Tn antigen as noted by ELISA, FACS, and glycan array technologies. Kt-IgM-8 demonstrated in vitro and in vivo tumor killing against the Michigan Cancer Foundation breast cell line 7 (MCF-7). In vitro tumor killing was observed using an LDH assay that measured antibody-induced complement-dependent cytotoxicity and these results were validated in an in vivo passive immunotherapy approach using an MCF-7 cell line-derived xenograft model. Kt-IgM-8 is effective in killing tumor cells at 30% cytotoxicity, and furthermore, it demonstrated approximately 40% reduction in tumor growth in the MCF-7 model.
Collapse
Affiliation(s)
- Kevin R Trabbic
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Wolfe Hall 2232B, Toledo, OH, 43606, USA
| | - Kristopher A Kleski
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Wolfe Hall 2232B, Toledo, OH, 43606, USA
| | - Mengchao Shi
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Wolfe Hall 2232B, Toledo, OH, 43606, USA
| | - Jean-Paul Bourgault
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Wolfe Hall 2232B, Toledo, OH, 43606, USA
| | | | | | - Peter R Andreana
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Wolfe Hall 2232B, Toledo, OH, 43606, USA.
| |
Collapse
|
42
|
Loureiro LR, Sousa DP, Ferreira D, Chai W, Lima L, Pereira C, Lopes CB, Correia VG, Silva LM, Li C, Santos LL, Ferreira JA, Barbas A, Palma AS, Novo C, Videira PA. Novel monoclonal antibody L2A5 specifically targeting sialyl-Tn and short glycans terminated by alpha-2-6 sialic acids. Sci Rep 2018; 8:12196. [PMID: 30111774 PMCID: PMC6093877 DOI: 10.1038/s41598-018-30421-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022] Open
Abstract
Incomplete O-glycosylation is a feature associated with malignancy resulting in the expression of truncated glycans such as the sialyl-Tn (STn) antigen. Despite all the progress in the development of potential anti-cancer antibodies, their application is frequently hindered by low specificities and cross-reactivity. In this study, a novel anti-STn monoclonal antibody named L2A5 was developed by hybridoma technology. Flow cytometry analysis showed that L2A5 specifically binds to sialylated structures on the cell surface of STn-expressing breast and bladder cancer cell lines. Moreover, immunoblotting assays demonstrated reactivity to tumour-associated O-glycosylated proteins, such as MUC1. Tumour recognition was further observed using immunohistochemistry assays, which demonstrated a high sensitivity and specificity of L2A5 mAb towards cancer tissue, using bladder and colorectal cancer tissues. L2A5 staining was exclusively tumoural, with a remarkable reactivity in invasive and metastasis sites, not detectable by other anti-STn mAbs. Additionally, it stained 20% of cases of triple-negative breast cancers, suggesting application in diseases with unmet clinical needs. Finally, the fine specificity was assessed using glycan microarrays, demonstrating a highly specific binding of L2A5 to core STn antigens and additional ability to bind 2-6-linked sialyl core-1 probes. In conclusion, this study describes a novel anti-STn antibody with a unique binding specificity that can be applied for cancer diagnostic and future development of new antibody-based therapeutic applications.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/physiology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Female
- Glycosylation
- Humans
- Hybridomas
- Mice
- Mice, Inbred BALB C
- Neoplasm Proteins/metabolism
- Polysaccharides/chemistry
- Polysaccharides/immunology
- Sialic Acids/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Liliana R Loureiro
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780, Portugal
| | - Diana P Sousa
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
| | - Wengang Chai
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, 4200, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, 4200, Porto, Portugal
| | - Carina Pereira
- CINTESIS - Center for Health Technology and Services Research, University of Porto, Porto, 4200, Portugal
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center, Portuguese Oncology Institute of Porto, Porto, 4200, Portugal
| | - Carla B Lopes
- Joaquim Chaves Saúde, Anatomical Pathology Laboratory, Lisboa, 1170, Portugal
| | - Viviana G Correia
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Lisete M Silva
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, 4200, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, 4200, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780, Portugal
- Bayer Portugal, Carnaxide, 2790, Portugal
| | - Angelina S Palma
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Carlos Novo
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal.
- UEIPM, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, 1349, Portugal.
| | - Paula A Videira
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, 2829, Portugal.
| |
Collapse
|
43
|
Eavarone DA, Al-Alem L, Lugovskoy A, Prendergast JM, Nazer RI, Stein JN, Dransfield DT, Behrens J, Rueda BR. Humanized anti-Sialyl-Tn antibodies for the treatment of ovarian carcinoma. PLoS One 2018; 13:e0201314. [PMID: 30052649 PMCID: PMC6063429 DOI: 10.1371/journal.pone.0201314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023] Open
Abstract
The expression of Sialyl-Tn (STn) in tumors is associated with metastatic disease, poor prognosis, and reduced overall survival. STn is expressed on ovarian cancer biomarkers including CA-125 (MUC16) and MUC1, and elevated serum levels of STn in ovarian cancer patients correlate with lower five-year survival rates. In the current study, we humanized novel anti-STn antibodies and demonstrated the retention of nanomolar (nM) target affinity while maintaining STn antigen selectivity. STn antibodies conjugated to Monomethyl Auristatin E (MMAE-ADCs) demonstrated in vitro cytotoxicity specific to STn-expressing ovarian cancer cell lines and tumor growth inhibition in vivo with both ovarian cancer cell line- and patient-derived xenograft models. We further validated the clinical potential of these STn-ADCs through tissue cross-reactivity and cynomolgus monkey toxicity studies. No membrane staining for STn was present in any organs of human or cynomolgus monkey origin, and the toxicity profile was favorable and only revealed MMAE-class associated events with none being attributed to the targeting of STn. The up-regulation of STn in ovarian carcinoma in combination with high affinity and STn-specific selectivity of the mAbs presented herein warrant further investigation for anti-STn antibody-drug conjugates in the clinical setting.
Collapse
Affiliation(s)
| | - Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | | | | | - Rawan I. Nazer
- Siamab Therapeutics, Inc., Newton, MA, United States of America
| | - Jenna N. Stein
- Siamab Therapeutics, Inc., Newton, MA, United States of America
| | | | - Jeff Behrens
- Siamab Therapeutics, Inc., Newton, MA, United States of America
| | - Bo R. Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
44
|
Amon R, Grant OC, Leviatan Ben-Arye S, Makeneni S, Nivedha AK, Marshanski T, Norn C, Yu H, Glushka JN, Fleishman SJ, Chen X, Woods RJ, Padler-Karavani V. A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen. Sci Rep 2018; 8:10786. [PMID: 30018351 PMCID: PMC6050261 DOI: 10.1038/s41598-018-29209-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022] Open
Abstract
Anti-carbohydrate monoclonal antibodies (mAbs) hold great promise as cancer therapeutics and diagnostics. However, their specificity can be mixed, and detailed characterization is problematic, because antibody-glycan complexes are challenging to crystallize. Here, we developed a generalizable approach employing high-throughput techniques for characterizing the structure and specificity of such mAbs, and applied it to the mAb TKH2 developed against the tumor-associated carbohydrate antigen sialyl-Tn (STn). The mAb specificity was defined by apparent KD values determined by quantitative glycan microarray screening. Key residues in the antibody combining site were identified by site-directed mutagenesis, and the glycan-antigen contact surface was defined using saturation transfer difference NMR (STD-NMR). These features were then employed as metrics for selecting the optimal 3D-model of the antibody-glycan complex, out of thousands plausible options generated by automated docking and molecular dynamics simulation. STn-specificity was further validated by computationally screening of the selected antibody 3D-model against the human sialyl-Tn-glycome. This computational-experimental approach would allow rational design of potent antibodies targeting carbohydrates.
Collapse
Affiliation(s)
- Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, 30606, GA, USA
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Spandana Makeneni
- Complex Carbohydrate Research Center, University of Georgia, Athens, 30606, GA, USA
| | - Anita K Nivedha
- Complex Carbohydrate Research Center, University of Georgia, Athens, 30606, GA, USA
| | - Tal Marshanski
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Christoffer Norn
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - John N Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, 30606, GA, USA
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, CA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, 30606, GA, USA.
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
45
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
46
|
Starbuck K, Al-Alem L, Eavarone DA, Hernandez SF, Bellio C, Prendergast JM, Stein J, Dransfield DT, Zarrella B, Growdon WB, Behrens J, Foster R, Rueda BR. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau. Oncotarget 2018; 9:23289-23305. [PMID: 29796189 PMCID: PMC5955411 DOI: 10.18632/oncotarget.25289] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/08/2018] [Indexed: 01/29/2023] Open
Abstract
Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.
Collapse
Affiliation(s)
- Kristen Starbuck
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Silvia Fatima Hernandez
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | - Bianca Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Whitfield B. Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Rosemary Foster
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo R. Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|